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We study the existence of at least one monotonic positive solution for the nonlocal boundary value
problem of the second-order functional differential equation x′′(t) = f(t, x(φ(t))), t ∈ (0, 1), with
the nonlocal condition

∑m
k=1 akx(τk) = x0, x′(0) +

∑n
j=1 bjx

′(ηj) = x1, where τk ∈ (a, d) ⊂ (0, 1),
ηj ∈ (c, e) ⊂ (0, 1), and x0, x1 > 0. As an application the integral and the nonlocal conditions
∫d
a x(t)dt = x0, x′(0) + x(e) − x(c) = x1 will be considered.

1. Introduction

The nonlocal boundary value problems of ordinary differential equations arise in a variety of
different areas of applied mathematics and physics.

The study of nonlocal boundary value problems was initiated by Il’in and Moiseev
[1, 2]. Since then, the non-local boundary value problems have been studied by several
authors. The reader is referred to [3–22] and references therein.

In most of all these papers, the authors assume that the function f : [0, 1] × R+ → R+

is continuous. They all assume that

lim
x→∞

f(x)
x

= 0 or ∞,

lim
x→ 0

f(x)
x

= 0 or ∞.

(1.1)
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These assumptions are restrictive, and there are many functions that do not satisfy these
assumptions.

Here we assume that the function f : [0, 1] × R+ → R+ is measurable in t ∈ [0, 1] for
all x ∈ R+ and continuous in x ∈ R+ for almost all t ∈ [0, 1] is and there exists an integrable
function a ∈ L1[0, 1] and a constant b > 0 such that

∣
∣f(t, x)

∣
∣ ≤ |a(t)| + b|x|, ∀(t, x) ∈ [0, 1] ×D. (1.2)

Our aim here is to study the existence of at least one monotonic positive solution for the
nonlocal problem of the second-order functional differential equation

x′′(t) = f
(
t, x
(
φ(t)
))
, t ∈ (0, 1), (1.3)

with the nonlocal condition

m∑

k=1

akx(τk) = x0, x′(0) +
n∑

j=1

bjx
′(ηj
)
= x1, (1.4)

where τk ∈ (a, d) ⊂ (0, 1), ηj ∈ (c, e) ⊂ (0, 1), and x0, x1 > 0.
As an application, the problem with the integral and nonlocal conditions

∫d

a

x(t)dt = x0, x′(0) + x(e) − x(c) = x1, (1.5)

is studied.
It must be noticed that the nonlocal conditions

x(τ) = x0, τ ∈ (a, d) , x′(0) + x′(η
)
= x1, η ∈ (c, e),

m∑

k=1

akx(τk) = 0, τk ∈ (a, d), x′(0) +
n∑

j=1

bjx
′(ηj
)
= 0, ηj ∈ (c, e),

∫d

a

x(t)dt = 0, x′(0) + x(e) = x(c)

(1.6)

are special cases of our the nonlocal and integral conditions.

2. Integral Equation Representation

Consider the functional differential equation (1.3) with the nonlocal condition (1.4) with the
following assumptions.
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(i) f : [0, 1] × R+ → R+ is measurable in t ∈ [0, 1] for all x ∈ R+ and continuous in
x ∈ R+ for almost all t ∈ [0, 1] and there exists an integrable function a ∈ L1[0, 1],
and a constant b > 0 such that

∣
∣f(t, x)

∣
∣ ≤ |a(t)| + b|x|, ∀(t, x) ∈ [0, 1] ×D. (2.1)

(ii) φ : (0, 1) → (0, 1) is continuous.

(iii) b < 1/(3 − B), B = (
∑n

j=1 bj + 1)−1.

(iv)

m∑

k=1

ak > 0, ∀k = 1, 2, . . . , m,
n∑

j=1

bj > 0, ∀j = 1, 2, . . . , n. (2.2)

Now, we have the following Lemma.

Lemma 2.1. The solution of the nonlocal problem (1.3)-(1.4) can be expressed by the integral equation

x(t) = A

{

x0 −
m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(

t −A
m∑

k=1

akτk

)⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬

⎭

+
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds,

(2.3)

where A = (
∑m

k=1 ak)
−1, B = (

∑n
j=1 bj + 1)−1.

Proof. Integrating (1.3), we get

x′(t) = x′(0) +
∫ t

0
f
(
s, x
(
φ(s)

))
ds. (2.4)

Integrating (2.4), we obtain

x(t) = x(0) + x′(0)t +
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds. (2.5)

Let t = τk, in (2.5), we get

m∑

k=1

akx(τk) =
n∑

k=1

akx(0) +
n∑

k=1

akτkx
′(0) +

m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds, (2.6)
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and we deduce that

x(0) = A

{

x0 −
m∑

k=1

akτkx
′(0) −

m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

, A =

(
m∑

k=1

ak

)−1
. (2.7)

Substitute from (2.7) into (2.5), we obtain

x(t) = A

{

x0 −
m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ x′(0)

(

t −A
m∑

k=1

akτk

)

+
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds.

(2.8)

Let t = ηj , in (2.4), we obtain

n∑

j=1

bjx
′(ηj
)
=

n∑

j=1

bjx
′(0) +

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds,

x1 − x′(0) = x′(0)
n∑

j=1

bj +
n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds,

(2.9)

and we deduce that

x′(0) = B

⎛

⎝x1 −
n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎞

⎠, B =

⎛

⎝
n∑

j=1

bj + 1

⎞

⎠

−1

. (2.10)

Substitute from (2.10) into (2.8), we obtain

x(t) = A

{

x0 −
m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(

t −A
m∑

k=1

akτk

)⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬

⎭
,

+
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds,

(2.11)

which proves that the solution of the nonlocal problem (1.3)-(1.4) can be expressed by the
integral equation (2.3).
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3. Existence of Solution

We study here the existence of at least one monotonic nondecreasing solution x ∈ C[0, 1] for
the integral equation (2.3).

Theorem 3.1. Assume that (i)–(iv) are satisfied. Then the nonlocal problem (1.3)-(1.4) has at least
one solution x ∈ C[0, 1].

Proof. Define the subset Qr ⊂ C(0, 1) by Qr = {x ∈ C : |x(t)| ≤ r, r = (Ax0 + Bx1 + (3 −
B)‖a‖)/(1 − (3 − B)b), r > 0}. Clear the set Qr which is nonempty, closed, and convex.

Let H be an operator defined by

(Hx)(t) = A

{

x0 −
m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(

t −A
m∑

k=1

akτk

)⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬

⎭

+
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds.

(3.1)

Let x ∈ Qr , then

|(Hx)(t)| ≤ A

{

x0 +
m∑

k=1

ak

∫ τk

0
(τk − s)

∣
∣f
(
s, x
(
φ(s)

))∣
∣ds

}

+ B

(

t −A
m∑

k=1

akτk

)⎧
⎨

⎩
x1 +

n∑

j=1

bj

∫ηj

0

∣
∣f
(
s, x
(
φ(s)

))∣
∣ds

⎫
⎬

⎭

+
∫ t

0
(t − s)

∣
∣f
(
s, x
(
φ(s)

))∣
∣ds

≤ A

{

x0 +
m∑

k=1

ak

∫1

0

[|a(s)| + b
∣
∣x
(
φ(s)

)∣
∣
]
ds

}

+ B

⎧
⎨

⎩
x1 +

n∑

j=1

bj

∫1

0

[|a(s)| + b
∣
∣x
(
φ(s)

)∣
∣
]
ds

⎫
⎬

⎭

+
∫1

0

[|a(s)| + b
∣
∣x
(
φ(s)

)∣
∣
]
ds

≤ Ax0 + ‖a‖ + b sup
t∈I

∣
∣x
(
φ(t)
)∣
∣ + Bx1 + B

n∑

j=1

bj‖a‖

+ bB
n∑

j=1

bjsup
t∈I

∣
∣x
(
φ(t)
)∣
∣ + ‖a‖ + b sup

t∈I

∣
∣x
(
φ(t)
)∣
∣
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≤ Ax0 + Bx1 + 2‖a‖ + 2b‖x‖ + (1 − B)‖a‖ + b(1 − B)‖x‖
≤ Ax0 + Bx1 + (3 − B)‖a‖ + (3 − B)br ≤ r,

(3.2)

thenH : Qr → Qr and {Hx(t)} is uniformly bounded in Qr .
Also for t1, t2 ∈ [0, 1] such that t1 < t2, we have

(Hx)(t2) − (Hx)(t1) = B

(

t2 −A
m∑

k=1

akτk

)⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(t)
))
ds

⎫
⎬

⎭

+
∫ t2

0
(t2 − s)f

(
s, x
(
φ(t)
))
ds

− B

(

t1 −A
m∑

k=1

akτk

)⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(t)
))
ds

⎫
⎬

⎭

−
∫ t1

0
(t1 − s)f

(
s, x
(
φ(t)
))
ds

= B(t2 − t1)

⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(t)
))
ds

⎫
⎬

⎭

+
∫ t1

0
(t2 − t1)f

(
s, x
(
φ(t)
))
ds

+
∫ t2

t1

(t2 − s)f
(
s, x
(
φ(t)
))
ds.

(3.3)

Then

|(Hx)(t2) − (Hx)(t1)| ≤ B|t2 − t1|
⎧
⎨

⎩
x1 +

n∑

j=1

bj

∫ηj

0

[|a(s)| + b
∣
∣x
(
φ(s)

)∣
∣
]
ds

⎫
⎬

⎭

+ |t2 − t1|
∫ t1

0

[|a(s)| + b
∣
∣x
(
φ(s)

)∣
∣
]
ds

+
∫ t2

t1

(t2 − s)
[|a(s)| + b

∣
∣x
(
φ(s)

)∣
∣
]
ds
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≤ B|t2 − t1|x1 +
n∑

j=1

bj[‖a‖ + br]

+ |t2 − t1|[‖a‖ + br] +
∫ t2

t1

‖a‖ds + br[t2 − t1].

(3.4)

The above inequality shows that

|(Hx)(t2) − (Hx)(t1)| −→ 0 as t2 −→ t1. (3.5)

Therefore {Hx(t)} is equicontinuous. By the Arzelà-Ascoli theorem, {Hx(t)} is relatively
compact.

Since all conditions of the Schauder theorem hold, then H has a fixed point in Qr

which proves the existence of at least one solution x ∈ C[0, 1] of the integral equation (2.3),
where

lim
t→ 0+

x(t) = A

{

x0 −
m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

− BA
m∑

k=1

akτk

⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬

⎭
= x(0),

lim
t→ 1−

x(t) = A

{

x0 −
m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(

1 −A
m∑

k=1

akτk

)⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬

⎭

+
∫1

0
(1 − s)f

(
s, x
(
φ(s)

))
ds = x(1).

(3.6)

To complete the proof, we prove that the integral equation (2.3) satisfies nonlocal problem
(1.3)-(1.4). Differentiating (2.3), we get

x′(t) = B

⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬

⎭
+
∫ t

0
f
(
s, x
(
φ(s)

))
ds, (3.7)

x′′(t) = f
(
t, x
(
φ(t)
))
. (3.8)
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Let t = τk in (2.3), we obtain

x(τk) = A

{

x0 −
m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+
∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds, (3.9)

which proves

m∑

k=1

akx(τk) = x0. (3.10)

Also let t = ηj in (3.7), we obtain

x′(ηj
)
= B

⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬

⎭
+
∫ηj

0
f
(
s, x
(
φ(s)

))
ds, (3.11)

then

n∑

j=1

bjx
′(ηj
)
= B

n∑

j=1

bj

⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬

⎭
+

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds. (3.12)

Let t = 0 in (3.7), we obtain

x′(0) = B

⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬

⎭
. (3.13)

Adding (3.12) and (3.13), we obtain

x′(0) +
n∑

j=1

bjx
′(ηj
)
= x1. (3.14)

This implies that there exists at least one solution x ∈ C[0, 1] of the nonlocal problem (1.3)
and (1.4). This completes the proof.
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Corollary 3.2. The solution of the problem (1.3)-(1.4) is monotonic nondecreasing.

Proof. Let t1 < t2, we deduce from (2.3) that

x(t1) = A

{

x0 −
m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(

t1 −A
m∑

k=1

akτk

)⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬

⎭

+
∫ t1

0
(t1 − s)f

(
s, x
(
φ(s)

))
ds

< A

{

x0 −
m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(

t2 −A
m∑

k=1

akτk

)⎧
⎨

⎩
x1 −

n∑

j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬

⎭

+
∫ t2

0
(t2 − s)f

(
s, x
(
φ(s)

))
ds = x(t2),

(3.15)

which proves that the solution x of the problem (1.3)-(1.4) is monotonic nondecreasing.

3.1. Positive Solution

Let bj = 0, j = 1, 2, . . . n and x1 = 0, then the nonlocal problem condition (1.4) will be

m∑

k=1

akx(τk) = x0, x′(0) = 0. (3.16)

Theorem 3.3. Let the assumptions (i)–(iv) of Theorem 3.1 be satisfied. Then the solution of the
nonlocal problem (1.3)–(3.16) is positive t ∈ [d, 1].

Proof. Let bj = 0, j = 1, 2, . . . n and x1 = 0 in the integral equation (2.3) and the nonlocal
condition (1.4), then the solution of the nonlocal problem (1.3)–(3.16) will be given by the
integral equation

x(t) = A

{

x0 −
m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+
∫ t

0
(t − s) f

(
s, x
(
φ(s)

))
ds, (3.17)

where A = (
∑m

k=1 ak)
−1.
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Let t ∈ [d, 1], then

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds ≤

∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds, τk ≤ t,

m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds ≤

m∑

k=1

ak

∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds.

(3.18)

Multiplying by A = (
∑m

k=1 ak)
−1, we obtain

A
m∑

k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds ≤ A

m∑

k=1

ak

∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds

=
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds,

(3.19)

and the solution x of the nonlocal problem (1.3) and (3.16), given by the integral equation
(3.17), is positive for t ∈ [d, 1]. This complete the proof.

Example 3.4. Consider the nonlocal problem of the second-order functional differential
equation (1.3)with two-point boundary condition

x′(0) = 0, x
(
η
)
= x0, η ∈ (a, d) ⊂ (0, 1). (3.20)

Applying our results here, we deduce that the two-point boundary value problem (1.3)–
(3.20) has at least one monotonic nondecreasing solution x ∈ C[0, 1] represented by the
integral equation

x(t) = x0 −
∫η

0

(
η − s

)
f
(
s, x
(
φ(s)

))
ds +

∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds. (3.21)

This the solution is positive with t > η.

4. Nonlocal Integral Condition

Let x ∈ C[0, 1] be the solution of the nonlocal problem (1.3) and (1.4).
Let ak = tk − tk−1, τk ∈ (tk−1, tk) ⊂ (a, d) ⊂ (0, 1) and let bj = ξj − ξj−1, ηj ∈ (ξj−1, ξj) ⊂

(c, e) ⊂ (0, 1), then

m∑

k=1

(tk − tk−1)x(τk) = x0, x′(0) +
n∑

j=1

(
ξj − ξj−1

)
x′(ηj

)
= x1. (4.1)
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From the continuity of the solution x of the nonlocal problem (1.3) and (1.4), we obtain

lim
m→∞

m∑

k=1

(tk − tk−1)x(τk) =
∫d

a

x(s)ds,

x′(0) + lim
n→∞

n∑

j=1

(
ξj − ξj−1

)
x′(ηj

)
= x′(0) +

∫e

c

x′(s)ds,

(4.2)

and the nonlocal condition (1.4) transformed to the integral condition

∫d

a

x(s)ds = x0, x′(0) + x(e) − x(c) = x1, (4.3)

and the solution of the integral equation (2.3)will be

x(t) = (d − a)−1
{

x0 −
∫d

a

∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
dsdt

}

+ ((b − c) + 1)−1(t − 1)

{

x1 −
∫e

c

∫ t

0
f
(
s, x
(
φ(s)

))
dsdt

}

+
∫ t

0
f
(
s, x
(
φ(s)

))
ds.

(4.4)

Now, we have the following theorem.

Theorem 4.1. Let the assumptions (i)–(iv) of Theorem 3.1 be satisfied. Then the nonlocal problem

x′′(t) = f
(
t, x
(
φ(t)
))
, t ∈ (0, 1) ,

∫d

a

x(s)ds = x0, x′(0) + x(e) − x(c) = x1

(4.5)

has at least one monotonic nondecreasing solution x ∈ C[0, 1] represented by (4.4).
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