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We study a homogeneous partial differential equation and get its entire solutions represented in
convergent series of Laguerre polynomials. Moreover, the formulae of the order and type of the
solutions are established.

1. Introduction and Main Results

The existence and behavior of global meromorphic solutions of homogeneous linear partial
differential equations of the second order
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where ak = ak(t, z) are polynomials for (t, z) ∈ C
2, have been studied by Hu and Yang [1].
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and showed that the solutions of (1.2) and (1.3) are closely related to Bessel functions
and Bessel polynomials, respectively. Hu and Li [3] studied meromorphic solutions of
homogeneous linear partial differential equations of the second order in two independent
complex variables:
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where α, β ∈ C. Equation (1.4) has a lot of entire solutions on C
2 represented by Jacobian

polynomials. Global solutions of some first-order partial differential equations (or system)
were studied by Berenstein and Li [4], Hu and Yang [5], Hu and Li [6], Li [7], Li and Saleeby
[8], and so on.

In this paper, we concentrate on the following partial differential equation (PDE)
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for a real α > 0.Wewill characterize the entire solutions of (1.5), which are related to Laguerre
polynomials. Further, the formulae of the order and type of the solutions are obtained.

It is well known that the Laguerre polynomials are defined by

Ln(α, t) =
n∑

k=0
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n − k

)
(−t)k
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, (1.6)

which are solutions of the following ordinary differential equations (ODE):

t
d2ω
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+ (α + 1 − t)

dω

dt
+ nω = 0. (1.7)

Moreover, Hu [9] pointed out that the generating function of Ln(α, t)

F(α, t, z) = (1 − z)−α−1e−tz/(1−z) =
∞∑
n=0

Ln(α, t)zn (1.8)

is a solution of the PDE (1.5). Based on the methods from Hu and Yang [2], we get the
following results.

Theorem 1.1. The partial differential equation (1.5) has an entire solution u = f(t, z) on C
2, if and

only if u = f(t, z) has a series expansion

f(t, z) =
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n=0
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such that

lim sup
n→∞

n

√
|cn| = 0. (1.10)

If f(t, z) is an entire function on C
2, set
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we define its order by
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where

log+x =

{
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Theorem 1.2. If f(t, z) is defined by (1.9) and (1.10), then
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where

ρ = lim sup
n→∞

logn

log
(
1/ n
√
|cn|
) . (1.15)

Valiron [10] showed that each entire solution of a homogeneous linear ODE with
polynomial coefficients was of finite order. By studying (1.2) and (1.3), Hu and Yang showed
that Valiron’s theorem was not true for general partial differential equations. Here by using
Theorems 1.1 and 1.2, we can construct entire solution of (1.5)with arbitrary order ρ (ρ ≥ 1).

If 0 < λ = ord(f) < ∞, we define the type of f by
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f
)
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)
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. (1.16)

Theorem 1.3. If f(t, z) is defined by (1.9) and (1.10), and 1 < λ = ord(f) < ∞, then the type
σ = typ(f) satisfies

eσλ = lim sup
n→∞

n
n

√
|cn|λ. (1.17)



4 Abstract and Applied Analysis

Lindelöf-Pringsheim theorem [11] gave the expression of order and type for one
complex variable entire function, and for two variable entire function the formulae of order
and typewere obtained by Bose and Sharma in [12]. Hu and Yang [2] established an analogue
of Lindelöf-Pringsheim theorem for the entire solution of PDE (1.2). But from Theorems 1.2
and 1.3, we find that the analogue theorem for the entire solution of (1.5) is different from the
results due to Hu and Yang.

2. An Estimate of Laguerre Polynomials

Before we prove our theorems, we give an upper bound of Ln(α, t), which will play an
important role in this paper. The following asymptotic properties of Ln(α, t) can be found
in [13]:
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holds for t in the complex plane cut along the positive real semiaxis; thus, for |t| ≤ r, we obtain
that
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holds uniformly on compact subsets of (0,+∞), where Jα is the Bessel function and
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combining with (2.3), for |t| ≤ r we can deduce that
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et/2 ≤ πnα

√
πΓ(α + 1/2)
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holds when n is large enough. Then (2.2) and (2.5) imply
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nr , (2.6)

where
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3. Proof of Theorem 1.1

Assuming that u = f(t, z) is an entire solution on C
2 satisfying (1.5), we have Taylor

expansion

f(t, z) =
∞∑
n=0

wn(t)
n!

zn, (3.1)

where

wn(t) =
∂nf

∂zn
(t, 0). (3.2)

Hence wn(t) is an entire solution of (1.7).
By the method of Frobenius (see [14]), we can get a second independent solution

Xn(α, t) of (1.7) which is

Xn(α, t) = qLn(α, t) log t +
∞∑
i=0

pit
i, (3.3)

where q(/= 0), pi are constants.
So there exist cn and bn satisfying

wn(t) = n!cnLn(α, t) + bnXn(α, t). (3.4)

Because of the singularity of Xn(α, t) at t = 0, we obtain bn = 0. That shows
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∞∑
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cnLn(α, t)zn. (3.5)

Now we need to estimate the terms of cn. Since
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is an entire function, we have
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Ln(α, 0) =
(
n + α
n

)
≈ nα

Γ(α + 1)
, (3.8)

we easily get
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Conversely, the relations (1.7), (1.9), and (1.10) imply that
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holds for all (t, z) ∈ C
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Combining (1.10), (3.10)with (3.12), we can get that u = f(t, z) is obviously an entire solution
of (1.5) on C

2.

4. Proof of Theorem 1.2

Firstly, we prove ρ ≤ ord(f). If ρ = 0, the result is trivial. Now we assume 0 < ρ ≤ ∞ and
prove ord(f) ≥ k1 for any 0 < k1 < ρ. The relation (1.15) implies that there exists a sequence
nj → ∞ such that

nj lognj ≥ k1 log
1∣∣∣cnj

∣∣∣
. (4.1)

By using Cauchy’s inequality of holomorphic functions, we have
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)
, (4.2)

together with the formula of the coefficients of the Taylor expansion
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we obtain M(r, f) ≥ |cnLn(α, 0)|rn. Since |Ln(α, 0)| ≥ 1, we have
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then

logM
(
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) ≥ log|cn| + n log r ≥ nj

(
log r − 1

k1
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)
. (4.5)

Putting rj = (enj)
1/k1 , we have

logM
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) ≥
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, (4.6)

which means ord(f) ≥ k1. Then we can get ord(f) ≥ ρ.
Next, wewill prove ord(f) ≤ max(1, ρ). Set ρ′ = max(1, ρ). The result is easy for ρ′ = ∞;

then we assume ρ′ < ∞. For any ε > 0, (1.15) implies that there exists n0 > 0, when n > n0, we
have

|cn| < n−n(1+2ε)/ρ′(1+3ε) = n−n(1+2ε)/k2 , (4.7)

where k2 = ρ′(1 + 3ε) > 1. For any α ≥ 0, there exists n1 > n0 such that when n > n1,

n(α/2−1/4) < nn(ε/k2), (4.8)

combining with (2.6) and (4.7), we get
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where C is a constant but not necessary to be the same every time.
Set m1(r) = ((1/ε)(2

√
r/ log r))2, which means that e2

√
nr < rεn for n > m1(r). Further

set m2(r) = (2r)k2 , which yields that when n ≥ m2(r),
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2
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<
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1
2

)n

. (4.10)

Obviously, we can choose r0 > 0 such that m2(r) > m1(r) for r > r0. Then
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We also have

∑
n1<n≤m2(r)

n−(1+ε)n/k2e2
√
nrrn ≤

∑
n1<n≤m2(r)
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≤
∑

n1<n≤m2(r)
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.

(4.12)

Therefore, when |t| = r ≥ r0, we have

M
(
r, f
) ≤ Cr2n1 + Cer/2 + Cer/2r(1+ε)(2r)

k2
, (4.13)

which means ord(f) ≤ k2. Hence ord(f) ≤ ρ′ = max(1, ρ) follows by letting ε → 0.

5. Proof of Theorem 1.3

Set

κ = lim sup
n→∞

n
n

√
|cn|λ. (5.1)

At first, we prove eλσ ≥ κ. The result is trivial for κ = 0, we assume 0 < κ ≤ ∞ and take ε
with 0 < ε < κ, set

k3 =

⎧
⎨
⎩
κ − ε, if κ < ∞,
1
ε
, if κ = ∞.

(5.2)

Equation (5.1) implies that there exists a sequence nj → ∞ satisfying

∣∣∣cnj

∣∣∣ >
(
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nj

)nj/λ

, (5.3)

combining with (4.4), we can deduce that

M
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(
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(
k3
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rλ
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. (5.4)

Taking rλj = enj/k3, we get M(rj , f) > ek3r
λ
j /eλ, which yields σ ≥ k3/eλ, so eλσ ≥ κ.
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Next, we prove eλσ ≤ κ. We may assume κ < ∞. Equation (5.1) implies that for any
ε > 0, there exists n0 > 0, such that when n > n0,

|cn | <
(
κ + (ε/2)

n

)n/λ

. (5.5)

For any α ≥ 0, we choose n1(> n0) such that when n > n1,

nα/2−1/4 <
(
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κ + (ε/2)

)n/λ

, (5.6)

combining with (2.6), we have
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n
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√
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(5.7)

Set m3(r) = 16rλ2, when n > m3(r), we deduce e2
√
nr < en/2λ. Set m4(r) = 2(κ + ε)rλ,

it is obvious that (κ + ε)rλ/n < 1/2 for n > m4(r). Since λ > 1, there exists r1 such that when
r > r1,

m4(r) = 2(κ + ε)rλ > 16rλ2 = m3(r). (5.8)

Then

∞∑
n>m4(r)

(
κ + ε

n
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√
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∞∑
n>m4(r)

(
(κ + ε)rλ

n

)n/λ

e2
√
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n>m4(r)

(e
4

)n/2λ
≤ C. (5.9)

We note that for a > 0, b > 0, maxx>0(a/x)
x/b = ea/eb, then we have

(
κ + ε

n

)n/λ

rn =

(
(κ + ε)rλ

n

)n/λ

≤ e(κ+ε)r
λ/eλ. (5.10)

This shows

∑
n1<n≤m4(r)

(
κ + ε

n

)n/λ

e2
√
nrrn ≤ m4(r)e2

√
m4(r)re(κ+ε)r

λ/eλ

≤ 2(κ + ε)rλe2
√

2(κ+ε)rλ+1e(κ+ε)r
λ/eλ.

(5.11)
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Therefore when |t| = r ≥ r1,

M
(
r, f
) ≤ Cer/2(κ + ε)rλe2

√
2(κ+ε)rλ+1e(κ+ε)r

λ/eλ + Cr2n1 + Cer/2. (5.12)

Together with λ > 1 and the definition of type, we can get σ ≤ (κ+ε)/eλ, which yields eλσ ≤ κ
by letting ε → 0.
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