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By applying the least action principle and minimax methods in critical point theory, we prove the
existence of periodic solutions for a class of difference systems with p-Laplacian and obtain some
existence theorems.

1. Introduction

Consider the following p-Laplacian difference system:

Δ
(
|Δu(t − 1)|p−2Δu(t − 1)

)
= ∇F(t, u(t)), t ∈ Z, (1.1)

where Δ is the forward difference operator defined by Δu(t) = u(t + 1) − u(t), Δ2u(t) =
Δ(Δu(t)), p ∈ (1,+∞) such that 1/p + 1/q = 1, t ∈ Z, u ∈ R

N , F : Z × R
N → R, and F(t, x) is

continuously differentiable in x for every t ∈ Z and T -periodic in t for all x ∈ R
N .

When p = 2, (1.1) reduces to the following second-order discrete Hamiltonian system:

Δ2u(t − 1) = ∇F(t, u(t)), t ∈ Z. (1.2)

Difference equations provide a natural description of many discrete models in real
world. Since discrete models exist in various fields of science and technology such as
statistics, computer science, electrical circuit analysis, biology, neural network, and optimal
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control, it is of practical importance to investigate the solutions of difference equations. For
more details about difference equations, we refer the readers to the books [1–3].

In some recent papers [4–18], the authors studied the existence of periodic solutions
and subharmonic solutions of difference equations by applying critical point theory. These
papers show that the critical point theory is an effective method to the study of periodic
solutions for difference equations. Motivated by the above papers, we consider the existence
of periodic solutions for problem (1.1) by using the least action principle and minimax
methods in critical point theory.

2. Preliminaries

Now, we first present our main results.

Theorem 2.1. Suppose that F satisfies the following conditions:

(F1) there exists an integer T > 1 such that F(t + T, x) = F(t, x) for all (t, x) ∈ Z × R
N ;

(F2) there exist f , g ∈ l1([1, T],R+) and α ∈ [0, p − 1) such that

|∇F(t, x)| ≤ f(t)|x|α + g(t), ∀(t, x) ∈ Z[1, T] × R
N, (2.1)

where Z[a, b] := Z ∩ [a, b] for every a, b ∈ Z with a ≤ b,

(F3)

lim inf
|x|→+∞

|x|−qα
T∑
t=1

F(t, x) >
2qα(T − 1)q(2p−1)/p

qT

T∑
t=1

fq(t), ∀t ∈ Z[1, T]. (2.2)

Then problem (1.1) has at least one periodic solution with period T .

Theorem 2.2. Suppose that F satisfies (F1) and the following conditions:

T∑
t=1

f(t) <
Tp

2p−1(T − 1)p(1+q)/q
; (2.3)

(F2)’ there exist f , g ∈ l1([1, T],R+) such that

|∇F(t, x)| ≤ f(t)|x|p−1 + g(t), ∀(t, x) ∈ Z[1, T] × R
N, (2.4)

where Z[a, b] := Z ∩ [a, b] for every a, b ∈ Z with a ≤ b;
(F4)

lim inf
|x|→+∞

|x|−p
T∑
t=1

F(t, x) >
2pTq/p(T − 1)q(2p−1)/p

[
Tp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q/p
T∑
t=1

fq(t), ∀t ∈ Z[1, T]. (2.5)

Then problem (1.1) has at least one periodic solution with period T .
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Theorem 2.3. Suppose that F satisfies (F1), (F2), and the following condition:
(F5)

lim sup
|x|→+∞

|x|−qα
T∑
t=1

F(t, x)

< −
[
2qα(T − 1)q(2p−1)/p

pT
+
2qα(T − 1)(q−1)

2(2p−1)/p

qT (q−1)2/q
+
2qα(T − 1)2p−1+(2p−1)/p

pT (p+1)/q

]
T∑
t=1

fq(t)

∀t ∈ Z[1, T].

(2.6)

Then problem (1.1) has at least one periodic solution with period T .

Theorem 2.4. Suppose that F satisfies (F1), (2.3), (F2)’, and the following condition:

(F6)

lim sup
|x|→+∞

|x|−p
T∑
t=1

F(t, x)

< −

⎡
⎢⎣
2p

(
pT

)q/p(T − 1)q(2p−1)/p
(
Tp + 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

)

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q

+
2p

(
pT

)1/p
T(T − 1)2p−1+(2p−1)/p

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]1+1/p

+
2p

(
pT

)(q−1)2/p(T − 1)(q−1)
2(2p−1)/p

q
[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

](q−1)2/p

⎤
⎥⎥⎦

T∑
t=1

fq(t), ∀t ∈ Z[1, T].

(2.7)

Then problem (1.1) has at least one periodic solution with period T .

Remark 2.5. The lower bounds and the upper bounds of our theorems are more accurate than
the existing results in the literature. Moreover, there are functions satisfying our results but
not satisfying the existing results in the literature.

Let the Sobolev space ET be defined by

ET =
{
u : Z −→ R

N | u(t + T) = u(t), t ∈ Z

}
. (2.8)

For u ∈ ET , let u = (1/T)
∑T

t=1 u(t), u = u + ũ, and ẼT = {u ∈ ET | u = 0}, then ET =
R

N ⊕ ẼT . Let

‖u‖ =

(
|u|p +

T∑
t=1

|Δũ(t)|p
)1/p

, u ∈ ET . (2.9)

As usual, let

‖u‖∞ = sup{|u(t)| : t ∈ Z[1, T]}, ∀u ∈ l∞
(
Z[1, T],RN

)
. (2.10)
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For any u ∈ ET , let

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

F(t, u(t)) =
1
p

T∑
t=1

|Δũ(t)|p +
T∑
t=1

F(t, u(t)). (2.11)

To prove our results, we need the following lemma.

Lemma 2.6 (see [18]). Let u ∈ ET . If
∑T

t=1 u(t) = 0, then

‖u‖∞ ≤ (T − 1)(1+q)/q

T
‖ũ‖, (2.12)

‖u‖pp =
T∑
t=1

|u(t)|p ≤ (T − 1)2p−1

Tp−1 ‖ũ‖p. (2.13)

3. Proofs

For the sake of convenience, we denote

M1 =

(
T∑
t=1

fq(t)

)1/q

, M2 =
T∑
t=1

f(t), M3 =
T∑
t=1

g(t). (3.1)

Proof of Theorem 2.1. From (F3), we can choose a1 > (T − 1)(2p−1)/p/T (p−1)/p such that

lim inf
|x|→+∞

|x|−qα
T∑
t=1

F(t, x) >
a
q

12
qα

q
M

q

1 . (3.2)

It follows from (F2), (2.12), and (2.13) that

∣∣∣∣∣
T∑
t=1

[F(t, u(t)) − F(t, u)]

∣∣∣∣∣

=

∣∣∣∣∣
T∑
t=1

∫1

0
(∇F(t, u + sũ(t)), ũ(t))ds

∣∣∣∣∣

≤
T∑
t=1

∫1

0
f(t)|u + sũ(t)|α|ũ(t)|ds +

T∑
t=1

∫1

0
g(t)|ũ(t)|ds

≤ 2α
T∑
t=1

f(t)
(|u|α + |ũ(t)|α)|ũ(t)| +

T∑
t=1

g(t)|ũ(t)|

≤ 2α|u|α
(

T∑
t=1

fq(t)

)1/q( T∑
t=1

|ũ(t)|p
)1/p

+ 2α‖ũ‖1+α∞
T∑
t=1

f(t) + ‖ũ‖∞
T∑
t=1

g(t)

= 2α|u|αM1‖ũ‖p + 2αM2‖ũ‖1+α∞ +M3‖ũ‖∞
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≤ 1

pa
p

1

‖ũ‖pp +
a
q

12
qα

q
|u|qαMq

1 + 2αM2‖ũ‖1+α∞ +M3‖ũ‖∞

≤ (T − 1)2p−1

pa
p

1T
p−1 ‖ũ‖p + 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũ‖1+α + a

q

12
qα

q
|u|qαMq

1 +
M3(T − 1)(1+q)/q

T
‖ũ‖.
(3.3)

Hence, we have

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

F(t, u(t))

=
1
p

T∑
t=1

|Δũ(t)|p +
T∑
t=1

[F(t, u(t)) − F(t, u)] +
T∑
t=1

F(t, u)

≥ 1
p

T∑
t=1

|Δũ(t)|p − 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũ‖1+α +

T∑
t=1

F(t, u)

− (T − 1)2p−1

pa
p

1T
p−1 ‖ũ‖p − a

q

12
qα

q
|u|qαMq

1 −
M3(T − 1)(1+q)/q

T
‖ũ‖

=

(
1
p
− (T − 1)2p−1

pa
p

1T
p−1

)
‖ũ‖p − 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũ‖1+α

+ |u|qα
(
|u|−qα

T∑
t=1

F(t, u) − a
q

12
qα

q
M

q

1

)
− M3(T − 1)(1+q)/q

T
‖ũ‖.

(3.4)

The above inequality and (3.2) imply that ϕ(u) → +∞ as ‖u‖ → ∞. Hence, by the least
action principle, problem (1.1) has at least one periodic solution with period T .

Proof of Theorem 2.2. From (2.3) and (F4), we can choose a constant a3 ∈ R such that

a3 >
T1/p(T − 1)(2p−1)/p

[
Tp − 2p−1M2(T − 1)p(1+q)/q

]1/p > 0,

lim inf
|x|→+∞

|x|−p
T∑
t=1

F(t, x) >
a
q

32
p

q
M

q

1 .

(3.5)

It follows from (F2)’ and Lemma 2.6 that

∣∣∣∣∣
T∑
t=1

[F(t, u(t)) − F(t, u)]

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

∫1

0
(∇F(t, u + sũ(t)), ũ(t))ds

∣∣∣∣∣

≤
T∑
t=1

∫1

0
f(t)|u + sũ(t)|p−1|ũ(t)|ds +

T∑
t=1

g(t)|ũ(t)|
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≤
T∑
t=1

∫1

0
2p−1f(t)

(
|u|p−1 + sp−1|ũ(t)|p−1

)
|ũ(t)|ds +

T∑
t=1

g(t)|ũ(t)|

=
T∑
t=1

2p−1f(t)
(
|u|p−1 + 1

p
|ũ(t)|p−1

)
|ũ(t)| +

T∑
t=1

g(t)|ũ(t)|

≤ 2p−1|u|p−1
(

T∑
t=1

fq(t)

)1/q( T∑
t=1

|ũ(t)|p
)1/p

+
2p−1

p
M2‖ũ‖p∞ +M3‖ũ‖∞

= 2p−1M1|u|p−1‖ũ‖p +
2p−1

p
M2‖ũ‖p∞ +M3‖ũ‖∞

≤ 1

pa
p

3

‖ũ‖pp +
a
q

3M
q

12
p

q
|u|p + 2p−1

p
M2‖ũ‖p∞ +M3‖ũ‖∞

≤
(

(T − 1)2p−1

pa
p

3T
p−1 +

2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũ‖p + a

q

3M
q

12
p

q
|u|p

+
M3(T − 1)(1+q)/q

T
‖ũ‖,

(3.6)

which implies that

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

[F(t, u(t)) − F(t, u)] +
T∑
t=1

F(t, u)

≥
(

1
p
− (T − 1)2p−1

pa
p

3T
p−1 − 2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũ‖p

− M3(T − 1)(1+q)/q

T
‖ũ‖ + |u|p

(
|u|−p

T∑
t=1

F(t, u) − a
q

3M
q

12
p

q

)
.

(3.7)

The above inequality and (3.5) imply that ϕ(u) → +∞ as ‖u‖ → ∞. Hence, by the least
action principle, problem (1.1) has at least one periodic solution with period T .

Proof of Theorem 2.3. First we prove that ϕ satisfies the (PS) condition. Assume that {un} is a
(PS) sequence of ϕ; that is, ϕ′(un) → 0 as n → ∞ and {ϕ(un)} is bounded. By (F5), we can
choose a2 > (T − 1)(2p−1)/p/T (p−1)/p such that

lim sup
|x|→+∞

|x|−qα
T∑
t=1

F(t, x) < −
⎛
⎝2qαaq

2

p
+
2qαa(q−1)2

2

q
+
2qαa2(T − 1)2p−1

pTp−1

⎞
⎠M

q

1 . (3.8)

In a similar way to the proof of Theorem 2.1, we have∣∣∣∣∣
T∑
t=1

(∇F(t, un(t)), ũn(t))

∣∣∣∣∣ ≤
(T − 1)2p−1

pa
p

2T
p−1 ‖ũn‖p + 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũn‖1+α

+
a
q

22
qα

q
|un|qαMq

1 +
M3(T − 1)(1+q)/q

T
‖ũn‖.

(3.9)
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Hence, we have

‖ũn‖p ≥ 〈
ϕ′(un), ũn

〉

=
T∑
t=1

|Δun(t)|p +
T∑
t=1

(∇F(t, un(t)), ũn(t))

≥
(
1 − (T − 1)2p−1

pa
p

2T
p−1

)
‖ũn‖p − M3(T − 1)(1+q)/q

T
‖ũn‖

− 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũn‖1+α −

a
q

22
qα

q
|un|qαMq

1 .

(3.10)

From (2.13), we have

‖ũn‖p =

(
T∑
t=1

|ũn(t)|p
)1/p

≤ (T − 1)(2p−1)/p

T (p−1)/p ‖ũn‖. (3.11)

From (3.10) and (3.11), we obtain

a
q

22
qαM

q

1

q
|un|qα ≥

(
1 − (T − 1)2p−1

pa
p

2T
p−1

)
‖ũn‖p − (T − 1)(2p−1)/p

T (p−1)/p ‖ũn‖

− 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũn‖1+α − M3(T − 1)(1+q)/q

T
‖ũn‖

≥ p − 1
p

‖ũn‖p + C1

=
1
q
‖ũn‖p + C1,

(3.12)

where C1 = mins∈[0,+∞){(1/p − (T − 1)2p−1/pap

2T
p−1)sp − (2αM2(T − 1)(1+q)(1+α)/q/T1+α)s1+α −

[(T − 1)(2p−1)/p/T (p−1)/p + M3(T − 1)(1+q)/q/T]s}. Notice that a2 > (T − 1)(2p−1)/p/T (p−1)/p

implies −∞ < C1 < 0. Hence, it follows from (3.12) that

‖ũn‖p ≤ 2qαaq

2M
q

1 |un|qα − qC1, (3.13)

‖ũn‖ ≤ 2qα/paq/p

2 M
q/p

1 |un|qα/p + C2, (3.14)

where C2 > 0. By the proof of Theorem 2.1, we have∣∣∣∣∣
T∑
t=1

[F(t, un(t)) − F(t, un)]

∣∣∣∣∣ ≤ 2αM1|un|α‖ũn‖p + 2αM2‖ũn‖1+α∞ +M3‖ũn‖∞

≤ (T − 1)2p−1

pa
q−1
2 Tp−1

‖ũn‖p + 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũn‖1+α

+
a
(q−1)2
2 2qα

q
|un|qαMq

1 +
M3(T − 1)(1+q)/q

T
‖ũn‖.

(3.15)
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It follows from the boundedness of ϕ(un), (3.13)–(3.15) that

C3 ≤ ϕ(un)

=
1
p

T∑
t=1

|Δun(t)|p +
T∑
t=1

[F(t, un(t)) − F(t, un)] +
T∑
t=1

F(t, un)

≤
⎛
⎝1

p
+
(T − 1)2p−1

pa
q−1
2 Tp−1

⎞
⎠‖ũn‖p + 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũn‖1+α

+
a
(q−1)2
2 2qα

q
|un|qαMq

1 +
M3(T − 1)(1+q)/q

T
‖ũn‖ +

T∑
t=1

F(t, un)

≤
⎛
⎝1

p
+
(T − 1)2p−1

pa
q−1
2 Tp−1

⎞
⎠(

2qαaq

2M
q

1 |un|qα − qC1

)
+
a
(q−1)2
2 2qα

q
|un|qαMq

1 +
T∑
t=1

F(t, un)

+
2αM2(T − 1)(1+q)(1+α)/q

T1+α

(
2qα/paq/p

2 M
q/p

1 |un|qα/p + C2

)1+α

× M3(T − 1)(1+q)/q

T

(
2qα/paq/p

2 M
q/p

1 |un|qα/p + C2

)

≤
⎛
⎝2qαaq

2

p
+
a
(q−1)2
2 2qα

q
+
a22qα(T − 1)2p−1

pTp−1

⎞
⎠M

q

1 |un|qα −
⎛
⎝1

p
+
(T − 1)2p−1

pa
q−1
2 Tp−1

⎞
⎠qC1

+
22αM2(T − 1)(1+q)(1+α)/q

T1+α

(
2qα(1+α)/paq(1+α)/p

2 M
q(1+α)/p
1 |un|qα(1+α)/p + C1+α

2

)

+
T∑
t=1

F(t, un) +
M3(T − 1)(1+q)/q

T

(
2qα/paq/p

2 M
q/p

1 |un|qα/p + C2

)

= |un|qα
⎡
⎣|un|−qα

T∑
t=1

F(t, un) +

⎛
⎝2qαaq

2

p
+
a
(q−1)2
2 2qα

q
+
a22qα(T − 1)2p−1

pTp−1

⎞
⎠M

q

1

+
22α+qα(1+α)/paq(1+α)/p

2 M
q(1+α)/p
1 M2(T − 1)(1+q)(1+α)/q

T1+α
|un|α(1+α−p)(q−1)

+
2qα/paq/p

2 M
q/p

1 M3(T − 1)(1+q)/q

T
|un|−α

⎤
⎦ + C4,

(3.16)

whereC3 is a positive constant andC4 is a constant. The above inequality and (3.8) imply that
{un} is bounded. Hence {un} is bounded by (2.13) and (3.13). Since ET is finite dimensional,
we conclude that ϕ satisfies (PS) condition.

In order to use the saddle point theorem ([19], Theorem 4.6), we only need to verify
the following conditions:

(I1) ϕ(u) → −∞ as |u| → ∞ in R
N ,

(I2) ϕ(u) → +∞ as |u| → ∞ in ẼT ,
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In fact, from (F5), we have

T∑
t=1

F(t, u) −→ −∞ as |u| −→ ∞ in R
N, (3.17)

which together with (2.11) implies that

ϕ(u) =
T∑
t=1

F(t, u) −→ −∞ as |u| −→ ∞ in R
N. (3.18)

Hence, (I1) holds.
Next, for all u ∈ ẼT , by (F2) and (2.12), we have

∣∣∣∣∣
T∑
t=1

[F(t, u(t)) − F(t, 0)]

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

∫1

0
(∇F(t, su(t)), u(t))ds

∣∣∣∣∣

≤
T∑
t=1

f(t)|u(t)|1+α +
T∑
t=1

g(t)|u(t)|

≤ M2‖u‖1+α∞ +M3‖u‖∞

≤ M2(T − 1)(1+q)(1+α)/q

T (1+α)
‖ũ‖1+α + M3(T − 1)(1+q)/q

T
‖ũ‖,

(3.19)

which implies that

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

[F(t, u(t)) − F(t, 0)] +
T∑
t=1

F(t, 0)

≥ 1
p
‖ũ‖p − M2(T − 1)(1+q)(1+α)/q

T (1+α)
‖ũ‖1+α

− M3(T − 1)(1+q)/q

T
‖ũ‖ +

T∑
t=1

F(t, 0),

(3.20)

for all u ∈ ẼT . By Lemma 2.6, ‖u‖ → ∞ in ẼT if and only if ‖ũ‖ → ∞, so from (3.20), we
obtain ϕ(u) → +∞ as ‖u‖ → ∞ in ẼT ; that is, (I2) is verified. Hence, the proof of Theorem 2.3
is complete.

Proof of Theorem 2.4. First we prove that ϕ satisfies the (PS) condition. Assume that {un} is a
(PS) sequence of ϕ; that is, ϕ′(un) → 0 as n → ∞ and {ϕ(un)} is bounded. By (2.3) and (F6),



10 Abstract and Applied Analysis

we can choose a4 ∈ R such that

a4 >
p1/pT1/p(T − 1)(2p−1)/p

[
pTp − 2p−1M2(T − 1)p(1+q)/q

]1/p , (3.21)

lim sup
|x|→+∞

|x|−p
T∑
t=1

F(t, x)

< −

⎡
⎢⎣
2paq

4

(
Tp + 2p−1M2(T − 1)p(1+q)/q

)
+ 2pTa4(T − 1)2p−1

pTp − 2p−1M2(T − 1)p(1+q)/q
+
2pa(q−1)2

4

q

⎤
⎥⎦Mq

1 .

(3.22)

In a similar way to the proof of Theorem 2.2, we obtain

∣∣∣∣∣
T∑
t=1

(∇F(t, un(t)), ũn(t))

∣∣∣∣∣ ≤
(

(T − 1)2p−1

pa
p

4T
p−1 +

2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũn‖p

+
a
q

4M
q

12
p

q
|un|p + M3(T − 1)(1+q)/q

T
‖ũn‖.

(3.23)

Hence, we have

‖ũn‖p ≥ 〈
ϕ′(un), ũn

〉

=
1
p

T∑
t=1

|Δun(t)|p +
T∑
t=1

(∇F(t, un(t)), ũn(t))

≥
(
1 − (T − 1)2p−1

pa
p

4T
p−1 − 2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũn‖p −

a
q

4M
q

12
p

q
|un|p

− M3(T − 1)(1+q)/q

T
‖ũn‖,

(3.24)

which together with (3.11) implies that

a
q

4M
q

12
p

q
|un|p ≥

(
1 − (T − 1)2p−1

pa
p

4T
p−1 − 2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũn‖p

− M3(T − 1)(1+q)/q

T
‖ũn‖ − (T − 1)(2p−1)/p

T1/q
‖ũn‖

≥ 1
q

(
1 − 2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũn‖p + C5,

(3.25)
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where C5 = mins∈[0,+∞){(1/p − (T − 1)2p−1/pap

4T
p−1 − 2p−1M2(T − 1)p(1+q)/q/p2Tp)sp −

[M3(T − 1)(1+q)/q/T + (T − 1)(2p−1)/p/T1/q]s}. It follows from (3.21) that −∞ < C5 < 0, so,
we obtain

‖ũn‖p ≤ pTpa
q

4M
q

12
p

pTp − 2p−1M2(T − 1)p(1+q)/q
|un|p −

pTpqC5

pTp − 2p−1M2(T − 1)p(1+q)/q
, (3.26)

‖ũn‖ ≤ 2p1/pTaq/p

4 M
q/p

1[
pTp − 2p−1M2(T − 1)p(1+q)/q

]1/p |un| + C6, (3.27)

where C6 is a positive constant. By the proof of Theorem 2.2, we have

∣∣∣∣∣
T∑
t=1

(F(t, un(t)) − F(t, un))

∣∣∣∣∣

≤ 2p−1M1|u|p−1‖ũ‖p +
2p−1

p
M2‖ũ‖p∞ +M3‖ũ‖∞

≤
⎛
⎝(T − 1)2p−1

pa
q−1
4 Tp−1

+
2p−1M2(T − 1)p(1+q)/q

pTp

⎞
⎠‖ũn‖p +

a
(q−1)2
4 M

q

12
p

q
|un|p

+
M3(T − 1)(1+q)/q

T
‖ũn‖.

(3.28)

It follows from the boundedness of ϕ(un), (3.26), (3.27), and the above inequality that

C7 ≤ ϕ(un)

=
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

[F(t, u(t)) − F(t, u)] +
T∑
t=1

F(t, u)

≤
⎡
⎣1
p
+
(T − 1)2p−1

pa
q−1
4 Tp−1

+
2p−1M2(T − 1)p(1+q)/q

pTp

⎤
⎦‖ũn‖p +

T∑
t=1

F(t, un)

+
M3(T − 1)(1+q)/q

T
‖ũn‖ +

a
(q−1)2
4 M

q

12
p

q
|un|p

≤
⎡
⎣1
p
+
(T − 1)2p−1

pa
q−1
4 Tp−1

+
2p−1M2(T − 1)p(1+q)/q

pTp

⎤
⎦

×
(

pTpa
q

4M
q

12
p

pTp − 2p−1M2(T − 1)p(1+q)/q
|un|p −

pTpqC5

pTp − 2p−1M2(T − 1)p(1+q)/q

)
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+
T∑
t=1

F(t, u) +
a
(q−1)2
4 M

q

12
p

q
|un|p

+
M3(T − 1)(1+q)/q

T

⎛
⎜⎝ 2p1/pTaq/p

4 M
q/p

1[
pTp − 2p−1M2(T − 1)p(1+q)/q

]1/p |un| + C6

⎞
⎟⎠

= |un|p
⎧
⎪⎨
⎪⎩

⎡
⎢⎣
2paq

4

(
Tp + 2p−1M2(T − 1)p(1+q)/q

)
+ 2pTa4(T − 1)2p−1

pTp − 2p−1M2(T − 1)p(1+q)/q
+
2pa(q−1)2

4

q

⎤
⎥⎦Mq

1

+|un|−p
T∑
t=1

F(t, un) +
2p1/pTaq/p

4 M
q/p

1 M3(T − 1)(1+q)/q

T
[
pTp − 2p−1M2(T − 1)p(1+q)/q

]1/p |un|−p+1
⎫
⎪⎬
⎪⎭

+ C8,

(3.29)

where C7 is a positive constant and C8 is a constant. The above inequality and (3.22) imply
that {un} is bounded. Hence, {un} is bounded by (2.13) and (3.26).

Similar to the proof of Theorem 2.3, we only need to verify (I1) and (I2). It is easy to
verify (I1) by (F6). Now, we verify that (I2) holds. For u ∈ ẼT , by (F2)’ and (2.12), we have

∣∣∣∣∣
T∑
t=1

(F(t, u(t)) − F(t, 0))

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

∫1

0
(∇F(t, su(t)), u(t))ds

∣∣∣∣∣

≤
T∑
t=1

∫1

0
f(t)sp−1|u(t)|pds +

T∑
t=1

g(t)|u(t)|

≤ M2

p
‖u‖p∞ +M3‖u‖∞

≤ M2(T − 1)p(1+q)/q

pTp
‖ũ‖p + M3(T − 1)(1+q)/q

pT
‖ũ‖.

(3.30)

Thus, we have

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

(F(t, u(t)) − F(t, 0)) +
T∑
t=1

F(t, 0)

≥
(

1
p
− M2(T − 1)p(1+q)/q

pTp

)
‖ũ‖p − M3(T − 1)(1+q)/q

pT
‖ũ‖ +

T∑
t=1

F(t, 0),

(3.31)

for all u ∈ ẼT . By Lemma 2.6, ‖u‖ → ∞ in ẼT if and only ‖ũ‖ → ∞. So from the above
inequality, we have ϕ(u) → +∞ as ‖u‖ → ∞, that is (I2) is verified. Hence, the proof of
Theorem 2.4 is complete.
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4. Example

In this section, we give four examples to illustrate our results.

Example 4.1. Let p = 5/2 and

F(t, x) = sin
(
2πt
T

)
|x|5/3 +

(
sin

2πt
T

+ 1
)
|x|4/3 + (h(t), x), (4.1)

where h ∈ l1(Z[1, T],RN) and h(t + T) = h(t). It is easy to see that F(t, x) satisfies (F1) and

|∇F(t, x)| ≤ 5
3

∣∣∣∣sin
2πt
T

∣∣∣∣|x|2/3 +
4
3

∣∣∣∣sin
2πt
T

+ 1
∣∣∣∣|x|1/3 + |h(t)|

≤ 5
3

(∣∣∣∣sin
2πt
T

∣∣∣∣ + ε

)
|x|2/3 + a(ε) + |h(t)|, ∀(t, x) ∈ Z[1, T] × R

N,

(4.2)

where ε > 0, and a(ε) is a positive constant and is dependent on ε. The above shows that (F2)
holds with α = 2/3 and

f(t) =
5
3

(∣∣∣∣sin
2πt
T

∣∣∣∣ + ε

)
, g(t) = a(ε) + |h(t)|. (4.3)

Moreover, we have

lim inf
|x|→+∞

|x|−2α
T∑
t=1

F(t, x) = T,

2qα(T − 1)q(2p−1)/p

qT

T∑
t=1

fq(t) =
3 × 210/9(T − 1)8/3

5

(
5
3
ε

)5/3

.

(4.4)

We can choose ε suitable such that

lim inf
|x|→+∞

|x|−2α
T∑
t=1

F(t, x) = T >
3 × 210/9(T − 1)8/3

5

(
5
3
ε

)5/3

=
2qα(T − 1)q(2p−1)/p

qT

T∑
t=1

fq(t), (4.5)

which shows that (F3) holds. Then from Theorem 2.1, problem (1.1) has at least one periodic
solution with period T .

Example 4.2. Let p = 2, then q = 2. Let

F(t, x) =
1
6

(
1
2
+ sin

2πt
T

)
|x|2 + |x|3/2 + (h(t), x), (4.6)
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where h ∈ l1(Z[1, T],RN) and h(t + T) = h(t). It is easy to see that F(t, x) satisfies (F1) and

|∇F(t, x)| ≤ 1
3

∣∣∣∣
1
2
+ sin

2πt
T

∣∣∣∣|x| +
3
2
|x|1/2 + |h(t)|

≤ 1
3

(∣∣∣∣
1
2
+ sin

2πt
T

∣∣∣∣ + ε

)
|x| + b(ε) + |h(t)|, ∀(t, x) ∈ Z[1, T] × R

N,

(4.7)

where ε > 0, and b(ε) is a positive constant and is dependent on ε. The above shows that (F2)’
holds with

f(t) =
1
3

(∣∣∣∣
1
2
+ sin

2πt
T

∣∣∣∣ + ε

)
, g(t) = b(ε) + |h(t)|. (4.8)

Observe that

|x|−p
T∑
t=1

F(t, x) = |x|−2
T∑
t=1

[
1
6

(
1
2
+ sin

2πt
T

)
|x|2 + |x|3/2 + (h(t), x)

]

=
T

12
+ T |x|−1/2 +

(
T∑
t=1

h(t), |x|−2x
)
.

(4.9)

On the other hand, if we let T = 2, then we have

T∑
t=1

f(t) =
2
3

(
1
2
+ ε

)
,

T∑
t=1

f2(t) =
1
9

T∑
t=1

(∣∣∣∣
1
2
+ sin

2πt
T

∣∣∣∣ + ε

)2

=
2
9

(
1
2
+ ε

)2

,

2pTq/p(T − 1)q(2p−1)/p
[
Tp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q/p
T∑
t=1

fq(t) =
2 + 8ε + 8ε2

15 − 6ε
.

(4.10)

We can choose ε sufficiently small such that

T∑
t=1

f(t) =
2
3

(
1
2
+ ε

)
< 2 =

Tp

2p−1(T − 1)p−1
,

lim inf
|x|→+∞

|x|−p
T∑
t=1

F(t, x) =
1
6
>

2 + 8ε + 8ε2

15 − 6ε

=
2pTq/p(T − 1)q(2p−1)/p

[
Tp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q/p
T∑
t=1

fq(t),

(4.11)

which shows that (2.3) and (F4) hold. Then from Theorem 2.2, problem (1.1) has at least one
periodic solution with period T .

Example 4.3. Let p = 2, then q = 2. Let

F(t, x) = sin
(
2πt
T

)
|x|7/4 +

(
sin

2πt
T

− 1
)
|x|3/2 + (h(t), x), (4.12)
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where h ∈ l1(Z[1, T],RN) and h(t + T) = h(t). It is easy to see that F(t, x) satisfies (F1) and

|∇F(t, x)| ≤ 7
4

∣∣∣∣sin
2πt
T

∣∣∣∣|x|3/4 +
3
2

∣∣∣∣sin
2πt
T

− 1
∣∣∣∣|x|1/2 + |h(t)|

≤ 7
4

(∣∣∣∣sin
2πt
T

∣∣∣∣ + ε

)
|x|3/4 + c(ε) + |h(t)|, ∀(t, x) ∈ Z[1, T] × R

N,

(4.13)

where ε > 0 and c(ε) is a positive constant and is dependent on ε. The above shows that (F2)
holds with α = 3/4 and

f(t) =
7
4

(∣∣∣∣sin
2πt
T

∣∣∣∣ + ε

)
, g(t) = c(ε) + |h(t)|. (4.14)

Observe that

|x|−qα
T∑
t=1

F(t, x) = |x|−3/2
T∑
t=1

[
sin

(
2πt
T

)
|x|7/4 +

(
sin

2πt
T

− 1
)
|x|3/2 + (h(t), x)

]

= − T +

(
T∑
t=1

h(t), |x|−3/2x
)
.

(4.15)

On the other hand, we have

[
2qα(T − 1)q(2p−1)/p

pT
+
2qα(T − 1)(q−1)

2(2p−1)/p

qT (q−1)2/q
+
2qα(T − 1)2p−1+(2p−1)/p

pT (p+1)/q

]
T∑
t=1

fq(t)

=

[√
2(T − 1)3

T
+
√
2(T − 1)3/2

T1/2
+
√
2(T − 1)9/2

T3/2

]
T∑
t=1

49
16

(∣∣∣∣sin
2πt
T

∣∣∣∣ + ε

)2

=
49
√
2ε2(T − 1)3/2

[
T1/2(T − 1)3/2 + T + (T − 1)3

]

16T1/2
.

(4.16)

We can choose ε suitable such that

lim sup
|x|→+∞

|x|−qα
T∑
t=1

F(t, x)

= −T

< −
49
√
2ε2(T − 1)3/2

[
T1/2(T − 1)3/2 + T + (T − 1)3

]

16T1/2

= −
[
2qα(T − 1)q(2p−1)/p

pT
+
2qα(T − 1)(q−1)

2(2p−1)/p

qT (q−1)2/q
+
2qα(T − 1)2p−1+(2p−1)/p

pT (p+1)/q

]
T∑
t=1

fq(t),

(4.17)
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which shows that (F5) holds. Then from Theorem 2.3, problem (1.1) has at least one periodic
solution with period T .

Example 4.4. Let p = 2, then q = 2. Let

F(t, x) =
1
3

(
sin

2πt
T

− 1
8

)
|x|2 + |x|3/2 + (h(t), x), (4.18)

where h ∈ l1(Z[1, T],RN) and h(t + T) = h(t). It is easy to see that F(t, x) satisfies (F1) and

|∇F(t, x)| ≤ 2
3

∣∣∣∣sin
2πt
T

− 1
8

∣∣∣∣|x| +
3
2
|x|1/2 + |h(t)|

≤ 2
3

(∣∣∣∣sin
2πt
T

− 1
8

∣∣∣∣ + ε

)
|x| + d(ε) + |h(t)|, ∀(t, x) ∈ Z[1, T] × R

N,

(4.19)

where ε > 0, d(ε) is a positive constant and is dependent on ε. The above shows that (F2)’
holds with

f(t) =
2
3

(∣∣∣∣sin
2πt
T

− 1
8

∣∣∣∣ + ε

)
, g(t) = d(ε) + |h(t)|. (4.20)

Observe that

|x|−p
T∑
t=1

F(t, x) = |x|−2
T∑
t=1

[
1
3

(
sin

2πt
T

− 1
8

)
|x|2 + |x|3/2 + (h(t), x)

]

= − T

24
+ T |x|−1/2 +

(
T∑
t=1

h(t), |x|−2x
)
.

(4.21)

On the other hand, if we let T = 2, then we have

T∑
t=1

f(t) =
4
3

(
1
8
+ ε

)
,

T∑
t=1

f2(t) =
4
9

T∑
t=1

(∣∣∣∣
1
8
+ sin

2πt
T

∣∣∣∣ + ε

)2

=
8
9

(
1
8
+ ε

)2

, (4.22)
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−

⎡
⎢⎣
2p

(
pT

)q/p(T − 1)q(2p−1)/p
(
Tp + 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

)

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q

+
2p

(
pT

)1/p
T(T − 1)2p−1+(2p−1)/p

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]1+1/p

+
2p

(
pT

)(q−1)2/p(T − 1)(q−1)
2(2p−1)/p

q
[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

](q−1)2/p

⎤
⎥⎥⎦

T∑
t=1

fq(t)

=

[
192 + 128 × (1/8 + ε)

3 × (8 − (8/3)(1/8 + ε))2
+

16

(8 − (8/3)(1/8 + ε))3/2

+
8

(8 − (8/3)(1/8 + ε))1/2

]
× 8
9

(
1
8
+ ε

)2

.

(4.23)

We can choose ε sufficiently small such that

T∑
t=1

f(t) =
4
3

(
1
8
+ ε

)
< 2 =

Tp

2p−1(T − 1)p−1
, (4.24)

lim sup
|x|→+∞

|x|−p
T∑
t=1

F(t, x) = − 1
12

<

[
192 + 128 × (1/8 + ε)

3 × (8 − (8/3)(1/8 + ε))2
+

16

(8 − (8/3)(1/8 + ε))3/2

+
8

(8 − (8/3)(1/8 + ε))1/2

]
× 8
9

(
1
8
+ ε

)2

= −

⎡
⎢⎣
2p

(
pT

)q/p(T − 1)q(2p−1)/p
(
Tp + 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

)

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q

+
2p

(
pT

)1/p
T(T − 1)2p−1+(2p−1)/p

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]1+1/p

+
2p

(
pT

)(q−1)2/p(T − 1)(q−1)
2(2p−1)/p

q
[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

](q−1)2/p

⎤
⎥⎥⎦

T∑
t=1

fq(t),

(4.25)

which shows that (F6) holds. Then from Theorem 2.4, problem (1.1) has at least one periodic
solution with period T .
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