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By using Schaeffer’s theorem and Lyapunov functional, sufficient conditions of the existence and
globally exponential stability of positive periodic solution to an impulsive neural network with
time-varying delays are established. Applications, examples, and numerical analysis are given to
illustrate the effectiveness of the main results.

1. Introduction

It is well known that in implementation of neural networks, time delays are inevitably
encountered because of the finite switching speed of amplifiers. Specially in electronic neural
networks, delays are usually time-varying and often become sources of instability. So it is
important to investigate the dynamics of neural networks with delays [1–7]. Recently, the
study of the existence of periodic solutions of neural networks has received much attention.
The common approaches are based on using Mawhin continuation theorem [1, 2, 8–10],
Banach’s fixed point theorem [11–13], fixed point theorem in a cone [14], Schaeffer’s theorem
[15, 16], and so on. On the other hand, studies on neural dynamical systems not only
involve the existence of periodic solutions, but also involve other dynamical behaviors such
as stability of periodic solutions, bifurcations, and chaos. In recent years, the stability of
solutions of neural networks has attracted attention of many researchers and many nice
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results have been obtained [1–3, 5–13, 16–25]. For example, M. Tan and Y. Tan [1] considered
the following neural network with variable coefficients and time-varying delays:

x′
i(t) = −ci(t)xi(t) +

n∑

j=1

aij(t)fj
(
xj(t)

)
+

n∑

j=1

bij(t)fj
(
xj

(
t − τij(t)

))
+ Ji(t),

i = 1, 2, . . . , n.

(1.1)

By using the Mawhin continuation theorem, they discussed the existence and globally
exponential stability of periodic solutions.

However, in real world, many physical systems often undergo abrupt changes at
certain moments due to instantaneous perturbations, which lead to impulsive effects. In
fact, impulsive differential equation represents a more natural framework for mathematical
modelling of many real world phenomena such as population dynamic and neural networks.
The theory of impulsive differential equations is now being recognized to be richer than
the corresponding theory of differential equations without impulse, and various kinds of
impulsive differential equations have been extensively studied, see [8–16, 18, 19, 21–25] and
references therein. Then, considering impulsive effects, it is necessary and interesting for us
to study further the dynamics of system (1.1). Furthermore, as pointed by Gopalsamy and
Sariyasa [4], it would be of great interest to study neural networks in periodic environment.
On the other hand, to the best of our knowledge, few authors considered the existence of
periodic solutions by using Schaeffer’s theorem. Hence, in this paper, by using Schaeffer’s
theorem and Lyapunov functional, we aim to discuss the existence and exponential stability
of periodic solutions to a class of impulsive neural networks with periodic coefficients and
time-varying delays. The model is as follows:

x′
i(t) = −ci(t)xi(t) +

n∑

j=1

aij(t)fj
(
xj(t)

)
+

n∑

j=1

bij(t)fj
(
xj

(
t − τij(t)

))
+ Ji(t), t /= tk,

xi(t+) =
(
1 + qki

)
xi(t), t = tk,

(1.2)

with initial conditions

xi(s) = φi(s), φi(s) ∈ C([−τ, 0], Rn), i = 1, 2, . . . , n, (1.3)

where xi(t) corresponds to the state of the ith unit, ci(t) represents the rate with which
the ith unit will reset its potential to the resting state in isolation when disconnected from
the network and external inputs, fj(xj(t)) denotes the output of the jth unit, aij(t) and
bij(t) denote the strength of the jth unit on the ith unit, respectively, Ji(t) is the external
bias on the ith unit, τij(t) corresponds to the transmission delay along the axon of the
jth unit, tk denotes the impulsive moment, and t1 < t2 < · · · is a strictly increasing
sequence such that limk→∞ tk = ∞, C([−τ, 0], Rn) denotes the Banach space of continuous
mapping from [−τ, 0] to Rn equipped with the norm ‖φ‖ = max1≤i≤n supt∈[0,ω]|φi(t)| for all
φ = (φ1(t), φ2(t), . . . , φn(t))

T ∈ C([−τ, 0], Rn), where τ = max1≤i≤n supt∈[0,ω]τij(t).
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Throughout this paper, we always assume the following.

(H1) ci(t) > 0, aij(t), bij(t), Ji(t), τij(t) are all continuous ω-periodic functions for i, j =
1, 2, . . . , n.

(H2) fj : R → R is continuous and there exists positive constant kj such that fj(u) −
fj(v) ≤ kj |u − v| for any u, v ∈ R and j = 1, 2, . . . , n.

(H3) There exists positive integer p such that tk+p = tk +ω, qki = q
k+p
i . Then

[0, ω] ∩ {tk, k = 1, 2, . . .} =
{
t1, t2, . . . , tp

}
. (1.4)

For convenience, we use the following notations:

f =
1
ω

∫ω

0

∣∣f(t)
∣∣dt, fM = max

t∈[0,ω]

∣∣f(t)
∣∣, fm = min

t∈[0,ω]

∣∣f(t)
∣∣, (1.5)

where f(t) is continuous and ω-periodic function.

The rest of this paper is organized as follows. In Section 2, by using Schaeffer’s
theorem, sufficient conditions of the existence of ω-periodic solution to system (1.2) with
initial conditions (1.3) are established. In Section 3, by using Lyapunov functional, we derive
the conditions under which the periodic solution is globally exponentially stable. In Section 4,
applications, illustrative examples, and simulations are given to show the effectiveness of the
main results. Finally, some conclusions are drawn in Section 5.

2. Existence of Periodic Solution

First we make some preparations. As usual in the theory of impulsive differential equation,
by a solution of model (1.2), it means the following.

(i) x(t) = (x1(t), x2(t), . . . xn(t))
T ∈ Rn, xi(t) is piecewise continuous such that xi(t−k) =

xi(tk), xi(t+k) exists, and xi(t) is differentiable on (tk−1, tk) for i = 1, 2, . . . , n, k =
1, 2, . . ..

(ii) xi(t) satisfies (1.2) for i = 1, 2, . . . , n.

Definition 2.1. The set A is said to be quasi-equicontinuous in [0, ω] if for any ε > 0, there
exists δ > 0 such that, if x ∈ A, t ∈ Z, t′, t′′ ∈ (tk−1, tk) ∩ [0, ω] and |t′ − t′′| < δ, then
|x(t′) − x(t′′)| < ε.

Lemma 2.2 (see [26, Compactness criterion]). The set A ⊂ X is relatively compact if and only if

(i) A is bounded, that is, ‖x‖ ≤ M for each x ∈ A and some M > 0,

(ii) A is quasi-equicontinuous in [0, ω].

The following lemma is fundamental to our discussion. The method is similar to that
of [13, 16], so the proof is omitted here.
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Lemma 2.3. x(t) = (x1(t), x2(t), . . . , xn(t))
T is an ω-periodic solution of system (1.2) which is

equivalent to x(t) = (x1(t), x2(t), . . . , xn(t))
T is an ω-periodic solution of the following equation:

xi(t) =
∫ω

0
Gi(t, s)

⎛

⎝
n∑

j=1

aij(s)fj
(
xj(s)

)
+

n∑

j=1

bij(s)fj
(
xj

(
s − τij(s)

))
+ Ji(s)

⎞

⎠ds

+
p∑

k=1

Gi(t, tk)qki xi(tk),

(2.1)

where G(t, s) = (G1(t, s), G2(t, s), . . . , Gn(t, s))
T , and

Gi(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e
∫ω
0 ci(u)du−

∫ t
s ci(u)du

e
∫ω
0 ci(u)du − 1

, 0 ≤ s ≤ t ≤ ω,

e
∫s
t ci(u)du

e
∫ω
0 ci(u)du − 1

, 0 ≤ t ≤ s ≤ ω.

(2.2)

It is easy to show that Gi(t +ω, s +ω) = Gi(t, s), Gi(t, t +ω) −Gi(t, t) = 1 and

1
σi − 1

≤ Gi(t, s) ≤ σi

σi − 1
, (2.3)

where σi = e
∫ω
0 ci(u)du and i = 1, 2, . . . , n.

Lemma 2.4 (see [27, Schaeffer’s theorem]). LetX be a normed space and φ : X → X be a compact
operator. Define

H
(
φ
)
=
{
x | x ∈ X, x = λφx, 0 < λ < 1

}
. (2.4)

Then either

(i) setH(φ) is unbounded, or

(ii) operator φ has a fixed point in X.

In order to use Lemma 2.4, let

PC([0, ω],Rn)

=

{
x : [0, ω]−→Rn | lim

s→ t
x(s) = x(t), t/=tk, lim

t→ t−
k

x(t)=x(tk), lim
t→ t+

k

x(t) exists, k=1, 2, . . . , p

}
,

(2.5)

with the norm ‖x‖ = max1≤i≤n supt∈[0,ω]|xi(t)|, then PC([0, ω], Rn) is a Banach space.
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Define a mapping φ : PC([0, ω], Rn) → PC([0, ω], Rn) by (φx)(t) = x(t), where (φx)(t) =
((φx)1(t), (φx)2(t), . . . , (φx)n(t))

T and

(
φx

)
i(t) =

∫ t+ω

t

Gi(t, s)

⎛

⎝
n∑

j=1

aij(s)fj
(
xj(s)

)
+

n∑

j=1

bij(s)fj
(
xj

(
s − τij(s)

))
+ Ji(s)

⎞

⎠ds

+
p∑

k=1

Gi(t, tk)qki xi(tk).

(2.6)

By Lemma 2.3, it is easy to see that the existence of ω-periodic solution of (1.2) is equivalent to the
existence of fixed point of the mapping φ in PC([0, ω], Rn).

Theorem 2.5. Suppose that (H1)–(H3) hold. Further,

(H4) max1≤i≤n(σi/σi − 1)(
∑n

j=1(aij + bij)kj +
∑p

k=1 |qki |) := θ < 1.

Then system (1.2) admits an ω-periodic solution.

Proof. By Lemma 2.3, it suffices to prove that the mapping φ admits a fixed point in
PC([0, ω], Rn).

For any constant H > 0, let Ω = {x | x ∈ PC([0, ω], Rn), ‖x‖ < H}. For x ∈ Ω, from
(2.3) and (H2), we have

∥∥φx
∥∥ = max

1≤i≤n
sup
t∈[0,ω]

∣∣∣∣∣∣

∫ t+ω

t

Gi(t, s)

⎛

⎝
n∑

j=1

aij(s)fj
(
xj(s)

)
+

n∑

j=1

bij(s)fj
(
xj

(
s − τij(s)

))
+ Ji(s)

⎞

⎠ds

+
p∑

k=1

Gi(t, tk)qki xi(tk)

∣∣∣∣∣∣

≤ max
1≤i≤n

sup
t∈[0,ω]

σi

σi − 1

∫ω

0

⎛

⎝
n∑

j=1

∣∣aij(t)fj
(
xj(t)

)∣∣ +
n∑

j=1

∣∣bij(t)fj
(
xj

(
t − τij(t)

))∣∣ + |Ji(t)|
⎞

⎠dt

+
σi

σi − 1

p∑

k=1

∣∣∣qki xi(tk)
∣∣∣

≤ max
1≤i≤n

sup
t∈[0,ω]

σi

σi − 1

∫ω

0

⎛

⎝
n∑

j=1

∣∣aij(t)
∣∣(kj

∣∣xj(t)
∣∣ +

∣∣fj(0)
∣∣)

+
n∑

j=1

∣∣bij(t)
∣∣(kj

∣∣xj

(
t − τij(t)

)∣∣ +
∣∣fj(0)

∣∣)
⎞

⎠dt

+
∫ω

0
|Ji(t)|dt + σi

σi − 1

p∑

k=1

∣∣∣qki xi(tk)
∣∣∣
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≤ max
1≤i≤n

σi

σi − 1

⎛

⎝
n∑

j=1

(
aij + bij

)
kj +

p∑

k=1

∣∣∣qki
∣∣∣

⎞

⎠‖x‖ + σi

σi − 1

⎛

⎝Ji +
n∑

j=1

∣∣fj(0)
∣∣
(
aij + bij

)
⎞

⎠

≤ max
1≤i≤n

σi

σi − 1

⎛

⎝
n∑

j=1

(
aij + bij

)
kj +

p∑

k=1

∣∣∣qki
∣∣∣

⎞

⎠H +
σi

σi − 1

⎛

⎝Ji +
n∑

j=1

∣∣fj(0)
∣∣
(
aij + bij

)
⎞

⎠ := R.

(2.7)

It implies that φ(Ω) is uniformly bounded.
For any t ∈ [0, ω], x ∈ Ω, we have

(
φx

)′
i(t) =

d

dt

⎛

⎝
∫ t+ω

t

Gi(t, s)

⎛

⎝
n∑

j=1

aij(s)fj
(
xj(s)

)
+

n∑

j=1

bij(t)fj
(
xj

(
s − τij(s)

))
+ Ji(s)

⎞

⎠ds

+
p∑

k=1

Gi(t, tk)qixi(tk)

)

= −ci(t)
(
φx

)
i(t) +

⎛

⎝
n∑

j=1

aij(t)fj
(
xj(t)

)
+

n∑

j=1

bij(t)fj
(
xj

(
t − τij(t)

))
+ Ji(t)

⎞

⎠.

(2.8)

If t = tk, it is obvious that (φx)
′
i(t) = limt→ t−

k
(φx)′i(t). Hence, from (2.7) and (2.8), we have

∣∣∣
(
φx

)′
i(t)

∣∣∣ ≤ cMi R +
n∑

j=1

((
aM
ij + bMij

)
kj
)
H +

⎛

⎝JMi +
n∑

j=1

∣∣fj(0)
∣∣
(
aM
ij + bMij

)
⎞

⎠ := βi. (2.9)

Therefore, φ(Ω) ⊂ PC([0, ω], Rn) is a family of uniformly bounded and equicontinuous
subset. By Lemma 2.2, the mapping φ is compact.

Let x ∈ PC([0, ω], Rn), and considering the following operator equation:

x = λ
(
φx

)
, λ ∈ (0, 1). (2.10)

If x is a solution of (2.10), then

‖x‖ ≤ ∥∥φx
∥∥ ≤ θ‖x‖ +max

1≤i≤n
σi

σi − 1

⎛

⎝Ji +
n∑

j=1

∣∣fj(0)
∣∣
(
aij + bij

)
⎞

⎠. (2.11)

According to (H4), we deduce that

‖x‖ ≤
max1≤i≤n(σi/(σi − 1))

(
Ji +

∑n
j=1

∣∣fj(0)
∣∣
(
aij + bij

))

1 − θ
:= M. (2.12)
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It implies that ‖x‖ is bounded, which is independent of λ ∈ (0, 1). By Lemma 2.4, we obtain
that the mapping φ admits a fixed point in PC([0, ω], Rn). Hence system (1.2) admits an ω-
periodic solution such that ‖x‖ ≤ M. This completes the proof.

3. Globally Exponentially Stable

In this section, the sufficient conditions ensuring that (1.2) admits a unique ω-periodic
solution and all solutions of (1.2) exponentially converge to the unique ω-periodic solution
are to be established.

Definition 3.1. Let x∗(t) be an ω-periodic solution of system (1.2)with initial value φ∗. If there
exist constants α > 0, P ≥ 1, for every solution x(t) of (1.2)with initial φ, such that

∥∥xi(t) − x∗
i (t)

∥∥ ≤ P
∥∥φ − φ∗∥∥e−αt for any t > 0, i = 1, 2, . . . , n, (3.1)

then x∗(t) is said to be globally exponentially stable.

Theorem 3.2. Suppose that (H1)–(H4) hold. Further,

(H5) −cmi +
∑n

j=1(a
M
ij + bMij )kj < 0, i = 1, 2, . . . , n,

(H6) lnmax1≤i≤n|1 + qki |/tk − tk−1 ≤ ζ < α,

wheremax1≤i≤n|1 + qki | ≥ 1, ζ > 0 is a constant, α is a constant determined in (3.5).
Then system (1.2) admits a unique ω-periodic solution, which is globally exponentially stable.

Proof. By Theorem 2.5, system (1.2) admits an ω-periodic solution x∗(t) = (x∗
1(t), x

∗
2(t), . . . ,

x∗
n(t)) with initial value φ∗. Let x(t) = (x1(t), x2(t), . . . , xn(t)) be an arbitrary solution of (1.2)

with initial value φ. Define zi(t) = x∗
i (t)−xi(t) and gj(zj(t)) = fj(zj(t)+xj(t))−fj(xj(t)), then

we have

z′i(t) = −ci(t)zi(t) +
n∑

j=1

aij(t)gj
(
zj(t)

)
+

n∑

j=1

bij(t)gj
(
zj
(
t − τij(t)

))
, t /= tk,

zi(t+) =
(
1 + qki

)
zi(t), t = tk.

(3.2)

By (H5), we have −cmi +
∑n

j=1(a
M
ij + bMij )kj < 0 for i = 1, 2, . . . , n. Let

hi(λ) = λ − cmi + eλτ
n∑

j=1

(
aM
ij + bMij

)
kj . (3.3)

It is clear that hi(λ) is continuous on R and hi(0) < 0, i = 1, 2, . . . , n. In addition,

d(hi(λ))
dλ

= 1 + τeλτ
n∑

j=1

(
aM
ij + bMij

)
kj > 0, (3.4)
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and hi(+∞) = +∞, then hi(λ) is strictly monotone increasing. Therefore, there exists a unique
λi > 0 such that λi − cmi + eλiτ

∑n
j=1(a

M
ij + bMij )kj = 0 for i = 1, 2, . . . , n. Let

α = min{λ1, λ2, . . . , λn}, (3.5)

then

hi(α) = α − cmi + eατ
n∑

j=1

(
aM
ij + bMij

)
kj ≤ 0, i = 1, 2, . . . , n. (3.6)

Obviously, for t ∈ [−τ, 0] and the above α, we have

|zi(t)| ≤
∥∥φ − φ∗∥∥ ≤ ∥∥φ − φ∗∥∥e−αt, i = 1, 2, . . . , n, (3.7)

where ‖φ − φ∗‖ = max1≤i≤nsup−τ≤s≤0|φi(s) − φ∗
i (s)|.

Define V (t) = (V1(t), V2(t), . . . , Vn(t))
T by

Vi(t) = eαt|zi(t)|, i = 1, 2, . . . , n. (3.8)

In view of (3.2) and (3.8), for t /= tk, we have

d+Vi(t)
dt

= αeαt|zi(t)|+ eαt sgn zi(t)

⎧
⎨

⎩−ci(t)zi(t) +
n∑

j=1

aij(t)gj
(
zj(t)

)
+

n∑

j=1

bij(t)gj
(
zj
(
t − τij(t)

))
⎫
⎬

⎭

≤ (α − ci(t))eαt|zi(t)| + eαt
n∑

j=1

∣∣aij(t)
∣∣kj

∣∣zj(t)
∣∣ + eαt

n∑

j=1

∣∣bij(t)
∣∣kj

∣∣zj
(
t − τij(t)

)∣∣

≤ (
α − cmi

)
Vi(t) +

n∑

j=1

aM
ij kjVj(t) + eατ

n∑

j=1

bMij kjVj

(
t − τij(t)

)
.

(3.9)

We claim that

Vi(t) = eαt|zi(t)| ≤
∥∥φ − φ∗∥∥ for t ∈ (0, t1), i = 1, 2, . . . , n. (3.10)

If not, then there exist i0 ∈ {1, 2, . . . , n} and 0 < t < t1 such that

Vi0

(
t
)
=
∥∥φ − φ∗∥∥,

d+Vi0

(
t
)

dt
> 0, Vi(t) ≤

∥∥φ − φ∗∥∥, (3.11)



Abstract and Applied Analysis 9

for t ∈ (−τ, t], i = 1, 2, . . . , n. Then, it follows from (3.9) and (3.11) that

0 <
d+Vi0

(
t
)

dt
≤ (

α − cmi
)
Vi

(
t
)
+

n∑

j=1

aM
ij kjVj

(
t
)
+ eατ

n∑

j=1

bMij kjVj

(
t − τij

(
t
))

≤
⎛

⎝α − cmi0 + eατ
n∑

j=1

(
aM
ij + bMij

)
kj

⎞

⎠∥∥φ − φ∗∥∥.

(3.12)

Equation (3.12) leads to

α − cmi0 + eατ
n∑

j=1

(
aM
i0j

+ bMi0j

)
kj > 0, (3.13)

which contradicts (3.6). Thus (3.10) holds, that is,

zi(t) ≤
∥∥φ − φ∗∥∥e−αt, for any t ∈ [0, t1), i = 1, 2, . . . , n. (3.14)

If t = t1, we have

∣∣zi
(
t+1
)∣∣ =

∣∣∣
(
1 + q1i

)
zi(t1)

∣∣∣ =
∣∣∣1 + q1i

∣∣∣ lim
t→ t−1

|zi(t)| ≤
∣∣∣1 + q1i

∣∣∣
∥∥φ − φ∗∥∥e−αt1 , (3.15)

for i = 1, 2, . . . , n. Similar to the steps of (3.10)–(3.14), we can derive that

|zi(t)| ≤
∣∣∣1 + q1i

∣∣∣
∥∥φ − φ∗∥∥e−αt, for t ∈ [t1, t2), i = 1, 2, . . . , n. (3.16)

If t = t2, then

∣∣zi
(
t+2
)∣∣ =

∣∣∣
(
1 + q2i

)
zi(t2)

∣∣∣ ≤
∣∣∣
(
1 + q1i

)(
1 + q2i

)∣∣∣
∥∥φ − φ∗∥∥e−αt2 . (3.17)

By repeating the same procedure, then

|zi(t)| ≤
∣∣∣
(
1 + q1i

)(
1 + q2i

)
· · ·

(
1 + q

p

i

)∣∣∣ ·
∥∥φ − φ∗∥∥e−αt, t ∈ (

tp, tp+1
)
, i = 1, 2, . . . , n. (3.18)

It follows from (H6) that |1 + qki | ≤ eζ(tk−tk−1), which leads to

∣∣∣
(
1 + q1i

)(
1 + q2i

)
· · ·

(
1 + q

p

i

)∣∣∣ ≤ eζ(t1−t0)eζ(t2−t1) · · · eζ(tp−tp−1) ≤ eζteζ(ω−tp), (3.19)

for any t ∈ [tk, tk+1), i = 1, 2, . . . , n, k = 1, 2, . . .. So the combination (3.18) and (3.19) gives

|zi(t)| ≤ eζ(ω−tp)∥∥φ − φ∗∥∥e−(α−ζ)t, t ∈ [tk, tk+1), i = 1, 2, . . . , n, k = 1, 2, . . . . (3.20)
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In addition, it is clear that

|zi(t)| ≤ eζ(ω−tp)∥∥φ − φ∗∥∥e−(α−ζ)t, t ∈ [0, t1), i = 1, 2, . . . , n. (3.21)

Therefore, from (3.20) and (3.21), for any t > 0, we have

∣∣xi(t) − x∗
i (t)

∣∣ = |zi(t)| ≤ eζ(ω−tp)∥∥φ − φ∗∥∥e−(α−ζ)t, i = 1, 2, . . . , n. (3.22)

It implies that the ω-periodic solution x∗(t) of (1.2) is globally exponentially stable. Hence,
(1.2) admits a unique ω-periodic solution, which is globally exponentially stable. This
completes the proof.

Remark 3.3. Theorem 3.2 implies that the impulse qki affects the existence and exponential
stability of the periodic solution of system (1.2). It shows the dynamics of impulsive
differential system (1.2) is richer than the corresponding system (1.1)without impulse.

4. Applications and Examples

In (1.2), if aij(t) ≡ 0, then (1.2) reads:

x′
i(t) = −ci(t)xi(t) +

n∑

j=1

bij(t)fj
(
xj

(
t − τij(t)

))
+ Ji(t), t /= tk,

xi(t+) =
(
1 + qki

)
xi(t), t = tk.

(4.1)

For system (4.1), we have the following result.

Proposition 4.1. Suppose that (H1)–(H3) hold. Further,

(H7) max1≤i≤n(σi/(σi − 1))(
∑n

j=1 bijkj +
∑p

k=1 |qki |) := θ < 1,

(H8) −cmi +
∑n

j=1 b
M
ij kj < 0,

(H9) lnmax1≤i≤n|1 + qki |/(tk − tk−1) ≤ ζ < α,

wheremax1≤i≤n|1 + qki | ≥ 1, ζ > 0 is a constant, α is determined in Theorem 3.2.
Then system (4.1) admits a unique ω-periodic solution, which is globally exponentially stable.

If the impulses are absent in system (1.2), that is, qki ≡ 0, then (1.2) leads to (1.1).
Similarly we have the following.

Proposition 4.2. Suppose that (H1)–(H3) hold. Further,

(H10) max1≤i≤n(σi/(σi − 1))
∑n

j=1(aij + bij)kj := θ < 1,

(H11) −cmi +
∑n

j=1(a
M
ij + bMij )kj < 0,

then system (1.1) admits a unique ω-periodic solution, which is globally exponentially stable.
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Remark 4.3. Proposition 4.2 implies that the sufficient conditions of the existence and globally
exponential stability of periodic solution to (1.1) are independent of the time-varying delays,
while the corresponding results obtained by authors [5] are dependent on delays. Without
effect from time-varying delays, our results are better for people to keep the stability of system
(1.1). Although the authors [1] also established similar conditions which are independent
of delays, their employed tool and analysis techniques are very different so that their main
results are different from ours. Particularly, (1.1) is the special case of (1.2) without impulse.
Hence, in this sense, results of this paper complement or improve some previously known
results [1, 5].

Finally, two examples and numerical analysis are given to show the usefulness of the
main results.

Example 4.4. Let

x′
1(t) = −c1(t)x1(t) + b11(t)f(x1(t − τ11(t)) + b12(t)f(x2(t − τ12(t)) + J1(t) ,

x′
2(t) = −c2(t)x2(t) + b21(t)f(x1(t − τ21(t)) + b22(t)f(x2(t − τ22(t)) + J2(t) ,

Δxi(t) =
(
1 + qki

)
xi(t), i = 1, 2,

(4.2)

where f(x) = x, c1(t) = 1 + sinπt/4, c2(t) = 2 + cosπt/4, a11(t) = a12(t) = a21(t) = a22(t) =
0, b11(t) = 1/8+sinπt/16, b12(t) = 1/8+cosπt/16, b21(t) = 1/16−cosπt/32, b22(t) = 1/16−
sinπt/24, τ11(t) = τ12(t) = cosπt, τ21(t) = τ22(t) = 1/2− sinπt/3, J1(t) = 5+2 cosπt, J2(t) =
7 − sinπt, qki = 1/8, tk = k − 1/2. Then k1 = k2 = 1, ω = 2, τ = 1, {tk, k = 1, 2, . . .} ∩ [0, 2] =
{t1, t2}.

By easy computation, σ1 = e2, σ2 = e4, and θ ≈ 0.8674 < 1, which implies (H4) holds.
On the other hand, it is easy to verify that (H5) holds. By verification, α > 1/4 > ln(1+(1/8)),
namely, (H6) holds too. From Theorems 2.5 and 3.2, we obtain that (4.2) has a unique 2-
periodic solution, which is globally exponentially stable, see Figure 1.

Example 4.5. Let

x′
1(t) = −

(
1
2
+
sin 2πt

4

)
x1(t) +

(
1
4
+
cos 2πt

6

)
f(x1(t − (2 + sin 2πt)))

+
(
1
4
− sin 2πt

8

)
f(x2(t − (3 − sin 2πt)) + cos 2πt),

x′
2(t) = −

(
1
2
+
cos 2πt

4

)
x2(t) +

(
1
3
+
cos 2πt

4

)
f(x1(t − (5 − sin 2πt)))

+
(
1
6
− cos 2πt

8

)
f(x2(t − (1 + cos 2πt)) + sin 2πt),

(4.3)

where f(x) = (1/4)x for x ∈ R, c1(t) = 1/2+sin 2πt/4,c2(t) = 1/2+cos 2πt/4,a11(t) = a12(t) =
a21(t) = a22(t) = 0, b11(t) = 1/4 + cos 2πt/6, b12(t) = 1/4 − sin 2πt/8, b21(t) = 1/3 + cos 2πt/4,
b22(t) = 1/6 − cos 2πt/8. Then k1 = k2 = (1/4), ω = 1.

By computation, θ ≈ 0.318 < 1, which implies that (H10) holds. It is easy to verify that
(H11) holds too. From Proposition 4.2, system (4.3) has a unique 1-periodic solution, which is
globally exponentially stable, see Figure 2. However, by calculation, conditions of the results
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Figure 1: Dynamics of (4.2)—(a) time series of x1, (b) time series of x2, and (c) portrait of (x1, x2).

of [1] fail, then one cannot obtain the existence of periodic solution of system (4.3) by results
of reference [1], which further shows that the results complement or improve previously
known results.

5. Conclusions

In this paper, the existence and globally exponential stability of the periodic solution of
system (1.2) are studied. Model (1.2) is very general, including such models as continuous
bidirectional associative memory networks, cellular neural networks, and Hopfield-type
neural networks (see, e.g., [6, 7, 28]). The main methods employed here are Schaeffer’ the-
orem, differential inequality techniques, and Lyapunov functional, which are very different
from [1]. The sufficient conditions obtained here are new and complement or improve
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Figure 2: Dynamics of (4.3)—(a) time series of x1, (b) time series of x2.

the previously known results [1, 5–7]. Finally, applications, two illustrative examples and
simulations, are given to show the effectiveness of the main results.
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