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We investigate first the existence of periodic solution in general Cohen-Grossberg BAM neural
networks with multiple time-varying delays by means of using degree theory. Then using the
existence result of periodic solution and constructing a Lyapunov functional, we discuss global
exponential stability of periodic solution for the above neural networks. Our result on global
exponential stability of periodic solution is different from the existing results. In our result, the
hypothesis for monotonicity ineqiality conditions in the works of Xia (2010) Chen and Cao (2007)
on the behaved functions is removed and the assumption for boundedness in the works of Zhang
et al. (2011) and Li et al. (2009) is also removed. We just require that the behaved functions satisfy
sign conditions and activation functions are globally Lipschitz continuous.

1. Introduction

In 1983, Cohen and Grossberg [1] constructed a kind of simplified neural networks that
are now called Cohen-Grossberg neural networks (CGNNs); they have received increasing
interesting due to their promising potential applications in many fields such as pattern
recognition, parallel computing, associative memory, and combinatorial optimization. Such
applications heavily depend on the dynamical behaviors. Thus, the qualitative analysis of
the dynamical behaviors is a necessary step for the practical design and application of neural
networks (or neural system [2–4]). The stability of Cohen-Grossberg neural network with or
without delays has been widely studied by many researchers, and various interesting results
have been reported [5–14].

On the other hand, since the pioneering work of Kosko [15, 16], a series of neural
networks related to bidirectional associative memory models have been proposed. These
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models generalized the single-layer autoassociative Hebbian correlator to a class of two-
layer pattern-matched heteroassociative circuits. Bidirectional associative memory neural
networks have also been used in many fields such as pattern recognition and automatic
control and image and signal processing. During the last years, many authors have discussed
the existence and global stability of BAM neural networks [17–20]. In recent years, a few
authors [17, 21–26] discussed global stability of Cohen-Grossberg BAM neural networks.

As is well known, the studies on neural dynamical system not only involve a
discussion of stability properties but also involve other dynamic behavior, such as periodic
oscillatory behavior, chaos, and bifurcation. In many applications, periodic oscillatory
behavior is of great interest; it has been found in applications in learning theory. Hence, it
is of prime importance to study periodic oscillatory solutions of neural networks.

This motivates us to consider periodic solutions of Cohen-Grossberg BAM neural
networks. Recently, a few authors discussed the existence and stability of periodic solution to
Cohen-Grossberg BAM neural networks with delays [27–31].

In [27], the authors proposed a class of bidirectional Cohen-Grossberg neural networks
with distributed delays as follows:

dxi(t)
dt

= −ai(xi(t))

⎡
⎣bi(t, xi(t))−

m∑
j=1

pij(t)
∫∞

0
Kji(u) × fj

(
t, λjyj(t − u)

)
du − Ii(t)

⎤
⎦, i = 1, 2, . . . , n,

dyj(t)
dt

= −cj
(
yj(t)

)[
dj

(
t, yj(t)

)−
n∑
i=1

qji(t)
∫∞

0
Lij(u) × gi

(
t, μixi(t − u)

)
du − Jj(t)

]
, j = 1, 2, . . . , m.

(1.1)

By using the Lyapunov functional method and some analytical techniques, some sufficient
conditions were obtained for global exponential stability of periodic solutions to these
networks.

In [28], the authors discussed the following Cohen-Grossberg-type BAM neural
networks with time-varying delays:

dxi(t)
dt

= −ai(xi(t))

⎡
⎣bi(xi(t)) −

m∑
j=1

pij(t)fj
(
λjyj

(
t − τij(t)

)) − Ii(t)

⎤
⎦, i = 1, 2, . . . , n,

dyj(t)
dt

= −cj
(
yj(t)

)[
dj

(
yj(t)

) −
n∑
i=1

qji(t)gi
(
μixi

(
t − σji(t)

)) − Jj(t)

]
, j = 1, 2, . . . , m,

(1.2)

where n,m ≥ 2 are the number of neurons in the networks with initial value conditions:

xi(θ) = φi(θ), θ ∈ [−r1, 0], yj(θ) = φj(θ), θ ∈ [−r2, 0], (1.3)

where r1 = max1≤i≤n, 1≤j≤m, 0≤t≤ω{σji(t)}, r2 = max1≤i≤n,1≤j≤m,0≤t≤ω{τij(t)}, ai(xi(t)), bi(xi(t)),
cj(yj(t)), dj(yj(t)) are continuous functions, fj(λjyj(t − τji(t))), gi(μixi(t − δij(t))) are
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continuous functions, λj , μi are parameters, Ii(t) and Jj(t) are continuous functions, xi and yj

denote the state variables of the ith neurons from the neural field FU and the jth neurons from
the neural field FV at time t, respectively, ai(xi(t)) > 0, cj(yj(t)) > 0 represent amplification
functions of the ith neurons from the neural field FU and the jth neurons from the neural field
FV , respectively, bi(xi(t)), dj(yj(t)) are appropriately behaved functions of the ith neurons
from the neural field FU and the jth neurons from the neural field FV , respectively, fj , gi are
the activation functions of the jth neurons from the neural field FV and the ith neurons from
the neural field FU, respectively, Ii, Jj are the exogenous inputs of the ith neurons from the
neural field FU and the jth neurons from the neural field FV , respectively, pij and qji are the
connection weights, which denote the strengths of connectivity between the neuron j from
the neural field FV and the neuron i from the neural field FU, and τij(t), σij(t) correspond to
the transmission time delays.

By using the analysis method and inequality technique, some sufficient conditions
were obtained to ensure the existence, uniqueness, global attractivity, and exponential
stability of the periodic solution to this neural networks.

In [29, 30], the authors discussed, respectively, two Cohen-Grossberg BAM neural
networks on time scales. When time scale T becomes R, the existence and global exponential
stability of periodic solution are obtained in [29, 30] under the assumptions that activation
functions satisfy global Lipschitz conditions and boundedness conditions and behaved
functions satisfy some inequality conditions.

In [31], the authors discussed the following Cohen-Grossberg BAM neural networks
of neutral type with delays:

dxi(t)
dt

= −ai(xi(t))

⎡
⎣bi(xi(t)) −

m∑
j=1

aij(t)fj
(
yj

(
t − τij(t)

))

−
m∑
j=1

bij(t)fj
(
yj

(
t − σij(t)

)) − Ii(t)

⎤
⎦, i = 1, 2, . . . , n,

dyj(t)
dt

= −cj
(
yj(t)

)[
dj

(
yj(t)

) −
n∑
i=1

cji(t)gi
(
xi

(
t − pji(t)

))

−
n∑
i=1

dji(t)gi
(
xi

(
t − qji(t)

)) − Jj(t)

]
, j = 1, 2, . . . , m.

(1.4)

Under the assumptions that activation functions satisfy global Lipschitz conditions and
behaved functions satisfy some inequality conditions, global exponential stability of periodic
solution is obtained for system (1.4).

In this paper, our purpose is to obtain a new sufficient condition for the existence
and global exponential stability of periodic solution of system (1.2). The paper is organized
as follows. In Section 2, we discuss the existence of periodic solution of system (1.2) by
using coincidence degree theory and inequality technique. In Section 3, we study the global
exponential stability of periodic solution of system (1.2) by using the existence result of
periodic solution and constituting Lyapunov functional. Our result on global exponential
stability of periodic solution is different from the existing results. In our result, the hypotheses
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for monotonicity inequalities in [27, 28] on behaved functions are replaced with sign
conditions and the assumption for boundedness in [29, 30] on activation functions is
removed.

2. Existence of Periodic Solution

In this section, we first establish the existence of at least a periodic solution by applying the
coincidence degree theory. To establish the existence of at least a periodic solution by applying
the coincidence degree theory, we recall some basic tools in the frame work of Mawhin’s
coincidence degree [32] that will be used to investigate the existence of periodic solutions.

Let X, Z be Banach spaces, L: DomL ⊂ X → Z a linear mapping, and N : X → Z
a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if
dim KerL = codim Im L < ∞ and ImL is closed in Z. If L is a Fredholm mapping of index
zero, then there exist continuous projectors P : X → KerL and Q : Z → Z/ ImL such
that ImP = KerL and ImL = KerQ = Im(I − Q). It follows that L/DomL∩KerP : (I − P)X →
ImL is invertible. We denote the inverse of the map L/DomL∩KerP by Kp. If Ω is an open
bounded subset of X, the mapping N will be called L-compact on Ω if (QN)(Ω) is bounded
and Kp(I − Q)N : Ω → X is compact. Since Im Q is isomorphic to Ker L, there exists an
isomorphism J : ImQ → KerL.

In the proof of our existence theorem, we will use the continuation theorem of Gaines
and Mawhin [32].

Lemma 2.1 (continuation theorem). Let L be a Fredholm mapping of index zero, and let N be
L-compact on Ω. Suppose

(a) Lx/=λN(x), for all λ ∈ (0, 1), x ∈ ∂Ω,

(b) QN(x)/= 0, for all x ∈ KerL ∩ ∂Ω,

(c) deg(JQNx,Ω ∩ KerL, 0)/= 0.

Then, Lx = Nx has at least one solution in DomL ∩Ω.

For the sake of convenience, we introduce some notations.
| · | denotes the norm in R, f = max0≤t≤ω|f(t)|, f = min0≤t≤ω|f(t)|, where f(t) is a continuously
periodic function with common period ω. Our main result on the existence of at least a
periodic solution for system (1.2) is stated in the following theorem.

Theorem 2.2. One assume that the following conditions holds:

(i) pij(t), qji(t), Ii(t), Jj(t) are continuously periodic functions on t ∈ [0,+∞)with common
period ω > 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m;

(ii) ai(·) and cj(·) are continuously bounded, that is, there exist positive constants li, l
∗
i ,

kj , k
∗
j (i = 1, . . . , n, j = 1, . . . , m) such that

li ≤ ai ≤ l∗i ,

kj ≤ cj ≤ k∗
j ;

(2.1)
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(iii) bi(xi(t)) and dj(yj(t)) are continuous and there exist positive constants Mi,Nj (i =
1, . . . , n, j = 1, . . . , m) such that for all x, y /=x ∈ R,

sign
(
x − y

)[
bi(x) − bi

(
y
)] ≥ Mi

∣∣x − y
∣∣,

sign
(
x − y

)[
dj(x) − dj

(
y
)] ≥ Nj

∣∣x − y
∣∣; (2.2)

(iv) there exist positive constants Aj , Bi (i = 1, . . . , n, j = 1, 2, . . . , m) such that for all x, y ∈
R,

∣∣fj(x) − fj
(
y
)∣∣ ≤ Aj

∣∣x − y
∣∣,∣∣gi(x) − gi

(
y
)∣∣ ≤ Bi

∣∣x − y
∣∣; (2.3)

(v) there exist two positive constants ri > 1, i = 1, 2 with τ ′ij < min{1, 1 − r−11 } < 1 and

σ ′
ji < min{1, 1 − r−12 } < 1 such that for i = 1, . . . , n; j = 1, . . . , m,

liMi >
m∑
j=1

l∗i pijAjλj
√
r1,

kjNj >
n∑
i=1

k∗
j qjiBiμi

√
r2.

(2.4)

Then, system (1.2) has at least one ω-periodic solution.

Proof. In order to apply Lemma 2.1 to system (1.2), let

X =
{
u =

(
x1, x2, . . . , xn, y1, y2, . . . , ym

)T ∈ C(R,Rm+n) : u(t +ω) = u(t)
}
,

Z = {z ∈ C(R,Rm+n) : z(t +ω) = z(t)}.
(2.5)

Define

‖u‖ = max
t∈[0,ω]

n∑
i=1

|xi(t)| + max
t∈[0,ω]

m∑
j=1

∣∣yj(t)
∣∣, u ∈ X or Z. (2.6)

Equipped with the above norm ‖ · ‖, X and Z are Banach spaces.
Let for u ∈ X

Nu =
(
Hi(t)
Kj(t)

)
=

⎛
⎜⎜⎜⎜⎜⎝

−ai(xi(t))

⎡
⎣bi(xi(t)) −

m∑
j=1

pij(t)fj
(
λjyj

(
t − τij(t)

)) − Ii(t)

⎤
⎦

−cj
(
yj(t)

)[
dj

(
yj(t)

) −
n∑
i=1

qji(t)gi
(
μixi

(
t − σji(t)

)) − Jj(t)

]

⎞
⎟⎟⎟⎟⎟⎠

,

Lu = u′ =
du(t)
dt

, Pu =
1
ω

∫ω

0
u(t)dt, u ∈ X, Qz =

1
ω

∫ω

0
z(t)dt, z ∈ Z.

(2.7)
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Then, it follows that KerL = R(m+n), ImL = {z ∈ Z :
∫ω
0 z(t)dt = 0} is closed in Z, dim KerL =

m + n = codim ImL, and P,Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I −Q). (2.8)

Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse (to L)
Kp: ImL → KerP ∩DomL is given by

Kp(z) =
∫ t

0
z(s)ds − 1

ω

∫ω

0

∫s

0
z(t)dtds. (2.9)

Then,

QNu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ω

∫ω

0
H1(s)ds

1
ω

∫ω

0
H2(s)ds

...
1
ω

∫ω

0
Hn(s)ds

1
ω

∫ω

0
K1(s)ds

1
ω

∫ω

0
K2(s)ds

...
1
ω

∫ω

0
Km(s)ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Kp(I −Q)Nu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ft
0H1(s)ds − 1

ω

∫ω

0

∫ t

0
H1(s)dsdt +

(
1
2
− t

ω

)∫ω

0
H1(s)ds

ft
0H2(s)ds − 1

ω

∫ω

0

∫ t

0
H2(s)dsdt +

(
1
2
− t

ω

)∫ω

0
H2(s)ds

...

ft
0Hn(s)ds − 1

ω

∫ω

0

∫ t

0
Hn(s)dsdt +

(
1
2
− t

ω

)∫ω

0
Hn(s)ds

ft
0K1(s)ds − 1

ω

∫ω

0

∫ t

0
K1(s)dsdt +

(
1
2
− t

ω

)∫ω

0
K1(s)ds

...

ft
0Km(s)ds − 1

ω

∫ω

0

∫ t

0
Km(s)dsdt +

(
1
2
− t

ω

)∫ω

0
Km(s)ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.10)
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Obviously,QN andKP (I−Q)N are continuous. It is not difficult to show thatKp(I−Q)N(Ω)
is compact for any open bounded set Ω ⊂ X by using the Arzela-Ascoli theorem. Moreover,
QN(Ω) is clearly bounded. Thus,N is L-compact on Ωwith any open bounded set Ω ⊂ X.

Condition (iii) in Theorem 2.2 implies that for all x ∈ R

signxbi(x) ≥ Mi|x| + signxbi(0),

signxdj(x) ≥ Nj |x| + signxdj(0).
(2.11)

Condition (iv) in Theorem 2.2 implies that for all x ∈ R

∣∣fj(x)
∣∣ ≤ Aj |x| +

∣∣fj(0)
∣∣,∣∣gi(x)

∣∣ ≤ Bi|x| +
∣∣gj(0)

∣∣. (2.12)

Corresponding to the operator equation Lx = λNx, λ ∈ (0, 1), we have for i = 1, 2, . . . , n, j =
1, . . . , m

dxi(t)
dt

= λHi(t),

dyj(t)
dt

= λKj(t).
(2.13)

Assume that u ∈ X is a solution of system (2.13) for some λ ∈ (0, 1). Multiplying the first
equation of system (2.13) by xi(t) and integrating over [0, ω], we have

∫ω

0
xi(t) signxi(t) signxi(t)

×
⎧
⎨
⎩ai(xi(t))

⎡
⎣bi(xi(t)) −

m∑
j=1

pij(t) fj
(
λjyj

(
t − τij(t)

)) − Ii(t)

⎤
⎦
⎫
⎬
⎭dt = 0.

(2.14)

Multiplying the second equation of system (2.13) by yj(t) and integrating over [0, ω], we
have

∫ω

0
yj(t) signyj(t) signyj(t)

×
{
cj
(
yj(t)

)[
dj

(
yj(t)

) −
n∑
i=1

qji(t)gi
(
μixi

(
t − σji(t)

)) − Jj(t)

]}
dt = 0.

(2.15)
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From (2.14) and (2.15), we obtain

liMi

∫ω

0
|xi(t)|2dt

≤ l∗i

∫ω

0
|xi(t)|

⎧
⎨
⎩−ai signxi(t)bi(0) +

m∑
j=1

pij
(
Ajλj

∣∣yj

(
t − τij(t)

)∣∣ + ∣∣fj(0)
∣∣) + Ii

⎫
⎬
⎭dt,

(2.16)

kiNj

∫ω

0

∣∣yj(t)
∣∣2dt

≤ k∗
j

∫ω

0

∣∣yj(t)
∣∣
{
−cj signyj(t)dj(0) +

n∑
i=1

qji
(
Biμi

∣∣xi

(
t − σji(t)

)∣∣ + ∣∣gi(0)
∣∣) + Jj

}
dt.

(2.17)

Hence,

liMi

∫ω

0
|xi(t)|2dt

≤ l∗i

(∫ω

0
|xi(t)|2dt

)1/2

×
⎧
⎨
⎩

m∑
j=1

pij

[
Ajλj

(∫ω

0

∣∣yj

(
t − τij(t)

)∣∣2dt
)1/2

+
√
ω
∣∣fj(0)

∣∣
]
+ l∗i |bi(0)| +

√
ωIi

⎫
⎬
⎭,

(2.18)

kjNj

∫ω

0

∣∣yj(t)
∣∣2dt

≤ k∗
j

(∫ω

0

∣∣yj(t)
∣∣2dt

)1/2

×
{

n∑
i=1

qji

[
Biμi

(∫ω

0

∣∣xi

(
t − σji(t)

)∣∣2dt
)1/2

+
√
ω
∣∣gi(0)

∣∣
]
+ k∗

j

∣∣dj(0)
∣∣ +√

ωJj

}
(2.19)

Denoting s = t − τij(t) = g(t), σ = t − σji(t) = h(t), then

(∫ω

0

∣∣yj

(
t − τij(t)

)∣∣2dt
)1/2

=

(∫ω

0

∣∣yj(s)
∣∣2

1 − τ ′ij
(
g−1(s)

)ds
)1/2

, (2.20)

(∫ω

0

∣∣xi

(
t − σji(t)

)∣∣2dt
)1/2

=

(∫ω

0

|xi(σ)|2
1 − σ ′

ji

(
h−1(σ)

)dσ
)1/2

. (2.21)
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Substituting (2.20) into (2.18) and substituting (2.21) into (2.19) give for i = 1, . . . , n, j =
1, . . . , m

liMi

∫ω

0
|xi(t)|2dt

≤ l∗i

(∫ω

0
|xi(t)|2dt

)1/2

×
⎧
⎨
⎩

m∑
j=1

pijAjλj
√
r1

(∫ω

0

∣∣yj(t)
∣∣2dt

)1/2

+
√
ω

⎛
⎝

m∑
j=1

pij
∣∣fj(0)

∣∣ + |bi(0)| + Ii

⎞
⎠
⎫
⎬
⎭,

(2.22)

kjNj

∫ω

0

∣∣yj(t)
∣∣2dt

≤ k∗
j

(∫ω

0

∣∣yj(t)
∣∣2
)1/2

×
{

n∑
i=1

qjiBiμi
√
r2

(∫ω

0
|xi(t)|2dt

)1/2

+
√
ω

(
n∑
i=1

qji
∣∣gi(0)

∣∣ + ∣∣dj(0)
∣∣ + Jj

)}
.

(2.23)

Denoting for the sake of convenience

max
1≤i≤n

{(∫ω

0
|xi(t)|2dt

)1/2
}

=
(∫ω

0
|xi0(t)|2dt

)1/2

,

max
1≤j≤m

{(∫ω
0

∣∣yj(t)
∣∣2dt

)1/2}
=
(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2
,

(2.24)

where, i0 ∈ {1, 2, . . . , n}, j0 ∈ {1, 2, . . . , m}, and from (2.22) and (2.23), we obtain

li0Mi0

(∫ω

0
|xi0(t)|2dt

)1/2

≤ l∗i0

m∑
j=1

pi0jAjλj
√
r1

(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

+ l∗i0
√
ω

⎛
⎝

m∑
j=1

pi0j
∣∣fj(0)

∣∣ + |bi0(0)| + Ii0

⎞
⎠,

(2.25)

kj0Nj0

(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤ k∗
j0

n∑
i=1

qj0iBiμi
√
r2

(∫ω

0
|xi0(t)|2dt

)1/2

+ k∗
j0

√
ω

(
n∑
i=1

qj0i
∣∣gi(0)

∣∣ + ∣∣dj0(0)
∣∣ + Jj0

)
.

(2.26)



10 Abstract and Applied Analysis

Now we consider two possible cases for (2.26) and (2.25):

(i)
(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤
(∫ω

0
|xi0(t)|2dt

)1/2

,

(ii)
(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

>

(∫ω

0
|xi0(t)|2dt

)1/2

.

(2.27)

When (
∫ω
0 |yj0(t)|2dt)

1/2 ≤ (
∫ω
0 |xi0(t)|2dt)1/2, from (2.25), we have

⎛
⎝li0Mi0 − l∗i0

m∑
j=1

pi0jAjλj
√
r1

⎞
⎠
(∫ω

0
|xi0(t)|2dt

)1/2

≤ l∗i0
√
ω

⎛
⎝

m∑
j=1

pi0j
∣∣fj(0)

∣∣ + |bi0(0)| + Ii0

⎞
⎠.

(2.28)

Thus,

(∫ω

0
|xi0(t)|2dt

)1/2

≤
l∗i0
√
ω
(∑m

j=1 pi0j
∣∣fj(0)

∣∣ + |bi0(0)| + Ii0

)

li0Mi0 − l∗i0
∑m

j=1 pi0jAjλj
√
r1

≤ max
1≤i≤n

⎧
⎨
⎩

l∗i
√
ω
(∑m

j=1 pij
∣∣fj(0)

∣∣ + |bi(0)| + Ii
)

liMi − l∗i
∑m

j=1 pijAjλj
√
r1

⎫
⎬
⎭

def= d1.

(2.29)

Therefore,

(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤
(∫ω

0
|xi0(t)|2dt

)1/2

≤ d1.

(2.30)

(ii)When (
∫ω
0 |yj0(t)|2dt)

1/2
> (
∫ω
0 |xi0(t)|2dt)

1/2
, from (2.26), we have

(
kj0Nj0 − k∗

j0

n∑
i=1

qj0iBiμi
√
r2

)(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤ k∗
j0

√
ω

(
n∑
i=1

qj0i
∣∣gi(0)

∣∣ + ∣∣dj0(0)
∣∣ + Jj0

)
.

(2.31)
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Thus,

(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤
k∗
j0

√
ω
(∑n

i=1 qj0i
∣∣gi(0)

∣∣ + ∣∣dj0(0)
∣∣ + Jj0

)

kj0Nj0 − k∗
j0

∑n
i=1 qj0iBiμi

√
r2

≤ max
1≤j≤m

⎧
⎨
⎩

k∗
j

√
ω
(∑n

i=1 qji
∣∣gi(0)

∣∣ + ∣∣dj(0)
∣∣ + Jj

)

kjNj − k∗
j

∑n
i=1 qjiBiμi

√
r2

⎫
⎬
⎭

def= d2.

(2.32)

Therefore,

(∫ω

0
|xi0(t)|2dt

)1/2

≤
(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤ d2.

(2.33)

Hence, from (2.30) and (2.33), we have for i = 1, 2, . . . , n, j = 1, 2, . . . , m, t ∈ [0, ω]

(∫ω

0
|xi(t)|2dt

)1/2

< max{d1, d2} def= d, (2.34)

(∫ω

0

∣∣yj(t)
∣∣2dt

)1/2

< max{d1, d2} = d. (2.35)

Multiplying the first equation of system (2.13) by x′
i(t) and integrating over [0, ω], from (2.20)

and (2.35) and the fact that

∫ω

0
ai(xi(t))bi(xi(t))x′

i(t)dt = 0, (2.36)

it follows that

(∫ω

0

∣∣x′
i(t)
∣∣2dt

)1/2

≤ l∗i
m∑
j=1

pijAjλj

(∫ω

0

∣∣yj

(
t − τij(t)

)∣∣dt
)1/2

+ l∗i
√
ω

⎛
⎝

m∑
j=1

pij
∣∣fj(0)

∣∣ + Ii

⎞
⎠

≤ l∗i
m∑
j=1

pijAjλj
√
r1

(∫ω

0

∣∣yj(t)
∣∣2dt

)1/2

+ l∗i
√
ω

⎛
⎝

m∑
j=1

pij
∣∣fj(0)

∣∣ + Ii

⎞
⎠

< max
1≤i≤n

⎧
⎨
⎩l∗i

m∑
j=1

pijAjλj
√
r1d + l∗i

√
ω

⎛
⎝

m∑
j=1

pij
∣∣fj(0)

∣∣ + Ii

⎞
⎠
⎫
⎬
⎭

def= c1.

(2.37)
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Similarly, multiplying the second equation of system (2.13) by yj(t) and integrating over
[0, ω], from (2.21) and (2.34) and the fact that

∫ω

0
cj
(
yj(t)

)
dj

(
yj(t)

)
y′
j(t)dt = 0, (2.38)

it follows that there exists a positive constant c2 such that

(∫ω

0

∣∣∣y′
j(t)
∣∣∣
2
dt
)1/2

< c2. (2.39)

From (2.34) and (2.35), it follows that there exist points ti and tj such that

|xi(ti)| < d√
ω
, (2.40)

∣∣∣yj

(
tj
)∣∣∣ < d√

ω
. (2.41)

Since for all t ∈ [0, ω],

|xi(t)| ≤ |xi(ti)| +
∫ω

0

∣∣x′
i(t)
∣∣dt

≤ |xi(ti)| +
√
ω

(∫ω

0

∣∣x′
i(t)
∣∣2
)1/2

,

(2.42)

∣∣yj(t)
∣∣ ≤ ∣∣yj(ti)

∣∣ +
∫ω

0

∣∣∣y′
j(t)
∣∣∣dt

≤ ∣∣yj(t)
∣∣ +√

ω

(∫ω

0

∣∣∣y′
j(t)
∣∣∣
2
)1/2

,

(2.43)

then from (2.40)–(2.43), we have for t ∈ [0, ω], i = 1, . . . , n, j = 1, . . . , m

|xi(t)| ≤ d√
ω

+
√
ωc1,

∣∣yj(t)
∣∣ ≤ d√

ω
+
√
ωc2.

(2.44)

Obviously, d/
√
ω,

√
ωc1, and

√
ωc2 are all independent of λ. Now let

Ω =
{
u =

(
x1, x2, . . . , xn;y1, y2, . . . , ym

)T ∈ X :

‖u‖ < n

(
d√
ω

+ r1 +
√
ωc1

)
+m

(
d√
ω

+ r2 +
√
ωc2

)}
,

(2.45)
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where r1, r2 are two chosen positive constants such that the bound of Ω is larger. Then, Ω is
bounded open subset of X. Hence, Ω satisfies requirement (a) in Lemma 2.1. We prove that
(b) in Lemma 2.1 holds. If it is not true, then when u ∈ ∂Ω ∩ KerL = ∂Ω ∩ R(m+n) we have

QNu

=
(

1
ω

∫ω

0
H1(t)dt,

1
ω

∫ω

0
H2(t)dt, . . . ,

1
ω

∫ω

0
Hn(t)dt;

1
ω

∫ω

0
K1(t)dt, . . . ,

1
ω

∫ω

0
Km(t)dt

)T

= (0, . . . , 0)T .
(2.46)

Therefore, there exist points ξi (i = 1, 2, . . . , n) and ηj (j = 1, 2, . . . , m) such that

Hi(ξi) = 0,

Kj

(
ηj
)
= 0.

(2.47)

From this and following the arguments of (2.40) and (2.41), we have for forall i = 1, 2,
. . . , n, j = 1, 2, . . . , m, t ∈ [0, ω]

|xi(t)| < d√
ω
,

∣∣yj(t)
∣∣ < d√

ω
.

(2.48)

Hence,

‖u‖ < n
d√
ω

+m
d√
ω
. (2.49)

Thus, u ∈ Ω ∩ R(m+n). This contradicts the fact that u ∈ ∂Ω ∩ R(m+n). Hence, this proves that
(b) in Lemma 2.1 holds. Finally, we show that (c) in Lemma 2.1 holds. We only need to prove
that deg{−JQNu,Ω ∩ KerL, (0, 0)T}/= (0, 0, . . . , 0)T . Now, we show that

deg
{
−JQNu,Ω ∩ KerL, (0, 0, . . . , 0)T

}

= deg
{(

l1M1x1, l2M2x2, . . . , lnMnxn; k1N1y1, . . . , kmNmym

)T
, Ω ∩ KerL, (0, . . . , 0)T

}
.

(2.50)

To this end, we define a mapping φ : DomL × [0, 1] → X by

φ
(
x1, x2, . . . , xn;y1, y2, . . . , ym, μ

)

= − μ

ω

(∫ω

0
H1(t)dt,

∫ω

0
H2(t)dt, . . . ,

∫ω

0
Hn(t)dt,

∫ω

0
K1(t)dt, . . . ,

∫ω

0
Km(t)dt

)

+
(
1 − μ

)(
l1M1x1, l2M2x2, . . . , lnMnxn; k1N1y1, . . . , kmNmym

)
,

(2.51)
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where μ ∈ [0, 1] is a parameter. We show that when u ∈ ∂Ω ∩ KerL = ∂Ω ∩ R(m+n),
φ(x1, x2, . . . , xn; y1, . . . , ym, μ)/= (0, 0, . . . , 0)T . If it is not true, then when u ∈ ∂Ω ∩ KerL =
∂Ω∩R(m+n), φ(x1, x2, . . . , xn;y1, . . . , ym, μ) = (0, 0, . . . , 0)T . Thus, constant vector uwith u ∈ ∂Ω
satisfies for i = 1, 2, . . . , n, j = 1, 2, . . . , m,

μ

ω

∫ω

0

⎧
⎨
⎩ai(xi)

⎡
⎣bi(xi) − ai(xi)

m∑
j=1

pij(t)fj
(
λjyj

) − Ii(t)

⎤
⎦
⎫
⎬
⎭dt +

(
1 − μ

)
liMixi = 0,

μ

ω

∫ω

0

{
cj
(
yj

)[
dj

(
yj

) − cj
(
yj

) n∑
i=1

qji(t)gi
(
μiui

) − Jj(t)

]}
dt +

(
1 − μ

)
kjNjyj = 0.

(2.52)

That is,

μ

ω

∫ω

0
signxi

⎧
⎨
⎩ai(xi)(bi(xi) − bi(0)) + ai(xi)bi(0) − ai(xi)

⎡
⎣

m∑
j=1

pij(t)fj
(
λjyj

) − Ii(t)

⎤
⎦
⎫
⎬
⎭dt

+
(
1 − μ

)
liMi|xi| = 0,

(2.53)

μ

ω

∫ω

0
signyj

{
cj
(
yj

)(
dj

(
yj

) − dj(0)
)
+ cj

(
yj

)
dj(0) − cj

(
yj

)[ n∑
i=1

qji(t)gi
(
μiui

) − Jj(t)

]}
dt

+
(
1 − μ

)
kjNj

∣∣yj

∣∣ = 0.
(2.54)

Denote |yj0 | = max1≤j≤m{|yj |}, |xi0 | = max1≤i≤n{|xi|}.

Claim 1. We claim that |xi0 | < (d/
√
ω) +

√
ωc1 + r1, otherwise, |xi0 | ≥ (d/

√
ω) +

√
ωc1 + r1. We

consider two possible cases: (i) |yj0 | ≤ |xi0 | and (ii) |yj0 | > |xi0 |.

(i) When |yj0 | ≤ |xi0 |, we have

μ

ω

∫ω

0
signxi0

⎧
⎨
⎩ai(xi0)(bi(xi0) − bi(0)) + ai(xi0)

⎡
⎣bi(0) −

m∑
j=1

pij(t)fj
(
λjyj

) − Ii(t)

⎤
⎦
⎫
⎬
⎭dt

+
(
1 − μ

)
liMi|xi0 |

≥ μliMi|xi0 | − l∗i

⎡
⎣|bi(0)| +

m∑
j=1

pij
(
λjAj

∣∣yj

∣∣ + ∣∣fj(0)
∣∣) + Ii

⎤
⎦ +

(
1 − μ

)
liMi|xi0 |
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≥ liMi|xi0 | − l∗i

⎡
⎣|bi(0)| +

m∑
j=1

pij
(
λjAj

∣∣yj0

∣∣ + ∣∣fj(0)
∣∣) + Ii

⎤
⎦

≥
⎛
⎝liMi − l∗i

m∑
j=1

Ajλjpij

⎞
⎠|xi0 | − l∗i

⎡
⎣|bi(0)| +

m∑
j=1

pij
(
λjAj

∣∣yj0

∣∣ + ∣∣fj(0)
∣∣) + Ii

⎤
⎦

≥
⎛
⎝liMi−l∗i

m∑
j=1

Ajλjpij

⎞
⎠
(

d1√
ω
+
√
ωc1+r1

)
−l∗i

⎡
⎣|bi(0)|+

m∑
j=1

pij
(
λjAj

∣∣yj0

∣∣+∣∣fj(0)
∣∣)+Ii

⎤
⎦

>

⎛
⎝liMi − l∗i

m∑
j=1

Ajλjpij

⎞
⎠r1

> 0,

(2.55)

which contradicts (2.53).

(ii) When |yj0 | > |xi0 |, we have

μ

ω

∫ω

0
signyj0

{
cj
(
yj0

)(
dj

(
yj0

) − dj(0)
)
+ cj

(
yj0

)[
dj(0) −

n∑
i=1

qji(t)gi
(
μixi

) − Jj(t)

]}
dt

+
(
1 − μ

)
kjNj

∣∣yj0

∣∣

≥ μkjNj

∣∣yj0

∣∣ − k∗
j

[∣∣dj(0)
∣∣ +

n∑
i=1

qji
(
μiBi|xi| +

∣∣gi(0)
∣∣) + Jj

]
+
(
1 − μ

)
kjNj

∣∣yj0

∣∣

≥ kjNj

∣∣yj0

∣∣ − k∗
j

[∣∣dj(0)
∣∣ +

n∑
i=1

qji
(
μiBi|xi0 | +

∣∣gi(0)
∣∣) + Jj

]

≥
(
kjNj − k∗

j

n∑
i=1

Biμiqji

)∣∣yj0

∣∣ − k∗
j

[∣∣dj(0)
∣∣ +

n∑
i=1

qji
(
μiBi|xi0 | +

∣∣gi(0)
∣∣) + Jj

]

≥
(
kjNj−k∗

j

n∑
i=1

Biμiqji

)(
d2√
ω
+
√
ωc1 + r1

)
−k∗

j

[∣∣dj(0)
∣∣+

n∑
i=1

qji
(
μiBi|xi0 |+

∣∣gi(0)
∣∣)+Jj

]

>

(
kjNj − k∗

j

n∑
i=1

Biμiqji

)
r1

> 0,

(2.56)

which contradicts (2.54). From the discussion of (i) and (ii), Claim 1 holds.

Claim 2. We claim that |yj0 | < (d/
√
ω) +

√
ωc2 + r2, otherwise, |yj0 | ≥ (d/

√
ω) +

√
ωc2 + r2. We

consider two possible cases: (i) |xi0 | ≤ |yj0 | and (ii) |xi0 | > |yj0 |.



16 Abstract and Applied Analysis

The proofs of (i) and (ii) are similar to those of (ii) and (1) in Claim 1, respectively,
therefore Claim 2 holds.

Thus, |xi| < (d1/
√
ω) + c1

√
ω+ r1 and |yj | < (d2/

√
ω) +

√
ωc2 + r2. Thus, u ∈ Ω∩R(m+n).

This contradicts the fact that u ∈ ∂Ω∩R(m+n). According to the topological degree theory and
by taking J = I since KerL = ImQ, we obtain

deg
{
−JQNu,Ω ∩ KerL, (0, 0)T

}

= deg
{
φ(u1, u2, . . . , un;v1, v2, . . . , vm, 1),Ω ∩ KerL, (0, 0)T

}

= deg
{
φ(u1, u2, . . . , un;v1, v2, . . . , vm, 0),Ω ∩ KerL, (0, 0)T

}

= deg
{(

l1M1x1, l2M2x2, . . . , lnMnxn; k1N1y1, . . . , kmNmym

)T
,Ω ∩ KerL, (0, . . . , 0)T

}

/= 0.
(2.57)

So far, we have proved that Ω satisfies all the assumptions in Lemma 2.1. Therefore, system
(1.2) has at least one ω-periodic solution.

3. Global Exponential Stability of Periodic Solution

In this section, by constructing a Lyapunov functional, we derive new sufficient conditions
for global exponential stability of a periodic solution of system (1.2).

Theorem 3.1. In addition to all conditions in Theorem 2.2, one assumes further that the following
conditions hold:

(H1) there exists two positive constants ri ≥ 1 (i = 1, 2) with Mi >
∑m

j=1 qjiμiBir2 and Nj >∑n
i=1 pijλjAjr1 such that τ ′ij < min{1, 1 − r−11 } < 1 and σ ′

ji < min{1, 1 − r−12 } < 1;

(H2) there exist constants τij and σji, i = 1, 2, . . . , n, j = 1, 2, . . . , m, such that

0 < τij(t) < τij , 0 < σji(t) < σji. (3.1)

Then, the ω periodic solution of system (1.2) is globally exponentially stable.

Proof. By Theorem 2.2, system (1.2) has at least one ω periodic solution, say, u∗(t) =
(x∗

1(t), x
∗
2(t), . . . , x

∗
n(t);y

∗
1(t), . . . , y

∗
m(t))

T . Suppose that u(t) = (x1(t), x2(t), . . . , xn(t), y1(t), . . . ,
ym(t))

T is an arbitrary ω periodic solution of system (1.2). From (H1), we can choose a
suitable θ such that

Mi >
θ

li
+

m∑
j=1

qjiμiBir2 exp
(
θτij

)
,

Nj >
θ

kj
+

n∑
i=1

pijλjAjri exp
(
θσji

)
.

(3.2)
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We define a Lyapunov functional as follows for t > 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m :

V (t) = exp(θt)

⎧
⎨
⎩

n∑
i=1

∣∣∣∣∣
∫xi(t)

x∗
i (t)

1
ai(s)

ds

∣∣∣∣∣ +
m∑
j=1

∣∣∣∣∣
∫yj (t)

y∗
j (t)

1
cj(s)

∣∣∣∣∣ds
⎫
⎬
⎭

+
n∑
i=1

m∑
j=1

pijλjAj

∫ t

t−τij (t)
exp

[
θ
(
σ + τij

(
g−1(σ)

))]
∣∣∣yj(σ) − y∗

j (σ)
∣∣∣

1 − τ ′ij
(
g−1(σ)

) dσ

+
n∑
i=1

m∑
j=1

qjiμiBi

∫ t

t−σji(t)
exp

[
θ
(
σ + σji

(
h−1(σ)

))]∣∣xi(σ) − x∗
i (σ)

∣∣
1 − σ ′

ji

(
h−1(σ)

)dσ,

(3.3)

where g(t) = t−τij(t), h(t) = t−σji(t), i = 1, 2, . . . , n, j = 1, . . . , m. Calculating the upper right
derivative D+V (t) of V (t) along the solutions of system (1.2), we obtain

D+V (t) ≤ exp(θt)
n∑
i=1

{
θ

∣∣∣∣∣
∫xi(t)

x∗
i (t)

1
ai(s)

ds

∣∣∣∣∣ −Mi

∣∣xi(t) − x∗
i (t)
∣∣

+
m∑
j=1

pijλjAj

∣∣∣yj

(
t − τij(t)

) − y∗
j

(
t − τij(t)

)∣∣∣
⎫
⎬
⎭

+ exp(θt)
m∑
j=1

{
θ

∣∣∣∣∣
∫yj (t)

y∗
j (t)

1
cj(s)

ds

∣∣∣∣∣ −Nj

∣∣∣yj(t) − y∗
j (t)

∣∣∣

+
n∑
i=1

qjiμiBi

∣∣xi

(
t − σji(t)

) − x∗
i

(
t − τji(t)

)∣∣
}

+ exp(θt)
n∑
i=1

m∑
j=1

pijλjAj

⎧
⎨
⎩

∣∣∣yj(t) − y∗
j (t)

∣∣∣ exp[θτij
(
s−1(t)

)]

1 − τ ′ij
(
s−1(t)

)

−
∣∣∣yj

(
t − τij(t)

) − y∗
j

(
t − τij(t)

)∣∣∣
⎫
⎬
⎭

+ exp(θt)
n∑
i=1

m∑
j=1

qjiμiBi

{∣∣xi(t) − x∗
i (t)
∣∣ exp[θσji

(
h−1(t)

)]

1 − σ ′
ji

(
h−1(t)

)

−∣∣xi

(
t − σji(t)

) − x∗
i

(
t − σji(t)

)∣∣
}
.

(3.4)
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Since there exist points ξi, ηj such that

∣∣∣∣∣
∫xi(t)

x∗
i (t)

1
ai(s)

ds

∣∣∣∣∣ =
1

ai(ξi)

∣∣xi(t) − x∗
i (t)
∣∣,

∣∣∣∣∣
∫yj (t)

y∗
j (t)

1
cj(s)

ds

∣∣∣∣∣ =
1

cj
(
ηj
)
∣∣∣yj(t) − y∗

j (t)
∣∣∣,

(3.5)

from (3.4), we have

D+V (t) ≤ − exp(θt)
m∑
j=1

{
Nj − θ

kj
−

n∑
i=1

pijλjAjr1 exp
(
θσji

)}∣∣∣yj(t) − y∗
j (t)

∣∣∣

− exp(θt)
n∑
i=1

⎧
⎨
⎩Mi − θ

li
−

m∑
j=1

qjiμiBir2 exp
(
θτij

)
⎫
⎬
⎭
∣∣xi(t) − x∗

i (t)
∣∣.

(3.6)

In view of (3.2), it follows that V (t) < V (0). Therefore,

exp(θt)

⎧
⎨
⎩

n∑
i=1

∣∣∣∣∣
∫xi(t)

x∗
i (t)

1
ai(s)

ds

∣∣∣∣∣ +
m∑
j=1

∣∣∣∣∣
∫yj (t)

y∗
j (t)

1
cj(s)

ds

∣∣∣∣∣

⎫
⎬
⎭ < V (t) < V (0). (3.7)

Equation (3.3) implies that

V (0) <
n∑
i=1

⎧
⎨
⎩

1
li
+

m∑
j=1

wjiμiBir2

∫0

−σji(0)
exp

[
θ
(
σ + σji

(
h−1(σ)

))]
dσ

⎫
⎬
⎭ sup

0≤≤ω

∣∣xi(s) − x∗
i (s)

∣∣

+
m∑
j=1

{
1
kj

+
n∑
i=1

hijλjAjr1

∫0

−τij
exp

[
θ
(
σ + τij

(
g−1(σ)

))]
dσ

}
sup
0≤s≤ω

∣∣∣yj(s) − y∗
j (s)

∣∣∣.

(3.8)

Substituting (3.8) into (3.7) gives

n∑
i=1

∣∣xi(t) − x∗
i (t)
∣∣ +

m∑
j=1

∣∣∣yj(t) − y∗
j (t)

∣∣∣

<
M

N
exp(−θt)

⎧
⎨
⎩

n∑
i=1

sup
0≤s≤ω

∣∣xi(s) − x∗
i (s)

∣∣ +
m∑
j=1

sup
0≤s≤ω

∣∣∣yj(s) − y∗
j (s)

∣∣∣
⎫
⎬
⎭,

(3.9)
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where

M = max
1≤i≤n,1≤j≤m

⎧
⎨
⎩

1
li
+

n∑
i=1

hijλjAjr1

∫0

−τij (0)
exp

[
θ + τij

(
g−1(σ)

)]
dσ,

1
kj

+
m∑
j=1

wjiμiBir2

∫0

−σji(0)
exp

[
θ + σji

(
h−1(σ)

)]
dσ

⎫
⎬
⎭,

N = min

{
1
l∗i
,
1
k∗
j

}
.

(3.10)

The proof of Theorem 3.1 is complete.

4. An Example

Example 4.1. Consider the following Cohen-Grossberg BAM neural networks with time-
varying delays:

dx1(t)
dt

= −(2 + sinx1)
{
200x1(t) + 100 sinx1(t) − (2 + sin t)

∣∣∣∣y1

[
t −
(
1 +

sin t
2

)]∣∣∣∣ − sin t
}
,

dy1(t)
dt

= −(3 + cosy1
){

200y1(t) + 100 siny1(t) − (2 + cos t)
∣∣∣∣x1

[
t −
(
1 +

sin t
3

)]∣∣∣∣ − cos t
}
.

(4.1)

In Theorem 3.1,

A1 = 1, B1 = 1, l1 = 1, l∗1 = 3, k1 = 2, k∗
1 = 4, M1 = 100,

N1 = 100, p11 = 3, q11 = 3, λ1 = μ1 = 1,

τ ′11 =
cos t
2

, σ ′
11 =

cos t
3

.

(4.2)

Since

1 − cos t
2

≥ 1 − |cos t|
2

≥ 1
2
, 1 − cos t

3
≥ 1 − |cos t|

3
≥ 2

3
, (4.3)

then r1 = 2, r2 = 3/2.
Since

M1 = 100 > q11μ1B1r2 =
9
2
, N1 = 100 > p11λ1A1r1 = 6,

l1M1 = 100 > l∗1p11A1
√
r1 = 9

√
2, k1N1 = 200 > q11B1μ1

√
r2 = 12

√
3
2
,

(4.4)
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then conditions (H1), (H2), and (v) are satisfied. It is easy to prove that the rest of the con-
ditions in Theorem 3.1 are satisfied. By Theorem (3.2) , system (4.1) has a unique ω periodic
solution that is globally exponentially stable.

5. Conclusion

We investigate first the existence of the periodic solution in general Cohen-Grossberg BAM
neural networks with multiple time-varying delays by means of using degree theory. Then,
using the existence result of periodic solution and constructing a Lyapunov functional, we
discuss global exponential stability of periodic solution for the above neural networks. In our
result, the hypotheses for monotonicity in [27, 28] on the behaved functions are replaced with
sign conditions and the assumption for boundedness on activation functions is removed. We
just require that the behaved functions satisfy sign conditions and activation functions are
globally Lipschitz continuous.
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