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we show the existence and multiplicity of positive solutions of the nonlinear discrete fourth-order
boundary value problem Δ4u(t − 2) = λh(t)f(u(t)), t ∈ �2, u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0,
where λ > 0, h : �2 → (0,∞) is continuous, and f : � → [0,∞) is continuous, T > 4, �2 =
{2, 3, . . . , T}. The main tool is the Dancer’s global bifurcation theorem.

1. Introduction

It’s well known that the fourth order boundary value problem

u′′′′(t) = f(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0
(1.1)

can describe the stationary states of the deflection of an elastic beam with both ends hinged,
(it also models a rotating shaft). The existence and multiplicity of positive solutions of the
boundary value problem (1.1) have been considered extensively in the literature, see [1–10].
The existence and multiplicity of positive solutions of the parameterized boundary value
problem

u′′′′(t) = λh(t)f(u(t)), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0
(1.2)
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have also been studied by several authors, see Bai and Wang [11], Cid et al. [12], and the ref-
erences therein.

However, relatively little is known about the corresponding discrete fourth-order pro-
blems. Let

T > 4, �0 = {0, 1, . . . , T + 2}, �1 = {1, 2, . . . , T + 1}, �2 = {2, 3, . . . , T}. (1.3)

Zhang et al. [13], and He and Yu [14] used the fixed point index theory in cones to study the
following discrete analogue

Δ4u(t − 2) = λh(t)f(u(t)), t ∈ �2, (1.4)

u(0) = u(T + 2) = Δ2u(0) = Δ2u(T) = 0, (1.5)

where Δ4u(t − 2) denote the fourth forward difference operator and Δu(t) = u(t + 1) − u(t). It
has been pointed out in [13, 14] that (1.4), (1.5) are equivalent to the equation of the form:

u(t) = λ
T+1∑

s=1

G(t, s)
T∑

j=2

G1
(
s, j

)
h
(
j
)
f
(
u
(
j
))

=: A0u(t), t ∈ �0, (1.6)

where

G(t, s) =
1

T + 2

⎧
⎨

⎩
s(T + 2 − t), 1 ≤ s ≤ t ≤ T + 2,

t(T + 2 − s), 0 ≤ t ≤ s ≤ T + 1,

G1
(
s, j

)
=

1
T

⎧
⎨

⎩
(T + 1 − s)(j − 1

)
, 2 ≤ j ≤ s ≤ T + 1,

(
T + 1 − j)(s − 1), 1 ≤ s ≤ j ≤ T.

(1.7)

Notice that two distinct Green’s functions used in (1.6) make the construction of cones and
the verification of strong positivity of A0 become more complex and difficult. Therefore, Ma
and Xu [15] considered (1.4) with the boundary condition

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0, (1.8)

and introduced the definition of generalized positive solutions:

Definition 1.1. A function y : �0 → �
+ is called a generalized positive solution of (1.4), (1.8), if

y satisfies (1.4), (1.8), and y(t) ≥ 0 on �1 and y(t) > 0 on �2.

Remark 1.2. Notice that the fact y : �0 → �
+ is a generalized positive solution of (1.4), (1.8)

does not means that y(t) ≥ 0 on �0. In fact, y satisfies
(1) y(t) ≥ 0 for t ∈ �2;
(2) y(1) = y(T + 1) = 0;
(3) y(0) = −y(2), y(T + 2) = −y(T).
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Ma and Xu [15] also applied the fixed point theorem in cones to obtain some results
on the existence of generalized positive solutions.

It is the purpose of this paper to show some new results on the existence and multi-
plicity of generalized positive solutions of (1.4), (1.8) by Dancer’s global bifurcation theorem.
To wit, we get the following.

Theorem 1.3. Let h : �2 → (0,∞), f ∈ C(�, [0,∞)), and

lim
s→ 0+

f(s)
s

= f0 ∈ (0,∞), lim
s→∞

f(s)
s

= f∞ = +∞. (1.9)

Assume that there exists B ∈ [0,+∞] such that f is nondecreasing on [0, B). Then

(i) (1.4), (1.8) have at least one generalized positive solution if 0 < λ < λ1/f0;

(ii) (1.4), (1.8) have at least two generalized positive solutions if

λ1
f0

< λ < sup
s∈(0,B)

s

γ ∗f(s)
, (1.10)

where γ ∗ = maxt∈�1

∑T
s=2K(t, s)h(s), K(t, s) is defined as (2.3) and λ1 is the first eigen-

value of

Δ4u(t − 2) = λh(t)u(t), t ∈ �2,

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0.
(1.11)

The “dual” of Theorem 1.3 is as follows.

Theorem 1.4. Let h : �2 → (0,∞), f ∈ C(�, [0,∞)), and

lim
s→ 0+

f(s)
s

= f0 ∈ (0,∞), lim
s→∞

f(s)
s

= f∞ = 0. (1.12)

Assume that there exists B ∈ [0,+∞] such that f is nondecreasing on [0, B). Then

(i) (1.4), (1.8) have at least a generalized positive solution provided

λ > inf
s∈(0,c1B)

s

c1γ∗f(s)
, (1.13)

where γ∗ = mint∈�2

∑T
s=2K(t, s)h(s);
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(ii) (1.4), (1.8) have at least two generalized positive solutions provided

inf
s∈(0,c1B)

s

c1γ∗f(s)
< λ <

λ1
f0
. (1.14)

The rest of the paper is organized as follows: in Section 2, we present the form of
the Green’s function of (1.4), (1.8) and its properties, and we enunciate the Dancer’s global
bifurcation theorem ([16, Corollary 15.2]). In Section 3, we use the Dancer’s bifurcation
theorem to prove Theorems 1.3 and 1.4 and in Section 4, we finish the paper presenting a
couple of illustrative examples.

Remark 1.5. For other results on the existence and multiplicity of positive solutions and nodal
solutions for fourth-order boundary value problems based on bifurcation techniques, see [17–
21].

2. Preliminaries and Dancer’s Global Bifurcation Theorem

Lemma 2.1. Let h : �2 → �. Then the linear boundary value problem

Δ4u(t − 2) = h(t), t ∈ �2,

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0 (2.1)

has a solution

u(t) =
T∑

s=2

K(t, s)h(s), t ∈ �1, (2.2)

where

K(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(s − 1)(T + 1 − t)
(
2T(t − 1) − (t − 1)2 − (s − 2)s

)

6T
, 2 ≤ s ≤ t ≤ T + 1,

(t − 1)(T + 1 − t)
(
2T(s − 1) − (s − 1)2 − (t − 2)t

)

6T
, 1 ≤ t ≤ s ≤ T.

(2.3)

Proof. By a simple summing computation and u(1) = Δ2u(0) = 0, we can obtain

u(t) = Δu(0)(t − 1) +
t(t − 1)(t − 2)

6
Δ3u(0) +

t−1∑

s=2

(t − s)(t − s − 1)(t − s + 1)
6

h(s).

(2.4)
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This together with u(T + 1) = Δ2u(T) = 0, it follows that

u(t) =
T∑

s=2

(T + 1 − s)(t − 1)
[
2T(s − 1) − (s − 1)2 − t(t − 2)

]

6T
h(s)

+
t−1∑

s=2

(t − s)(t − s − 1)(t − s + 1)
6T

h(s)

=
T∑

s=t

(T + 1 − s)(t − 1)
[
2T(s − 1) − (s − 1)2 − t(t − 2)

]

6T
h(s)

+
t−1∑

s=2

(T + 1 − t)(s − 1)
[
2T(t − 1) − (t − 1)2 − s(s − 2)

]

6T
h(s).

(2.5)

Therefore, (2.2) holds.

Remark 2.2. It has been pointed out in [15] that (2.1) is equivalent to the summation equation
of the form

u(t) =
T∑

s=2

G1(t, s)
T∑

j=2

G1
(
s, j

)
h
(
j
)
, t ∈ �1. (2.6)

It is easy to verify that (2.2) and (2.6) are equivalent.
By a similar method in [9], it follows that K(t, s) satisfies

K(t, s) ≤ Φ(s) for s ∈ �1, t ∈ �1,

K(t, s) ≥ c(t)Φ(s) for s ∈ �1, t ∈ �1,
(2.7)

where

Φ(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
3

27T
(s − 1)

(
T2 − (s − 2)s

)3/2
, 1 ≤ s ≤ T

2
+ 1,

√
3

27T
(T + 1 − s)(2T(s − 1) − (s − 2)s)3/2,

T

2
+ 1 < s ≤ T + 1,

(2.8)

c(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3
√
3
[
T2 − t(t − 2)

]
(t − 1)

2(T2 + 1)3/2
, 1 ≤ t ≤ T

2
+ 1,

3
√
3(T + 1 − t)[2T(t − 1) − t(t − 2)]

2(T2 + 1)3/2
,

T

2
+ 1 < t ≤ T + 1.

(2.9)
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Moreover, we have that

K(t, s) ≥ c1Φ(s), for s ∈ �1, t ∈ �2. (2.10)

here c1 = 3
√
3T2/2(T2 + 1)3/2.

Let X be a real Banach space with a cone K such that X = K − K. Let us consider the
equation:

x = μ(Lx +Nx), μ ∈ �, x ∈ X (2.11)

under the assumptions:

(A1) The operators L,N : X → X are compact. Furthermore,L is linear, ‖Nx‖X/‖x‖X →
0 as ‖x‖X → 0, and (L +N)(K) ⊆ K.

(A2) The spectral radius r(L) of L is positive. Denote μ0 = r(L)−1.

(A3) L is strongly positive.

Dancer’s global bifurcation theorem is the following.

Theorem 2.3 (see [16, Corollary 15.2]). Let

S+ :=
{(
μ, x

) ∈ � ×X | (μ, x) is a solution of (2.11) with x > 0 and μ > 0
}
. (2.12)

If (A1) and (A2) are satisfied, then (μ0, 0) is a bifurcation point of (2.11) and S+ has an unbounded
solution componentC+ which passes through (μ0, 0). Additionally, if (A3) is satisfied, then (μ, x) ∈ C+

and μ/=μ0 always implies x > 0 and μ > 0.

3. Proof of the Main Results

Before proving Theorem 1.3, we state some preliminary results and notations. Let

ρ := 4 sin2 π

2T
, e(t) := sin

π(t − 1)
T

, t ∈ �1, (3.1)

X :=
{
u | u : �0 −→ �, u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0

}
. (3.2)

Then X is a Banach space under the normal:

‖u‖X := inf
{
γ

ρ
| −γe(t) ≤ −Δ2u(t − 1) ≤ γe(t), t ∈ �1

}
. (3.3)

See [22] for the detail.
Let

K :=
{
u ∈ X | Δ2u(t − 1) ≤ 0, u(t) ≥ 0, t ∈ �1

}
. (3.4)

Then K is normal and has a nonempty interior and X = K −K.



Abstract and Applied Analysis 7

Let Y = {u | u : �2 → �}. Then Y is a Banach space under the norm:

‖u‖∞ = max
t∈�2

|u(t)|. (3.5)

Define L : X → Y by setting

Lu := Δ4u(t − 2), u ∈ X. (3.6)

It is easy to check that L−1 : Y → X is compact.

Lemma 3.1. Let h ∈ Y with h ≥ 0 and h(t0) > 0 for some t0 ∈ �2, and

Lu − h = 0. (3.7)

Then u ∈ intK.

Proof. It is enough to show that there exist two constants r1, r2 ∈ (0,∞) such that

r1e(t) ≤ −Δ2u(t − 1) ≤ r2e(t), t ∈ �1. (3.8)

In fact, we have from (3.7) that

−Δ2u(t − 1) =
T∑

s=2

G1(t, s)h(s), t ∈ �1. (3.9)

This together with the relation ((t − 1)(T + 1 − t)/T)G1(s, s) ≤ G1(t, s) ≤ (t − 1)(T + 1 − t)/T
implies that

[
T∑

s=2

G1(s, s)h(s)

]
(t − 1)(T + 1 − t)

T
≤

T∑

s=2

G1(t, s)h(s) ≤ ‖h‖∞
(t − 1)(T + 1 − t)

T
.

(3.10)

Combining (3.9) with (3.10) and the fact that

c1 sin
π(t − 1)

T
≤ (t − 1)(T + 1 − t)

T
≤ c2 sin π(t − 1)

T
, t ∈ �1 (3.11)

for some constants c1, c2 ∈ (0,∞), we conclude that (3.8) is true.

Let ζ ∈ C(�,�) be such that

f(u) = f0u + ζ(u), (3.12)
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clearly

lim
|u| → 0

ζ(u)
u

= 0. (3.13)

Let us consider

Lu = λ
(
h(·)f0u + h(·)ζ(u)) (3.14)

as a bifurcation problem from the trivial solution u ≡ 0.
By (1.4), (1.8), it follows that if u(t) ∈ X is one solution of (1.4), (1.8), then u(t) satisfies

u(0) = −u(2), u(T + 2) = −u(T). So, (u(0), 0, u(2), . . . , u(T), 0, u(T + 2)) is a solution of (1.4),
(1.8), if and only if, (0, u(2), . . . , u(T), 0) solves the operator equation

u(t) = λ
T∑

s=2

G(t, s)h(s)f(u(s)), t ∈ �1. (3.15)

Now, let J : Y → X be the linear operator:

J(u(2), u(3), . . . , u(T)) = (−u(2), 0, u(2), u(3), . . . , u(T), 0,−u(T)), u ∈ Y. (3.16)

Let L,N : X → X be the operators:

Lu := (J ◦ L)−1
(
h(·)f0u

)
, (3.17)

Nu := (J ◦ L)−1(h(·)ζ(u)), (3.18)

respectively. Then Lemma 3.1 yields that L : X → X is strongly positive. Moreover, [16,
Theorem 7.c] implies r(L) > 0.

Now, it follows from Theorem 2.3 that there exists a continuum

C+ ⊆ {(
μ, x

) ∈ � ×X | (μ, x) is a solution of (1.4), (1.8) with x > 0 and μ > 0
}
,

(3.19)

which joins (r(L)−1, 0)with infinity in (0,∞) ×K and

(
μ, x

) ∈ C+, μ /= r(L)−1 =⇒ x > 0, μ > 0. (3.20)

It is easy to check that

r(L)−1 =
λ1
f0
. (3.21)
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Lemma 3.2. Let h1, h2 ∈ Y with h1 ≥ h2 > 0. Then the eigenvalue problems

Lu(t) = λhi(t)u(t), t ∈ �2, i = 1, 2 (3.22)

have the principal eigenvalue λi, i = 1, 2 such that λ1 ≤ λ2. Moreover, the corresponding eigenfunc-
tions ψi are positive in �2.

Proof . Let Li : X → X be the operator

Liu := λ(J ◦ L)−1(hi(·)u), i = 1, 2. (3.23)

Then Lemma 3.1 yields that Li : X → X is strongly positive. By Krein-Rutman
theorem [16, Theorem 7.c] the spectral radius r(Li) > 0 and there exist ψi ∈ X with ψi > 0 on
�2 such that

Liψi(t) = r(Li)ψi(t), i = 1, 2. (3.24)

That is, the eigenvalue problems (3.22) have the principal eigenvalues λi = 1/r(Li), and ψi(t)
is the corresponding eigenfunctions of λi, i = 1, 2.

Next, we prove λ1 ≤ λ2. Since
∑T

t=2Δ
4ψ1(t − 2) ψ2(t) =

∑T
t=2 ψ1(t)Δ4ψ2(t − 2), it follows

that

T∑

t=2

h1(t)ψ1(t)ψ2(t) ≥
T∑

t=2

λ2

λ2
h2(t)ψ2(t)ψ1(t) =

T∑

t=2

1

λ2
Δ4ψ2(t − 2)ψ1(t)

=
T∑

t=2

1

λ2
ψ2(t)Δ4ψ1(t − 2) =

T∑

t=2

ψ2(t)

λ2
λ1h1(t)ψ1(t)

=
λ1

λ2

T∑

t=2

h1(t)ψ1(t)ψ2(t).

(3.25)

Therefore, λ1 ≤ λ2.

Suppose that �a = {a + 1, a + 2, . . . , b − 1} is a strict subset of �2 and ha denote the
restriction of h on �a. Consider the linear eigenvalue problems:

Δ4u(t − 2) = λha(t)f0u(t), t ∈ �a,
u(a) = u(b) = Δ2u(a − 1) = Δ2u(b − 1) = 0.

(3.26)

Then we get the following result.

Lemma 3.3. Let λ̃1 is the principal eigenvalue of (3.17), then (3.26) has only one principal eigenvalue
λa such that 0 < λ̃1 < λa.



10 Abstract and Applied Analysis

Proof. It is not difficult to prove that (3.26) has only one principal eigenvalue λa > 0 by
Lemma 3.1, and the corresponding eigenfunction ψa > 0 on �a. So we only to verify that
0 < λ̃1 < λa.

Let ψ1 be the corresponding eigenfunction of λ̃1, we have that

b−1∑

t=a+1

Δ4ψa(t − 2)ψ1(t) =
b−1∑

t=a+1

Δ4ψ1(t − 2)ψa(t) − ψ1(b)Δ2ψa(b − 2) − ψa(b − 1)Δ2ψ1(b − 1)

−Δ2ψa(a)ψ1(a) − ψa(a + 1)Δ2ψ1(a − 1)

>
b−1∑

t=a+1

Δ4ψ1(t − 2)ψa(t).

(3.27)

So

b−1∑

t=a+1

h(t)ψa(t)ψ1(t) =
b−1∑

t=a+1

1
λa

Δ4ψa(t − 2)ψ1(t)

>
b−1∑

t=a+1

1
λa

Δ4ψ1(t − 2)ψa(t)

=
b−1∑

t=a+1

ψa(t)
λa

λ̃1h(t)ψ1(t)

=
λ̃1
λa

b−1∑

t=a+1

h(t) ψa(t)ψ1(t).

(3.28)

Thus 0 < λ̃1 < λa.

Proof of Theorem 1.3. We divide the proof into three steps.
Let {(μn, yn)} ⊂ C+ be such that

∣∣μn
∣∣ +

∥∥yn
∥∥
X → ∞, n → ∞. (3.29)

Then

Δ4yn(t − 2) = μnh(t)f
(
yn(t)

)
, t ∈ �2,

yn(1) = yn(T + 1) = Δ2yn(0) = Δ2yn(T) = 0.
(3.30)

Step 1. We show that there exists a constantM such that μn ∈ (0,M] for all n.
Suppose on the contrary that

lim
n→∞

μn= ∞. (3.31)
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Let vn = yn/‖yn‖X . Then it follows from (3.30) that

Δ4vn(t − 2) = μnh(t)
f
(
yn(t)

)

yn(t)
vn(t), t ∈ �2,

vn(1) = vn(T + 1) = Δ2vn(0) = Δ2vn(T) = 0.

(3.32)

Since

inf
{
f(s)
s

| s > 0
}

:=M0 > 0, (3.33)

there exists a constantM0 > 0, such that

f
(
yn(t)

)

yn(t)
> M0 > 0. (3.34)

Let λ∗ be the principal eigenvalue of the linear eigenvalue problems:

Δ4v(t − 2) = λh(t) M0v(t), t ∈ �2,

v(1) = v(T + 1) = Δ2v(0) = Δ2v(T) = 0.
(3.35)

Combining (3.31) and (3.34) with the relation (3.32), using Lemma 3.2, we get

0 < μn ≤ λ∗. (3.36)

This contradicts (3.31). So μn ∈ (0,M] for all n.

Step 2. We show that C+ joins (λ1/f0, 0)with (0,∞).
Assume that there exist δ > 0 and {(μn, yn)} ⊂ C+ such that

0 < δ ≤ μn ≤M;
∥∥yn

∥∥
X −→ ∞, n −→ ∞. (3.37)

First, we show that
∥∥yn

∥∥
X
−→ ∞ =⇒ ∥∥yn

∥∥
∞ −→ ∞. (3.38)

Suppose on the contrary that
∥∥yn

∥∥
∞ ≤M1 (3.39)

for someM1 > 0 (independent on n). Then it follows from (3.30) and 0 < δ ≤ |μn| ≤ M that
∥∥∥Δ4yn

∥∥∥
∞
≤ M‖h‖∞ sup

{
f(s) | 0 < s ≤ M1

}
, (3.40)

and subsequently, {‖yn‖X} is bounded. This is a contradiction. So, (3.38) holds.
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Next, we show that

∥∥yn
∥∥
∞ −→ ∞ ⇒ min

{
yn(t) | t ∈ �2

} −→ ∞. (3.41)

In fact,

yn(t) = μn
T∑

s=2

K(t, s)h(s)f
(
yn(s)

)
, t ∈ �1. (3.42)

This together with (2.7) imply that (3.41) is valid.
Finally, we have from the facts that min{yn(t) | t ∈ �2} → ∞ and 0 < δ ≤ |μn| ≤ M

that

μn
f
(
yn(t)

)

yn(t)
−→ ∞, n −→ ∞ for any t ∈ �a. (3.43)

Consider the following linear eigenvalue problems:

Δ4v(t − 2) = λha(t) v(t), t ∈ �a,

v(a) = v(b) = Δ2v(a − 1) = Δ2v(b − 1) = 0.
(3.44)

By Lemma 3.3 and (3.32), (3.44) has a positive principal eigenvalue λa, and

μn
f
(
yn(t)

)

yn(t)
≤ λa, (3.45)

which contradicts (3.43). Thus limn→∞μn = 0.

Step 3. Fixed λ such that

0 < λ < sup
s∈(0,B)

s

γ ∗f(s)
. (3.46)

Then there exists b ∈ (0, B] such that

0 < λ <
b

γ ∗f(b)
. (3.47)

We show that there is no (μ, u) ∈ C+ such that

‖u‖∞ = b, 0 < μ <
b

γ ∗f(b)
. (3.48)
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In fact, if there exists (η, y) ∈ C+ satisfying (3.48), then

y(t) = η
T∑

s=2

K(t, s)h(s)f
(
y(s)

)

≤ ηγ ∗f(b)

= ηγ ∗
f(b)
b

· b

(3.49)

for t ∈ �1, and subsequently, η ≥ b/γ ∗ f(b). Therefore, no (μ, u) ∈ C+ satisfies (3.48).

Now, combining the conclusions in Steps 2 and 3, using the fact that no (μ, u) ∈ C+

satisfies (3.48), it concludes that for every λ ∈ (λ1/f0, b/γ ∗f(b)), (1.4), (1.8) has at least two
generalized positive solutions in C+. For arbitrary λ ∈ (0, sups∈(0,B)(s/γ

∗f(s))), we may find

b = b(λ) satisfying (3.47). So, for every λ ∈ (λ1/f0, sups∈(0,B)(s/γ
∗f(s))), (1.4), (1.8) has at

least two generalized positive solutions in C+.

Proof of Theorem 1.4. We divide the proof into three steps.

Step 1. We show that there exists a positive constant β > 0 such that

inf
{
μ | (μ, u) ∈ C+

}
=: β > 0. (3.50)

Suppose on the contrary that there exists {(μn, yn)} ⊂ C+ such that

μn → 0+, as n → ∞. (3.51)

Then we have from (3.32), (3.51), f0 ∈ (0,∞) and f∞ = 0 that

‖vn‖X → 0, as n → ∞. (3.52)

However, this contradicts with the fact that ‖vn‖X = 1 for all n ∈ �. Therefore, (3.50) holds.

Step 2. We show that for any closed interval I ⊂ [β,∞), there existsMI > 0 such that

sup
{‖u‖ | (μ, u) ∈ C+

} ≤ MI. (3.53)

Suppose on the contrary that there exists {(μn, yn)} ⊂ C+ with

{
μn

} ⊂ I, ∥∥yn
∥∥
X
−→ ∞ as n −→ ∞. (3.54)

Then by (3.38),

∥∥yn
∥∥
∞ −→ ∞, n −→ ∞. (3.55)
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and subsequently

min
t∈�2

yn(t) ≥ c1
∥∥yn

∥∥
∞ −→ ∞. (3.56)

This together with (3.32) and f0 ∈ (0,∞) and f∞ = 0 that

‖(vn|�2)‖∞ −→ 0, n −→ ∞. (3.57)

However, this contradicts with the fact that

min
t∈�2

vn(t)≥ c1, n ∈ �. (3.58)

Therefore, (3.53) holds.

Step 3. Fixed λ such that

λ > inf
s∈(0,c1B)

s

c1γ∗f(s)
. (3.59)

Then there exists l ∈ (0, c1B) such that

λ >
l

γ∗c1f(l)
. (3.60)

We show that there is no (η, y) ∈ C+ such that

∥∥y
∥∥
∞ =

l

c1
η >

l

γ∗c1f(l)
. (3.61)

Suppose on the contrary that there exists (η, y) ∈ C+ satisfying (3.61). Then for t ∈ �2,

y(t) = η
T∑

s=2

K(t, s)h(s)f
(
y(s)

)

≥ η
T∑

s=2

K(t, s)h(s)f
(
c1
∥∥y

∥∥
∞
)

= η
T∑

s=2

K(t, s)h(s)f(l)

≥ ηγ∗f(l) = ηγ∗
f(l)
l

· l,

(3.62)

and subsequently, η ≤ l/c1γ∗f(l). Therefore, there is no (η, y) ∈ C+ such that (3.61) holds.
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Now, combining the conclusions in Steps 2 and 3, using the fact that no (μ, u) ∈ C+

satisfying (3.61), it concludes that for every λ ∈ (l/c1γ∗f(l), λ1/f0), (1.4), (1.8) has at least
two generalized positive solutions in C+. For arbitrary λ ∈ (infs∈(0,c1B)(s/c1γ∗f(s)), ∞), we
may find l = l(λ) satisfying (3.60). So, for every λ ∈ (infs∈(0,c1B)(s/γ∗f(s)), λ1/f0), (1.4), (1.8)
has at least two generalized positive solutions in C+.

4. Some Examples

In this section, we will apply our results to two examples.
For convenience, set T = 12, then �1 = {1, 2, . . . , 13}, �2 = {2, 3, . . . , 12}.

Example 4.1. Let us consider the boundary value problem

Δ4u(t − 2) = λf(u(t)), t ∈ �2,

u(1) = u(13) = Δ2u(0) = Δ2u(12) = 0,
(4.1)

where

f(u) =

⎧
⎨

⎩
arctanu, u ∈ (0, 1000],

(u − 1000)2 + arctan1000, u ∈ (1000,∞).
(4.2)

Clearly, f(u) is nondecreasing, f0 = 1, f∞ = ∞. Take B = 1000. By a simple computation, it
follows that infs∈(0,1000)(f(s)/s) = arctan1000/1000 ≈ 0.00157, λ1 = 16 sin4(π/24) ≈ 0.0048
and γ ∗ = maxt∈�1

∑12
s=2K(t, s) = 1629/6, then

0.0048 ≈ 16 sin4 π

24
=
λ1
f0

< sup
s∈(0,1000)

s

f(s)γ ∗
=

6
1629 infs∈(0,1000)

(
f(s)/s

) ≈ 2.34631. (4.3)

So, Theorem 1.3(i) implies that (4.1) has at least one generalized positive solution for

0 < λ <
λ1
f0

≈ 0.0048; (4.4)

Theorem 1.3(ii) implies that (4.1) has at least two generalized positive solutions for

λ1
f0

< λ <
1

γ ∗
(
16sin4(π/24) − 1

) ≈ 2.34631. (4.5)

Example 4.2. Let us consider the boundary value problem:

Δ4u(t − 2) = λf̃(u(t)), t ∈ �2,

u(1) = u(13) = Δ2u(0) = Δ2u(12) = 0,
(4.6)



16 Abstract and Applied Analysis

where

f̃(u) =

⎧
⎪⎪⎨

⎪⎪⎩

eu − 1
u

, u ∈ (0, 30],

√
u − 30 +

e30 − 1
30

, u ∈ (30,∞).
(4.7)

Obviously, f̃(u) is nondecreasing in [0,∞), so f̃0 = limu→ 0(f̃(u)/u) = 1, f̃∞ =
limu→ 0(f̃(u)/u) = 0. By a simple computation, it follows that λ1 = 16 sin4(π/24) and
γ∗ = mint∈�2

∑12
s=2K(t, s) = 143/2, c1 = 216

√
3/145

√
145 ≈ 0.214. Take B = 50. Since

sups∈(0,10.715 )(f̃(s)/s) = (e10.715 − 1)/10.715 ≈ 4202.0726, it follows that

0.0000155 ≈ inf
s∈(0,c1B)

s

c1γ∗f̃(s)
=

1

sups∈(0,10.715)
(
f̃(s)/s

)
c1γ∗

<
λ1

f̃0
= 16 sin4 π

24
≈ 0.0048.

(4.8)

Therefore, (i) of Theorem 1.4 implies that (4.6) has at least one generalized positive solution
for

λ > inf
s∈(0,c1B)

s

c1γ∗f̃(s)
≈ 0.0000155; (4.9)

(ii) of Theorem 1.4 implies that (4.6) has at least two generalized positive solutions for

0.0000155 < λ < 16 sin4 π

24
. (4.10)
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