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Using inequality techniques and coincidence degree theory, new results are provided concerning
the existence and uniqueness of periodic solutions for the Duffing type p-Laplacian equation with
multiple constant delays of the form (ϕp(x′(t)))′ + Cx′(t) + g0(t, x(t)) +

∑n
k=1 gk(t, x(t − τk)) = e(t).

Moreover, an example is provided to illustrate the effectiveness of the results in this paper.

1. Introduction

Referring to the work of Esmailzadeh and Nakhaie-Jazar [1], Duffing type equation is the
simplest case of a vibrating system with nonlinear restoring force generator element. This
is equivalent to a mechanical vibrating system with either a hard or soft spring. Thus, this
equation and its modifications have been extensively and intensively studied. In particular,
the existence of periodic solutions for Duffing type equations with and without delays have
been discussed by various researchers (see, e.g., [2–8] and the references given therein).
However, to the best of our knowledge, the existence and uniqueness of periodic solutions
of Duffing type p-Laplacian equation whose delays more than two have not been sufficiently
researched. Motivated by this, we shall consider the Duffing type p-Laplacian equations with
multiple constant delays of the form

(
ϕp

(
x′(t)

))′ + Cx′(t) + g0(t, x(t)) +
n∑

k=1

gk(t, x(t − τk)) = e(t), (1.1)
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where p > 1 and ϕp : R → R is given by ϕp(s) = |s|p−2s for s /= 0 and ϕp(0) = 0, C and τk
are constants, e : R → R and g0, gk : R × R → R are continuous functions, τk and e are
T -periodic, g0 and gk are T -periodic in the first argument, T > 0 and k = 1, 2, . . . , n. The main
purpose of this paper is to establish sufficient conditions for the existence and uniqueness of
T -periodic solutions of (1.1). The results of this paper are new and complement previously
known results. Moreover, we give an example to illustrate the results.

2. Preliminary Results

Throughout this paper, we will denote

C1
T :=

{
x ∈ C1(R) : x is T -periodic

}
,

|x|k =

(∫T

0
|x(t)|kdt

)1/k

(k > 0), |x|∞ = max
t∈[0,T]

|x(t)|.
(2.1)

For the periodic boundary value problem

(
ϕp

(
x′(t)

))′ = f̃
(
t, x, x′), x(0) = x(T), x′(0) = x′(T), (2.2)

where f̃ ∈ C(R3, R) is T -periodic in the first variable, we have the following lemma.

Lemma 2.1 (see [9]). Let Ω be an open bounded set in C1
T , if the following conditions hold.

(i) For each λ ∈ (0, 1) the problem

(
ϕp

(
x′(t)

))′ = λf̃
(
t, x, x′), x(0) = x(T), x′(0) = x′(T), (2.3)

has no solution on ∂Ω.

(ii) The equation

F(a) :=
1
T

∫T

0
f̃(t, a, 0)dt = 0 (2.4)

has no solution on ∂Ω
⋂
R.

(iii) The Brouwer degree of F

deg
(
F,Ω

⋂
R, 0

)
/= 0. (2.5)

Then, the periodic boundary value problem (2.2) has at least one T -periodic solution on Ω.

We can easily obtain the homotopic equation of (1.1) as follows:

(
ϕp

(
x′(t)

))′ + λCx′(t) + λ

[

g0(t, x(t)) +
n∑

k=1

gk(t, x(t − τk))

]

= λe(t), λ ∈ (0, 1). (2.6)
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Lemma 2.2. Assume that the following conditions are satisfied.
(A1) There exists a constant d > 0 such that

(1)
∑n

k=0 gk(t, xk) − e(t) < 0 for xk > d, t ∈ R, k = 0, 1, 2, . . . , n,

(2)
∑n

k=0 gk(t, xk) − e(t) > 0 for xk < −d, t ∈ R, k = 0, 1, 2, . . . , n.

Moveover, if x(t) is a T -periodic solution of (2.6), then

|x|∞ ≤ d +
1
2

√
T
∣
∣x′∣∣

2. (2.7)

Proof. Let x(t) be a T -periodic solution of (2.6). Then, integrating (2.6) over [0, T], we have

∫T

0

[

g0(t, x(t)) +
n∑

k=1

gk(t, x(t − τk)) − e(t)

]

dt = 0. (2.8)

Using the integral mean-value theorem, it follows that there exists t1 ∈ [0, T] such that

g0(t1, x(t1)) +
n∑

k=1

gk(t1, x(t1 − τk)) − e(t1) = 0. (2.9)

We now prove that there exists a constant t2 ∈ R such that

|x(t2)| ≤ d. (2.10)

Indeed, suppose otherwise. Then,

|x(t)| > d ∀t ∈ R. (2.11)

Let τ0 = 0. From (A1), (2.9), and (2.11), we see that there exist 0 ≤ i, j ≤ n such that

x(t1 − τi) = max
0≤k≤n

x(t1 − τk) ≥ min
0≤k≤n

x(t1 − τk) = x
(
t1 − τj

)
, (2.12)

which, together with (2.11), implies

−d > x(t1 − τi) = max
0≤k≤n

x(t1 − τk) or x
(
t1 − τj

)
= min

0≤k≤n
x(t1 − τk) > d. (2.13)

Without loss of generality, we may assume that x(t1 − τj) > d (the situation is analogous for
−d > x(t1 − τi)). Then, we have

x(t1 − τi) ≥ x(t1 − τk) ≥ x
(
t1 − τj

)
> d, k = 0, 1, 2, . . . , n. (2.14)
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According to (2.14) and (A1), we obtain

0 >
n∑

k=0

gk(t1, x(t1 − τk)) − e(t1), (2.15)

this contradicts the fact (2.9); thus, (2.10) is true.
Let t2 = mT + t0 where t0 ∈ [0, T] andm is an integer. Then, by the same approach used

in the proof of inequality (3.3) of [7], we have

|x|∞ = max
t∈[t0,t0+T]

|x(t)| ≤ max
t∈[t0,t0+T]

{

d +
1
2

(∫ t

t0

∣
∣x′(s)

∣
∣ds +

∫ t0

t−T

∣
∣x′(s)

∣
∣ds

)}

≤ d +
1
2

√
T
∣
∣x′∣∣

2.

(2.16)

This completes the proof of Lemma 2.2.

Lemma 2.3. Let (A1) holds. Assume that the following condition is satisfied.
(A2) There exist nonnegative constants b0, b0, b1, b2, . . . , bn such that

b0|x1 − x2|2 ≤ −(g0(t, x1) − g0(t, x2)
)
(x1 − x2),

b0 > b1 + b2 + · · · + bn,
∣
∣gk(t, x1) − gk(t, x2)

∣
∣ ≤ bk|x1 − x2|,

(2.17)

for all t, x1, x2 ∈ R, k = 0, 1, 2, . . . , n.
Then, (1.1) has at most one T -periodic solution.

Proof. Suppose that x1(t) and x2(t) are two T -periodic solutions of (1.1). Set Z(t) = x1(t) −
x2(t). Then, we obtain

(
ϕp

(
x′
1(t)

) − ϕp

(
x′
2(t)

))′ + C
(
x′
1(t) − x′

2(t)
)
+
[
g0(t, x1(t)) − g0(t, x2(t))

]

+
n∑

k=1

[
gk(t, x1(t − τk)) − gk(t, x2(t − τk))

]
= 0.

(2.18)

Multiplying Z(t) and (2.18) and then integrating it from 0 to T, from (A2) and Schwarz
inequality, we get

b0|Z|22 = b0

∫T

0
|Z(t)|2dt

≤ −
∫T

0
(x1(t) − x2(t))

[
g0(t, x1(t)) − g0(t, x2(t))

]
dt

= −
∫T

0

(
ϕp

(
x′
1(t)

) − ϕp

(
x′
2(t)

))(
x′
1(t) − x′

2(t)
)
dt

+
n∑

k=1

∫T

0

[
gk(t, x1(t − τk)) − gk(t, x2(t − τk))

]
Z(t)dt
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≤
n∑

k=1

bk

∫T

0
|x1(t − τk) − x2(t − τk)||Z(t)|dt

≤
n∑

k=1

bk

(∫T

0
|x1(t − τk) − x2(t − τk)|2dt

)1/2

|Z|2

=
n∑

k=1

bk|Z|22.

(2.19)

Since b0 > b1 + b2 + · · · + bn, we have

Z(t) ≡ 0 ∀t ∈ R. (2.20)

Thus, x1(t) ≡ x2(t) for all t ∈ R. Therefore, (1.1) has at most one T -periodic solution. The
proof of Lemma 2.3 is now complete.

3. Main Results

Theorem 3.1. Let (A1) and (A2) hold. Then, (1.1) has a unique T -periodic solution in C1
T .

Proof. By Lemma 2.3, it is easy to see that (1.1) has at most one T -periodic solution in C1
T .

Thus, in order to prove Theorem 3.1, it suffices to show that (1.1) has at least one T -periodic
solution in C1

T . To do this, we are going to apply Lemma 2.1. Firstly, we claim that the set of
all possible T -periodic solutions of (2.6) in C1

T is bounded.
Let x(t) ∈ C1

T be a T -periodic solution of (2.6). Multiplying x(t) and (2.6) and then
integrating it from 0 to T, we have

−
∫T

0
ϕp

(
x′(t)

)
x′(t)dt + λ

∫T

0
x(t)

[

g0(t, x(t)) +
n∑

k=1

gk(t, x(t − τk)) − e(t)

]

dt = 0. (3.1)

Since x(0) = x(T), then there exists t0 ∈ [0, T] such that x′(t0) = 0. And since ϕp(0) = 0, we
have

∣
∣ϕp

(
x′(t)

)∣
∣ =

∣
∣
∣
∣
∣

∫ t

t0

(
ϕp

(
x′(s)

))′
ds

∣
∣
∣
∣
∣
≤ λ

∫ t0+T

t0

∣
∣
∣
∣
∣
g0(t, x(t)) +

n∑

k=1

gk(t, x(t − τk)) − e(t)

∣
∣
∣
∣
∣
dt, (3.2)

where t ∈ [t0, t0 + T].
In view of (3.1), (A2), and Schwarz inequality, we get

b0|x|22 = b0

∫T

0
|x(t)|2dt

≤ −
∫T

0
(x(t) − 0)

(
g0(t, x(t)) − g0(t, 0)

)
dt
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= − 1
λ

∫T

0
ϕp

(
x′(t)

)
x′(t)dt +

n∑

k=1

∫T

0

[
gk(t, x(t − τk)) − gk(t, 0)

]
x(t)dt

+
n∑

k=0

∫T

0
gk(t, 0)x(t)dt −

∫T

0
x(t)e(t)dt

≤
n∑

k=1

bk

∫T

0
|x(t − τk)||x(t)|dt +

n∑

k=0

∫T

0

∣
∣gk(t, 0)

∣
∣|x(t)|dt +

√
T |e|∞|x|2

≤
n∑

k=1

bk

(∫T

0
|x(t − τk)|2dt

)1/2

|x|2 +
√
T

n∑

k=0

∣
∣gk(t, 0)

∣
∣
∞|x|2 +

√
T |e|∞|x|2

=
n∑

k=1

bk|x|22 +
√
T

n∑

k=0

∣
∣gk(t, 0)

∣
∣
∞|x|2 +

√
T |e|∞|x|2.

(3.3)

It follows that

|x|2 ≤
√
T
∑n

k=0

∣
∣gk(t, 0)

∣
∣
∞ +

√
T |e|∞

b0 −
∑n

k=1 bk
:= θ. (3.4)

Again from (A2) and Schwarz inequality, (3.2) and (3.4) yield

∣
∣x′∣∣p−1

∞ = max
t∈[t0, t0+T]

{∣
∣ϕp

(
x′(t)

)∣
∣
}
= max

t∈[t0,t0+T]

{∣
∣
∣
∣
∣

∫ t

t0

(
ϕp

(
x′(s)

))′
ds

∣
∣
∣
∣
∣

}

≤
∫ t0+T

t0

∣
∣
∣
∣
∣
g0(t, x(t)) +

n∑

k=1

gk(t, x(t − τk)) − e(t)

∣
∣
∣
∣
∣
dt

=
∫T

0

∣
∣
∣
∣
∣
g0(t, x(t)) +

n∑

k=1

gk(t, x(t − τk)) − e(t)

∣
∣
∣
∣
∣
dt

≤
∫T

0

∣
∣g0(t, x(t)) − g0(t, 0)

∣
∣dt +

n∑

k=1

∫T

0

∣
∣gk(t, x(t − τk)) − gk(t, 0)

∣
∣dt

+
n∑

k=0

∫T

0

∣
∣gk(t, 0)

∣
∣dt + T |e|∞

≤ b0

∫T

0
|x(t)|dt +

n∑

k=1

∫T

0
bk|x(t − τk)|dt +

n∑

k=0

T
∣
∣gk(t, 0)

∣
∣
∞ + T |e|∞

≤ b0
√
T |x|2 +

n∑

k=1

bk
√
T |x|2 +

n∑

k=0

T
∣
∣gk(t, 0)

∣
∣
∞ + T |e|∞
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≤ b0
√
Tθ +

n∑

k=1

bk
√
Tθ +

n∑

k=0

T
∣
∣gk(t, 0)

∣
∣
∞ + T |e|∞

:= η,

(3.5)

which, together with (2.7), implies that there exists a positive constantM > 1+(η)1/(p−1) such
that, for all t ∈ R,

∣
∣x′∣∣

∞ < M, |x|∞ ≤ d +
1
2

√
T
∣
∣x′∣∣

2 ≤ d +
1
2
T
∣
∣x′∣∣

∞ < M. (3.6)

Set

Ω =
{
x ∈ C1

T : |x|∞ ≤ M,
∣
∣x′∣∣

∞ ≤ M
}
, (3.7)

then we know that (2.6) has no T -periodic solution on ∂Ω as λ ∈ (0, 1) and when x(t) ∈
∂Ω

⋂
R, x(t) = M or x(t) = −M, from (A2), we can see that

1
T

∫T

0

{

−g0(t,M) −
n∑

k=1

gk(t,M) + e(t)

}

dt > 0,

1
T

∫T

0

{

−g0(t,−M) −
n∑

k=1

gk(t,−M) + e(t)

}

dt < 0,

(3.8)

so condition (ii) of Lemma 2.1 is also satisfied. Set

H
(
x, μ

)
= μx − (

1 − μ
) 1
T

∫T

0

[

g0(t, x) +
n∑

k=1

gk(t, x) − e(t)

]

dt, (3.9)

and when x ∈ ∂Ω
⋂
R, μ ∈ [0, 1], we have

xH
(
x, μ

)
= μx2 − (

1 − μ
)
x
1
T

∫T

0

[

g0(t, x) +
n∑

k=1

gk(t, x) − e(t)

]

dt > 0. (3.10)

Thus, H(x, μ) is a homotopic transformation and

deg
{
F,Ω

⋂
R, 0

}
= deg

{

− 1
T

∫T

0

[

g0(t, x) +
n∑

k=1

gk(t, x) − e(t)

]

dt,Ω
⋂

R, 0

}

= deg
{
x,Ω

⋂
R, 0

}
/= 0,

(3.11)

so condition (iii) of Lemma 2.1 is satisfied. In view of the previous Lemma 2.1, (1.1) has at
least one solution with period T . This completes the proof.
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4. Example and Remark

Example 4.1. Let p = 4, g0(t, x) = −10e20+sin tx, g1(t, x) = −2e2+sin t sinx, and g2(t, x) =
−3e3+cos t cosx for all t, x ∈ R. Then, the following Liénard type p-Laplacian equation with
two constant delays

(
ϕpx

′(t)
)′ + 55x′(t) + g0(t, x(t)) + g1(t, x(t − 1)) + g2(t, x(t − 2)) = cos t (4.1)

has a unique 2π-periodic solution.

Proof. From (4.1), it is straight forward to check that all the conditions needed in Theorem 3.1
are satisfied. Therefore, (4.1) has at least one 2π-periodic solution.

Remark 4.2. Obviously, the results in [2–5] obtained on Duffing type p-Laplacian equation
with single delay and without multiple delays cannot be applicable to (4.1). This implies that
the results of this paper are essentially new.
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