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The interval exponential state estimation and robust exponential stability for the switched interval
neural networks with discrete and distributed time delays are considered. Firstly, by combining
the theories of the switched systems and the interval neural networks, the mathematical model
of the switched interval neural networks with discrete and distributed time delays and the
interval estimation error system are established. Secondly, by applying the augmented Lyapunov-
Krasovskii functional approach and available output measurements, the dynamics of estimation
error system is proved to be globally exponentially stable for all admissible time delays. Both the
existence conditions and the explicit characterization of desired estimator are derived in terms of
linear matrix inequalities (LMIs). Moreover, a delay-dependent criterion is also developed, which
guarantees the robust exponential stability of the switched interval neural networks with discrete
and distributed time delays. Finally, two numerical examples are provided to illustrate the validity
of the theoretical results.

1. Introduction

In the past few decades, the different models of neural networks such as Hopfield neural
networks, Cohen-Grossberg neural networks, cellular neural networks, and bidirectional
associative memory neural networks have been extensively investigated due to their wide
applications in areas like associative memory, pattern classification, reconstruction of moving
images, signal processing, solving optimization problems, and so forth, see [1]. In almost
all applications about neural networks, a fundamental problem is the stability, which is the
prerequisite to ensure that the developed neural network can work [2–12]. In hardware
implementation of the neural networks, time delay is inevitably encountered and is usually
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discrete and distributed due to the finite switching speed of amplifiers. It is known that
time delay is often the main cause for instability and poor performance of neural networks.
Moreover, due to unavoidable factors, such as modeling error, external perturbation, and
parameter fluctuation, the neural networks model certainly involves uncertainties such as
perturbations, and component variations, which will change the stability of neural networks.
Therefore, it is of great importance to study the robust stability of neural networks with
time delays in the presence of uncertainties, see, for example, [11, 13–26] and the references
therein. There are mainly two forms of uncertainties, namely, the interval uncertainty and the
norm-bounded uncertainty. Recently, some sufficient conditions for the global robust stability
of interval neural networkswith time delays and parametric uncertainties have been obtained
in terms of LMIs [13–16, 18].

A class of hybrid systems have attracted significant attention because it can model
several practical control problems that involve the integration of supervisory logic-based
control schemes and feedback control algorithms. As a special class of hybrid systems,
switched systems are regarded as nonlinear systems, which are composed of a family of
continuous-time or discrete-time subsystems and a rule that orchestrates the switching
between the subsystems. Recently, switched neural networks, whose individual subsystems
are a set of neural networks, have found applications in fields of high-speed signal processing,
artificial intelligence, and gene selection in a DNA microarray analysis [27–29]. Therefore,
some researchers have studied the stability issues for switched neural networks [19–24].
In [19], based on the Lyapunov-Krasovskii method and LMI approach, some sufficient
conditions were derived for global robust exponential stability of a class of switched Hopfield
neural networks with time-varying delay under uncertainty. In [20], by combining Cohen-
Grossberg neural networks with an arbitrary switching rule, the mathematical model of a
class of switched Cohen-Grossberg neural networks with mixed time varying delays were
established, and the robust stability for such switched Cohen-Grossberg neural networks
were analyzed. In [21], by employing nonlinear measure and LMI techniques, some new
sufficient conditions were obtained to ensure global robust asymptotic stability and global
robust stability of the unique equilibrium for a class of switched recurrent neural networks
with time-varying delay. In [22], a large class of switched recurrent neural networks
with time-varying structured uncertainties and time-varying delay were investigated, and
some delay-dependent robust periodicity criteria were derived to guarantee the existence,
uniqueness, and global asymptotic stability of periodic solution for all admissible parametric
uncertainties by taking free weighting matrices and LMIs. In [23], based on multiple
Lyapunov functions method and LMI techniques, the authors presented some sufficient
conditions in terms of LMIs, which guarantee the robust exponential stability for uncertain
switched Cohen-Grossberg neural networks with interval time-varying delay and distributed
time-varying delay under the switching rule with the average dwell time property. It should
be noted that, almost all results treated the robust stability for switched neural networks with
norm-bounded uncertainty in the above literature [19–23], there are few researchers to deal
with the global exponential robust stability for switched neural networks with the interval
uncertainty in the existing literature, despite its potential and practical importance in many
different areas such as system control and error analysis, see [14, 15].

The neuron states in relatively large-scale neural networks are not often completely
available in the network outputs. Thus, in many applications, one often needs to estimate
the neuron states through available measurements and then utilizes the estimated neuron
states to achieve certain design objectives. For example, in [30], a recurrent neural network
was applied to model an unknown system, and the neuron states of the designed neural



Abstract and Applied Analysis 3

network were then utilized by the control law. Therefore, from the point of view of control,
the state estimation problem for neural networks is of significance for many applications.
Recently, there are some results for the neuron state estimation problem of neural networks
with or without time delays in the existing available [31–35]. In [31, 32], the authors
studied state estimation for Markovian jumping recurrent neural networks with time-delays
by constructing Lyapunov-Krasovskii functionals and LMIs. In [33], the interconnection
matrix of neural networks are assumed to be norm-bounded. Through available output
measurements and by using LMI technique, the authors proved that the dynamics of
the estimation error was globally exponentially stable for all admissible time-delays for
delayed neural networks. In [34], based on the free-weighting matrix approach, a delay-
dependent criterion was established to estimate the neuron states through available output
measurements such that the dynamics of the estimation error was globally exponentially
stable for neural networks with time-varying delays. The results were applicable to the case
that the derivative of a time-varying delay takes any value. In [35], by using the Lyapunov-
Krasovskii functional approach, the authors presented the existence conditions of the state
estimators in terms of the solution to an LMI. In [36], the neuron activation function and
perturbed function of the measurement equation were assumed to be sector-bounded, an
LMI-based state estimator and a stability criterion for delayed Hopfield neural networks
are developed. In [37], based on augmented Lyapunov-Krasovskii functional and passivity
theory, the authors proved that the estimation error system was exponentially stable and
passive from the control input to the output error. A new delay-dependent state estimator
for switched Hopfield neural networks was achieved by solving LMIs obtained. In spite of
these advances in studying neural network state estimation, the state estimation problem for
switched interval neural networks has not been investigated in the literature, and it is very
important in both theories and applications.

Motivated by the preceding discussion, the aim of this paper is to present a new
class of neural network models, that is, switched interval neural networks with discrete and
distributed time delays, under interval parameter uncertainties by integrating the theory of
switched systems with neural networks. Based on Lyapunov stability theory and by using
available output measurements, the dynamics of estimation error system will be proved to
be globally exponentially stable for all admissible time delays. Both the existence conditions
and the explicit characterization of desired estimator are also derived in terms of LMIs.
In addition, a delay-dependent criterion will be derived such that the proposed switched
interval neural networks is globally robustly exponentially stable. The proposed criterion is
represented in terms of LMIs, which can be solved efficiently by using recently developed
convex optimization algorithms [38].

The rest of this paper is organized as follows. In Section 2, the model formulation
and some preliminaries are given. Section 3 treats switched exponential state estimation
problem for interval neural networks with discrete and distributed time delays. In Section 4,
the robust exponential stability is discussed and a delay-dependent criterion is developed.
Two numerical examples are presented to demonstrate the validity of the proposed results in
Section 5. Some conclusions are drawn in Section 6.

Notations. Throughout this paper, R denotes the set of real numbers, R
n denotes the n-

dimensional Euclidean space, and R
m×n denotes the set of all m × n real matrices. For

any matrix A, A > 0 (A < 0) means that A is positive definite (negative definite). A−1

denotes the inverse of A. AT denotes the transpose of A. λmax(A) and λmin(A) denote the
maximum and minimum eigenvalue of A, respectively. Given the vectors x = (x1, . . . , xn)

T ,
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y = (y1, . . . , yn)
T ∈ R

n, ‖x‖ = (
∑n

i=1 x
2
i )

1/2, xTy =
∑n

i=1 xiyi. For r > 0, C([−r, 0];Rn)
denotes the family of continuous function ϕ from [−r, 0] to R

n with the norm ‖ϕ‖ =
sup−r≤s≤0|ϕ(s)|. ẋ(t) denotes the derivative of x(t), ∗ represents the symmetric form of matrix.
Matrices, if their dimensions not explicitly stated, are assumed to have compatible dimen-
sions for algebraic operations.

2. Neural Network Model and Preliminaries

The model of interval neural network with discrete and distributed time delays can be de-
scribed by differential equation system

ẋ(t) = −Ax(t) + B1g1(x(t − τ)) + B2

∫ t

t−h
g2(x(s))ds + J,

y(t) = Cx(t) + f(t, x(t)),

A ∈ Al, Bk ∈ B(k)
l
, k = 1, 2,

(2.1)

where x(t) = (x1(t), . . . , xn(t))
T ∈ R

n is the vector of neuron states; y(t) = (y1(t), . . . , yn(t))
T ∈

R
m is the output vector; gi(x) = (gi1(x1), . . . , gin(xn))

T : R
n → R

n, i = 1, 2, are the vector-
valued neuron activation functions; f(t, x) is a mapping from R × R

n to R
m, which is the

neuron-dependent nonlinear disturbances on the network outputs; C = (cij)m×n is a known
constant matrix with appropriate dimension; J = (J1, . . . , Jn)

T is a constant external input
vector. τ , h denote the discrete and distributed time delays, respectively, and τ > 0, h > 0;
A = diag(a1, . . . , an) is an n × n constant diagonal matrices, ai > 0, i = 1, . . . , n, are the
neural self-inhibitions; Bk = (b(k)ij ) ∈ R

n×n, k = 1, 2, are the connection weight matrices; Al =

[A,A] = {A = diag(ai) : 0 < ai ≤ ai ≤ ai, i = 1, 2, . . . , n}, B(k)
l = [Bk, Bk] = {Bk = (b(k)ij ) : 0 <

b
(k)
ij ≤ b(k)ij ≤ b(k)ij , i, j = 1, 2, . . . , n} with A = diag(a1, a2, . . . , an), A = diag(a1, a2, . . . , an), Bk =

(b(k)ij )n×n, Bk = (b
(k)
ij )n×n.

The initial value associated with the system (2.1) is assumed to be x(s) = ϕ(s), ϕ(s) ∈
C([−r, 0];Rn), r = max{τ, h}.

Throughout this paper, the following assumptions are made on gi(·), i = 1, 2, and
f(t, x).

(H1) For any two different s, t ∈ R,

0 ≤ gij(s) − gij(t)
s − t ≤ σij , i = 1, 2, j = 1, . . . , n, (2.2)

where Λi = diag(σi1, σi2, . . . , σin). σij > 0 is a constant, i = 1, 2, j = 1, 2, . . . , n.

(H2) For any two different x, y ∈ R
n,

∥
∥f(t, x) − f(t, y)∥∥ ≤ ∥∥F(x − y)∥∥, (2.3)

where F ∈ R
n×n is a constant matrix.
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Based on some transformations [15], the system (2.1) can be equivalently written as

ẋ(t) = −[A0 + EAΣAFA]x(t) + [B10 + E1Σ1F1]g1(x(t − τ)) + [B20 + E2Σ2F2]
∫ t

t−h
g2(x(s))ds + J,

y(t) = Cx(t) + f(t, x(t)),
(2.4)

where ΣA ∈ Σ, Σk ∈ Σ, k = 1, 2.

Σ =
{
diag[δ11, . . . , δ1n, . . . , δn1, . . . , δnn] ∈ R

n2×n2 :
∣
∣δij
∣
∣ ≤ 1, i, j = 1, 2, . . . , n

}
,

A0 =
A +A

2
, HA =

[
αij
]
n×n =

A −A
2

· Bk0 =
Bk + Bk

2
, H

(k)
B =

[
βij
]
n×n =

Bk − Bk
2

,

EA =
[√

α11e1, . . . ,
√
α1ne1, . . . ,

√
αn1en, . . . ,

√
αnnen

]
n×n2 ,

FA =
[√

α11e1, . . . ,
√
α1nen, . . . ,

√
αn1e1, . . . ,

√
αnnen

]T
n2×n,

Ek =
[√

β
(k)
11 e1, . . . ,

√

β
(k)
1n e1, . . . ,

√

β
(k)
n1 en, . . . ,

√

β
(k)
nn en

]

n×n2
,

Fk =
[√

β
(k)
11 e1, . . . ,

√

β
(k)
1n en, . . . ,

√

β
(k)
n1 e1, . . . ,

√

β
(k)
nn en

]T

n2×n
,

(2.5)

where ei ∈ R
n denotes the column vector with ith element to be 1 and others to be 0.

The switched interval neural network with discrete and distributed time delays
consists of a set of interval neural network with discrete and distributed time delays and
a switching rule. Each of the interval neural networks was regarded as an individual
subsystem. The operation mode of the switched neural networks is determined by the
switching rule. According to (2.1), the switched interval neural network with discrete and
distributed delays can be represented as follows:

ẋ(t) = −Aσ(t)x(t) + B1σ(t)g1(x(t − τ)) + B2σ(t)

∫ t

t−h
g2(x(s))ds + J,

y(t) = Cσ(t)x(t) + f(t, x(t)),

Aσ(t) ∈ Alσ(t) , Bkσ(t) ∈ B(k)
lσ(t)
, k = 1, 2,

(2.6)

where Alσ(t) = [Aσ(t), Aσ(t)] = {Aσ(t) = diag(aiσ(t) ) : 0 < aiσ(t) ≤ aiσ(t) ≤ aiσ(t) , i = 1, 2, . . . , n},
B
(k)
lσ(t)

= [Bkσ(t) , Bkσ(t) ] = {Bkσ(t) = [b(k)ijσ(t)
] : 0 < b

(k)
ijσ(t)

≤ b
(k)
ijσ(t)

≤ b
(k)
ijσ(t) , i, j = 1, 2, . . . , n} with Aσ(t) =

diag(a1σ(t) , a2σ(t) , . . . , anσ(t) ), Aσ(t) diag(a1σ(t) , a2σ(t) , . . . , anσ(t) ), Bkσ(t) = [b(k)ijσ(t)
]
n×n, Bkσ(t) = [b

(k)
ijσ(t) ]n×n

A0σ(t) =
Aσ(t) +Aσ(t)

2
, HAσ(t) =

[
αijσ(t)

]
n×n =

Aσ(t) −Aσ(t)

2
,

Bk0σ(t) =
Bkσ(t) + Bkσ(t)

2
, H

(k)
Bσ(t)

=
[
βijσ(t)

]
n×n =

Bkσ(t) − Bkσ(t)
2

,
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EAσ(t) =
[√

α11σ(t)e1, . . . ,
√
α1nσ(t)e1, . . . ,

√
αn1σ(t)en, . . . ,

√
αnnσ(t)en

]

n×n2
,

FAσ(t) =
[√

α11σ(t)e1, . . . ,
√
α1nσ(t)en, . . . ,

√
αn1σ(t)e1, . . . ,

√
αnnσ(t)en

]T

n2×n
,

Ekσ(t) =

[√

β
(k)
11σ(t)

e1, . . . ,

√

β
(k)
1nσ(t)

e1, . . . ,

√

β
(k)
n1σ(t)

en, . . . ,
√

β
(k)
nnσ(t)en

]

n×n2
,

Fkσ(t) =

[√

β
(k)
11σ(t)

e1, . . . ,

√

β
(k)
1nσ(t)

en, . . . ,

√

β
(k)
n1σ(t)

e1, . . . ,
√

β
(k)
nnσ(t)en

]T

n2×n
,

(2.7)

σ(t) : [0,+∞) → Γ = {1, 2, . . . ,N} is the switching signal, which is a piecewise constant
function of time. For any i ∈ {1, 2, . . . , l}, Ai = A0i + EAiΣAiFAi , Bki = Bk0i + EkiΣkiFki , and
ΣAi ∈ Σ, Σki ∈ Σ, k = 1, 2. This means that the matrices (Aσ(t), B1σ(t) , B2σ(t) ) are allowed to take
values, at an arbitrary time, in the finite set {(A1, B11 , B21), (A2, B12 , B22), . . . , (AN,B1N , B2N )}.
In this paper, it is assumed that the switching rule σ is not known a priori and its
instantaneous value is available in real time.

By (2.4), the system (2.6) can be rewritten as

ẋ(t) = −A0σ(t)x(t) + B10σ(t)g1(x(t − τ)) + B20σ(t)

∫ t

t−h
g2(x(s))ds + Eσ(t)Δσ(t)(t) + J,

y(t) = Cσ(t)x(t) + f(t, x(t)),

Aσ(t) ∈ Alσ(t) , Bkσ(t) ∈ B(k)
lσ(t)
, k = 1, 2,

(2.8)

where Eσ(t) = [EAσ(t) , E1σ(t) , E2σ(t) ],

Δσ(t)(t) =

⎡

⎢
⎢
⎣

−ΣAσ(t)FAσ(t)x(t)
Σ1σ(t)F1σ(t)g1(x(t − τ))

Σ2σ(t)F2σ(t)

∫ t

t−h
g2(x(s))ds

⎤

⎥
⎥
⎦

= diag
{
ΣAσ(t) ,Σ1σ(t) ,Σ2σ(t)

}

⎡

⎢
⎢
⎣

−FAσ(t)x(t)
F1σ(t)g1(x(t − τ))

F2σ(t)

∫ t

t−h
g2(x(s))ds

⎤

⎥
⎥
⎦,

(2.9)

and Δσ(t)(t) satisfies the following matrix quadratic inequality:

ΔT
σ(t)(t)Δσ(t)(t) ≤

⎡

⎢
⎢
⎢
⎢
⎣

x(t)
g1(x(t − τ))
∫ t

t−h
g2(x(s))ds

⎤

⎥
⎥
⎥
⎥
⎦

T⎡

⎢
⎢
⎢
⎣

FTAσ(t)

FT1σ(t)

FT2σ(t)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

FTAσ(t)

FT1σ(t)

FT2σ(t)

⎤

⎥
⎥
⎥
⎦

T⎡

⎢
⎢
⎢
⎢
⎣

x(t)
g1(x(t − τ))
∫ t

t−h
g2(x(s))ds

⎤

⎥
⎥
⎥
⎥
⎦
. (2.10)
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Define the indicator function ξ(t) = [ξ1(t), ξ2(t), . . . , ξN(t)]T , where

ξi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1, when the switched system is described by the ith mode
A0i , Bk0i , k = 1, 2, Ei,

0, otherwise,

(2.11)

where i = 1, 2, . . . ,N. Therefore, the system model (2.8) can also be written as

ẋ(t) =
N∑

i=1

ξi(t)

{

−A0ix(t) + B10ig1(x(t − τ)) + B20i

∫ t

t−h
g2(x(s))ds + EiΔi(t) + J

}

,

y(t) =
N∑

i=1

ξi(t)
{
Cix(t) + f(t, x(t))

}
,

(2.12)

where
∑N

i=1 ξi(t) = 1 is satisfied under any switching rules.
In this paper, our main purpose is to develop an efficient algorithm to estimate the

neuron states x(t) in (2.12) from the available network outputs y(t) in (2.12). The full-order
state estimator is of the form

˙̂x(t) =
N∑

i=1

ξi(t)

{

−A0i x̂(t) + B10ig1(x̂(t − τ)) + B20i

∫ t

t−h
g2(x̂(s))ds

+EiΔ̂i(t) +Ki

[
y(t) − Cix̂(t) − f(t, x̂(t))

]
+ J

}

,

(2.13)

where x̂(t) is the estimation of the neuron state, and the matrix Ki ∈ R
n×m is the estimator

gain matrix to be designed.
Let the error state be e(t) = x(t) − x̂(t); then it follows from (2.12) and (2.13) that

ė(t) =
N∑

i=1

ξi(t)

{

(−A0i −KiCi)e(t) + B10i
[
g1(x(t − τ)) − g1(x̂(t − τ))

]

+ B20i

∫ t

t−h

[
g2(x(s)) − g2(x̂(s))

]
ds + Ei

[
Δi(t) − Δ̂i(t)

]

−Ki

[
f(t, x(t)) − f(t, x̂(t))]

}

.

(2.14)

For presentation convenience, set AKi = −A0i − KiCi, ψk(t) = gk(x(t)) − gk(x̂(t)), k =
1, 2, φ(t) = f(t, x(t)) − f(t, x̂(t)), Δi(t) = Δi(t) − Δ̂i(t). Then the system (2.14) becomes

ė(t) =
N∑

i=1

ξi(t)

{

AKie(t) + B10iψ1(t − τ) + B20i

∫ t

t−h
ψ2(s)ds + EiΔi(t) −Kiφ(t)

}

, (2.15)
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where

Δi(t) = diag{ΣAi ,Σ1i ,Σ2i}

⎡

⎢
⎢
⎢
⎢
⎣

−FAie(t)
F1iψ1(t − τ)

F2i

∫ t

t−h
ψ2(s)ds

⎤

⎥
⎥
⎥
⎥
⎦
, (2.16)

and it satisfies the following quadratic inequality

Δ
T

i (t)Δi(t) ≤

⎡

⎢
⎢
⎢
⎢
⎣

e(t)
ψ1(t − τ)
∫ t

t−h
ψ2(s)ds

⎤

⎥
⎥
⎥
⎥
⎦

T⎡

⎢
⎢
⎢
⎣

FTAi

FT1i

FT2i

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

FTAi

FT1i

FT2i

⎤

⎥
⎥
⎥
⎦

T
⎡

⎢
⎢
⎢
⎢
⎣

e(t)
ψ1(t − τ)
∫ t

t−h
ψ2(s)ds

⎤

⎥
⎥
⎥
⎥
⎦
. (2.17)

The initial value associated with (2.15) is e(s) = φ(s), φ(s) ∈ C([−r, 0];Rn), r =
max{τ, h}.

To obtain the main results of this paper, the following definitions and lemmas are
introduced.

Definition 2.1. For the switched estimation error-state system (2.15), the trivial solution is said
to be globally exponentially stable if there exist positive scalars α > 0 and β > 0 such that

∥
∥e
(
t, φ
)∥
∥ ≤ α−βt∥∥φ∥∥, t ≥ 0, (2.18)

where e(t, φ) is the solution of the system (2.15) with the initial value e(s) = φ(s), φ(s) ∈
C([−r, 0];Rn), r = max{τ, h}.

Lemma 2.2 (see [15]). Let Γ0(x) and Γ1(x) be two arbitrary quadratic forms overR
n, then Γ0(x) < 0

for all x ∈ R
n − {0} satisfying Γ1(x) ≤ 0 if and only if there exists ε ≥ 0 such that

Γ0(x) − εΓ1(x) < 0, ∀x ∈ R
n − {0}. (2.19)

Lemma 2.3 (Jensen’s Inequality). For any constant matrix Ω ∈ R
n×n, Ω = ΩT > 0, scalar γ > 0,

vector function ω : [t− γ, t] → R
n, t ≥ 0, such that the integrations concerned are well defined, then

(∫ t

t−γ
ω(s)ds

)T

Ω

(∫ t

t−γ
ω(s)ds

)

≤ γ
(∫ t

t−γ
ωT (s)Ωω(s)ds

)

. (2.20)

Lemma 2.4 (see [38]). The following LMI

[
E(x) H(x)
HT (x) F(x)

]

> 0, (2.21)
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where E(x) = ET (x), F(x) = FT (x), and H(x) depend on x, is equivalent to each of the following
conditions:

(1) E(x) > 0, F(x) −HT (x)E−1(x)H(x) > 0,

(2) F(x) > 0, E(x) −H(x)F−1(x)HT (x) > 0.
(2.22)

Lemma 2.5. Given any real matrices X, Y , and Q > 0 with appropriate dimensions, then the fol-
lowing matrix inequality holds:

XTY + YTX ≤ XTQX + YTQ−1Y. (2.23)

3. Switched Exponential State Estimation for
Interval Neural Networks

In this section, we will study the global exponential stability of the system (2.15) under
arbitrary switching rule. By constructing a suitable Lyapunov-Krasovskii functional, a delay-
dependent criterion for the global exponential stability of the estimation process (2.15) is
derived. The following theorem shows that this criterion can be obtained if a quadratic matrix
inequality involving several scalar parameters is feasible.

Theorem 3.1. If there exist scalars β > 0 and ε > 0, a matrix P > 0 and two diagonal matrices
Q1 > 0, Q2 > 0 such that the following quadratic matrix inequalities:

∏

i

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∏

i11

PB10i + FTAi
F1i PB20i + FTAi

F2i PEi

∗ −e−βτQ2 + FT1iF1i FT1iF2i 0

∗ ∗ − 1
h
e−βhQ2 + FT2iF2i 0

∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.1)

are satisfied, where

∏

i11

= βP + (−A0i −KiCi)TP + P(−A0i −KiCi) +Q1Λ2
1 + hQ2Λ2

2

+ FTAi
FAi + εF

TF + ε−1PKiK
T
i P,

(3.2)

then the switched error-state system (2.14) of the neural network (2.12) is globally exponentially stable
under any switching rules. Moreover, the estimate of the error-state decay can be given by

∥
∥e
(
t, φ
)∥
∥ ≤ √

αe−(β/2)t
∥
∥φ
∥
∥, (3.3)

where α = (λmax(P) + τλmax(Q1Λ2
1) + (h2/2)λmax(Q2Λ2

2))/λmin(P).
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Proof. Consider the following Lyapunov-Krasovskii functional:

V (e(t), t) = eβteT (t)Pe(t) +
∫ t

t−τ
eβsψT1 (s)Q1ψ1(s)ds +

∫ t

t−h

∫ t

θ

eβsψT2 (s)Q2ψ2(s)dsdθ. (3.4)

Calculating the time derivative of V (e(t), t) along the solution e(t, φ) of the system (2.15), it
can follow that

V̇ (e(t), t) = βeβteT (t)Pe(t) + 2eβteT (t)Pė(t) + eβtψT1 (t)Q1ψ1(t) − eβ(t−τ)ψT1 (t − τ)Q1ψ1(t − τ)

−
∫ t

t−h
eβsψT2 (s)Q2ψ2(s)ds +

∫ t

t−h
eβtψT2 (t)Q2ψ2(t)dθ

= βeβteT (t)Pe(t) + 2eβteT (t)P

[
N∑

i=1

ξi(t)

{

AKie(t) + B10iψ1(t − τ) + B20i

∫ t

t−h
ψ2(s)ds

+EiΔi(t) −Kiφ(t)

}]

+ eβtψT1 (t)Q1ψ1(t)

− eβ(t−τ)ψT1 (t − τ)Q1ψ1(t − τ) −
∫ t

t−h
eβsψT2 (s)Q2ψ2(s)ds +

∫ t

t−h
eβtψT2 (t)Q2ψ2(t)dθ

=
N∑

i=1

ξi(t)

{

βeβteT(t)Pe(t) + 2eβteT(t)PAKie(t) + 2eβteT (t)PB10iψ1(t − τ)

+ 2eβteT (t)PB20i

∫ t

t−h
ψ2(s)ds + 2eβteT (t)PEiΔi(t)

+ 2eβteT (t)PKiφ(t) + eβtψT1 (t)Q1ψ1(t) − eβ(t−τ)ψT1 (t − τ)Q1ψ1(t − τ)

−
∫ t

t−h
eβsψT2 (s)Q2ψ2(s)ds + heβtψT2 (t)Q2ψ2(t)

}

.

(3.5)

By the assumption (H1) and Lemmas 2.3 and 2.5, we have

−
∫ t

t−h
eβsψT2 (s)Q2ψ2(s)ds ≤ − 1

h
eβ(t−h)

(∫ t

t−h
ψ2(s)ds

)

Q2

(∫ t

t−h
ψ2(s)ds

)

, (3.6)

ψT1 (t)Q1ψ1(t) ≤ eT(t)Q1Λ2
1e(t), (3.7)

ψT2 (t)Q2ψ2(t) ≤ eT(t)Q2Λ2
2e(t), (3.8)

2eT (t)PKiφ(t) ≤ εφT (t)φ(t) + ε−1eT(t)PKiK
T
i Pe(t)

≤ eT(t)
[
εFTF + ε−1PKiK

T
i P
]
e(t).

(3.9)
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In the light of (3.7)–(3.10), we obtain that

V̇ (e(t), t) ≤
N∑

i=1

ξi(t)eβt
{

βeT (t)Pe(t) + 2eT (t)PAKie(t) + 2eT (t)PB10iψ1(t − τ)

+ 2eT (t)PB20i

∫ t

t−h
ψ2(s)ds + eT(t)PEiΔi(t) + eT(t)Q1Λ2

1e(t)

− e−τψT1 (t − τ)Q1ψ1(t − τ) + eT(t)
[
εFTF + ε−1PKiK

T
i P
]
e(t)

− 1
h
e−βh
(∫ t

t−h
ψ2(s)ds

)

Q2

(∫ t

t−h
ψ2(s)ds

)

+ heT (t)Q2Λ2
2e(t)

}

.

(3.10)

This implies that

V̇ (e(t), t) − eβt
N∑

i=1

ξi(t)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Δ
T

i (t)Δi(t) −

⎡

⎢
⎢
⎢
⎢
⎣

e(t)
ψ1(t − τ)
∫ t

t−h
ψ2(s)ds

⎤

⎥
⎥
⎥
⎥
⎦

T⎡

⎢
⎢
⎢
⎢
⎣

FTAi

FT1i

FT2i

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

FTAi

FT1i

FT2i

⎤

⎥
⎥
⎥
⎥
⎦

T⎡

⎢
⎢
⎢
⎢
⎣

e(t)
ψ1(t − τ)
∫ t

t−h
ψ2(s)ds

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

≤ eβt
N∑

i=1

ξi(t)FT (t)ΠiF(t),

(3.11)

where F(t) = [eT(t)ψT1 (t − τ(t))(
∫ t
t−h ψ2(s)ds)

T
Δ
T

i (t)]
T

. By Lemma 2.2, (2.17) and (3.11), we
can obtain that V̇ (e(t), t) < 0 for all F(t)/= 0. Hence,

V (e(t), t) ≤ V (e(0), 0), t > 0. (3.12)

From (3.4), it is easy to get

V (e(0), 0) ≤
[

λmax(P) + τλmax

(
Q1Λ2

1

)
+
h2

2
λmax

(
Q2Λ2

2

)
]
∥
∥φ
∥
∥2. (3.13)

On the other hand, we also have

V (e(t), t) ≥ λmin(P)eβt‖e(t)‖2. (3.14)

By combining (3.12), (3.13), and (3.14), it follows that

‖e(t)‖ ≤ √
αe−(β/2)t

∥
∥φ
∥
∥, (3.15)

where α = (λmax(P)+τλmax(Q1Λ2
1)+(h

2/2)λmax(Q2Λ2
2))/λmin(P). The proof is completed.
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The inequalities in (3.1) are nonlinear and coupled, each involving many parameters.
Obviously, the inequalities in (3.1) are difficult to solve. A meaningful approach to tackling
such a problem is to convert the nonlinearly coupled matrix inequalities into LMIs, while
the estimator gain is designed simultaneously. In the following, we will deal with the design
problem, that is, giving a practical design procedure for the estimator gain, Ki, such that the
set of inequalities (3.1) in Theorem 3.1 are satisfied.

Theorem 3.2. If there exist two scalars β > 0, ε > 0, a matrix P > 0, and two diagonal matrices
Q1 > 0, Q2 > 0 such that the following linear matrix inequalities:

Γi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γi11 PB10i + FTAi
F1i PB20i + FTAi

F2i PEi Ri

∗ −e−βτQ2 + FT1iF1i FT1iF2i 0 0

∗ ∗ − 1
h
e−βhQ2 + FT2iF2i 0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (3.16)

are satisfied, where

Γi11 = βP −AiP − PAi − RiCi − CT
i R

T
i +Q1Λ2

1 + hQ2Λ2
2 + F

T
Ai
FAi + εF

TF, (3.17)

and the estimator gain is given by Ri = PKi, then the switched error-state system (2.14) of the neural
network (2.12) is globally exponentially stable under any switching rules. Moreover, the estimate of
the error-state decay can be given by

‖e(t)‖ ≤ √
αe−(β/2)t

∥
∥φ
∥
∥, (3.18)

where α = (λmax(P) + τλmax(Q1Λ2
1) + (h2/2)λmax(Q2Λ2

2))/λmin(P).

Proof. Using Lemma 2.4, (3.16) holds if and only if

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ∗i11 PB10i + FTAi
F1i PB20i + FTAi

F2i PEi

∗ −e−βτQ2 + FT1iF1i FT1iF2i 0

∗ ∗ − 1
h
e−βhQ2 + FT2iF2i 0

∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.19)

where Γ∗i11 = βP −AiP − PAi − RiCi − CT
i R

T
i +Q1Λ2

1 + hQ2Λ2
2 + F

T
Ai
FAi + εF

TF + ε−1RT
i Ri.

Noticing that Ki = P−1Ri, it can be easily seen that (3.19) is the same as (3.1). Hence,
it follows from Theorem 3.1 that, with the estimator gain given by Ki = P−1Ri, the switched
error-state system (2.14) of the neural network (2.12) is globally exponentially stable under
any switching rules. The proof of Theorem 3.2 is complete.
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4. The Stability of Switched Interval Neural Networks

In the section, we will consider the stability of switched interval neural network (2.1) with
discrete and distributed time delays and without the output y(t). It should be noted that
the stability of switched interval neural network (2.1) without the output y(t) can be as a
by-product, and the main results can be easily derived from the previous section.

Consider the interval neural network (2.1) without the output y(t)

ẋ(t) = −Ax(t) + B1g1(x(t − τ)) + B2

∫ t

t−h
g2(x(s))ds + J,

A ∈ Al, Bk ∈ B(k)
l
, k = 1, 2.

(4.1)

The assumptions on the model (4.1) are same as the above in Section 2. With loss of
generality, it is assumed that the neural network (4.1) has only one equilibrium point, and
denoted by x∗ = (x∗

1, x
∗
2, . . . , x

∗
n)
T . For the purpose of simplicity, the equilibrium x∗ will be

shifted to the origin by letting μ = x − x∗ and the system (4.1) can be represented as

μ̇(t) = −Aμ(t) + B1l1
(
μ(t − τ)) + B2

∫ t

t−h
l2
(
μ(s)
)
ds,

A ∈ Al, Bk ∈ B(k)
l , k = 1, 2,

(4.2)

where lj(μ(t)) = gj(μ(t) + x∗) − gj(x∗), j = 1, 2, . . . , n. The initial value associated with (4.1) is
changed to be μ(s) = ϕ(s) − x∗ = η(s).

The system (4.2) can also be written as an equivalent form

μ̇(t) = −[A0 + EAΣAFA]μ(t) + [B10 + E1Σ1F1]l1
(
μ(t − τ))

+ [B20 + E2Σ2F2]
∫ t

t−h
l2
(
μ(s)
)
ds.

(4.3)

Similar to the system (2.8), the switched interval neural network with discrete and
distributed time delays and without the output y(t) can be written as

μ̇(t) = −A0σ(t)μ(t) + B10σ(t) l1
(
μ(t − τ)) + B20σ(t)

∫ t

t−h
l2
(
μ(s)
)
ds + Eσ(t)Δσ(t)(t),

Aσ(t) ∈ Alσ(t) , Bkσ(t) ∈ B(k)
lσ(t)
, k = 1, 2.

(4.4)

The following theorem gives a condition, which can ensure that the switched system
(4.4) is globally exponentially stable under any switching rules.
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Theorem 4.1. If there exist a scalar β > 0, a matrix P > 0, and two diagonal matricesQ1 > 0,Q2 > 0
such that the following linear matrix inequalities:

Γi =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Γi11 PB10i + FTAi
F1i PB20i + FTAi

F2i PEi

∗ −e−βτQ2 + FT1iF1i FT1iF2i 0

∗ ∗ − 1
h
e−βhQ2 + FT2iF2i 0

∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0 (4.5)

are satisfied, where

Γi11 = βP −AiP − PAi +Q1Λ2
1 + hQ2Λ2

2 + F
T
Ai
FAi , (4.6)

then switched interval neural network system (4.4) is exponentially stable under any switching rules.
Moreover, the estimate of the state decay is given by

∥
∥μ(t)

∥
∥ ≤ √

αe−(β/2)t
∥
∥η
∥
∥, (4.7)

where α = (λmax(P) + τλmax(Q1Λ2
1) + (h2/2)λmax(Q2Λ2

2))/λmin(P).

Proof. By using Lyapunov-Krasovskii functional in (3.4), let the matrix Ki = Ci = F = 0, and
following the similar line of the proof of Theorem 3.1, it is not difficult to get the proof of
Theorem 4.1.

When the distributed delays h = 0, the system (4.4) changes as the switched interval
neural networks with discrete delays

μ̇(t) =
N∑

i=1

ξi(t)
{−A0iμ(t) + B10i l1

(
μ(t − τ)) + EiΔi(t)

}
. (4.8)

By Theorem 4.1, it is easy to obtain the following corollary.

Corollary 4.2. If there exist scalars β > 0, ε > 0, a matrix P > 0, and two diagonal matrices Q1 > 0,
Q2 > 0, such that the following linear matrix inequalities:

Γi =

⎡

⎢
⎢
⎢
⎢
⎣

Γi11 PB10i + FTAi
F1i PB20i + FTAi

F2i PEi

∗ −e−βτQ2 + FT1iF1i FT1iF2i 0

∗ ∗ Q2 + FT2iF2i 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎦
< 0 (4.9)
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are satisfied, where

Γi11 = βP −AiP − PAi +Q1Λ2
1 + F

T
Ai
FAi , (4.10)

then switched interval neural network system (4.8) is globally exponentially stable under any
switching rules. Moreover, the estimate of the state decay is given by

∥
∥μ(t)

∥
∥ ≤ √

αe−(β/2)t
∥
∥η
∥
∥, (4.11)

where α = (λmax(P) + τλmax(Q1Λ2
1))/λmin(P).

Remark 4.3. In [25], based on homeomorphism mapping theorem and by using Lyapunov
functional, some delay-independent stability criteria were obtained to ensure the existence,
uniqueness, and global asymptotic stability of the equilibrium point for neural networks
with multiple time delays under parameter uncertainties. In [26], authors dealt with the
global robust asymptotic stability of a great class of dynamical neural networks with multiple
time delays, a new alternative sufficient condition for the existence, uniqueness, and global
asymptotic stability of the equilibrium point under parameter uncertainties is proposed by
employing a new Lyapunov functional. In this paper, when N = 1, the switched system
model (4.4) degenerated into the interval neural network model (4.1) with discrete and
distributed time delays. It is easy to see that the model studied in [25, 26] is a special case
of the model (4.1). Hence, the results obtained in this paper expand and improve the stability
results in the existing literature [25, 26].

Remark 4.4. In [39], the authors considered Markovian jumping fuzzy Hopfield neural
networks with mixed random time-varying delays. By applying the Lyapunov functional
method and LMI technique, delay-dependent robust exponential state estimation and new
sufficient conditions guaranteeing the robust exponential stability (in the mean square sense)
were proposed. In [40], the authors considered delay-dependent robust asymptotic state
estimation for fuzzy Hopfield neural networks with mixed interval time-varying delay.
By constructing a Lyapunov-Krasovskii functional containing triple integral term and by
employing some analysis techniques, sufficient conditions are derived in terms of LMIs.
In the future, based on [39, 40], the model of the switched interval fuzzy Hopfield neural
networks with mixed random time-varying delays and the switched interval discrete-time
fuzzy complex networks will be expected to be established, the strategy proposed in this
paper will be utilized to investigate the state estimation and stability problems.

5. Illustrative Examples

In this section, two illustrative examples will be given to check the validity of the results
obtained in Theorems 3.2 and 4.1.

Example 5.1. Consider the second-order switched interval neural network with discrete and
distributed delays in (2.6) described by σ(t) : [0,+∞) → Γ = {1, 2}, gi(x) = (1/2) tanx +
(1/2) sinx, i = 1, 2, τ = h = 1, and f(t, x) = t cosx. Obviously, the assumptions H1 and
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H2 are satisfied with Λ1 = Λ2 = F = diag(1, 1). The neural network system parameters are
defined as

A1 =
(
3.99 0
0 2.99

)

, A1 =
(
4.01 0
0 3.01

)

, B11 =
(
1.188 0.09
0.09 1.188

)

, B11 =
(
1.208 0.11
0.11 1.208

)

,

B21 =
(
0.09 0.14
0.05 0.09

)

, B21 =
(
0.11 0.16
0.07 0.11

)

, C1 =
(
0.45 −0.2
0.3 0.42

)

,

A2 =
(
1.99 0
0 2.99

)

, A2 =
(
2.01 0
0 3.01

)

, B12 =
(−0.07 0.03
−0.01 0.02

)

, B12 =
(−0.05 0.05
−0.04 0.04

)

,

B22 =
(−0.47 −0.15

0.11 −0.54
)

, B22 =
(−0.45 −0.13

0.13 −0.54
)

, C2 =
(−0.3 0.1
−0.3 −0.6

)

.

(5.1)

In the following, we will design an estimator Ki, i = 1, 2, for the switched interval
neural network in this example. Solving the LMI in (3.16) by using appropriate LMI solver in
the Matlab, the scalars β > 0, ε > 0 and feasible positive definite matrices P, Qi, i = 1, 2, and
the matrices Ri, i = 1, 2, could be as

P =
(

3.5939 −0.3052
−0.3052 3.6769

)

, R1 =
(

0.0600 −0.0309
−0.0309 0.1288

)

, R2 =
(−0.0615 −0.0665
−0.0665 −0.1316

)

,

Q1 =
(
0.8083 0

0 0.8520

)

, Q2 =
(
3.9057 0

0 7.1313

)

, β = 0.5108, ε = 0.9788.

(5.2)

Then the the estimator gain Ki, i = 1, 2, can be designed as

K1 = P−1R1 =
(

0.0161 −0.0057
−0.0071 0.0346

)

, K2 = P−1R2 =
(−0.0188 −0.0217
−0.0196 −0.0376

)

. (5.3)

By Theorem 3.2, the switched error-state system of the neural network in this example is
globally exponentially stable under any switching rules. Moreover, the estimate of the error-
state decay is given by

∥
∥e
(
t, ϕ
)∥
∥ ≤ 1.5852e−0.2554

∥
∥ϕ
∥
∥, t ≥ 0. (5.4)

For making numerical simulation for the switched error-state system, set A1 =
A1, B11 = B11, B21 = B21, C = C1 and A2 = A2, B12 = B12, B22 = B22, C = C2, and assume
that two subsystems are switched every five seconds. Figure 1 displays the trajectories of

the error-state e(t, ϕ) with initial value (ϕ1(t), ϕ2(t))
T = ((tan 2t)2 − 0.3, (sin 2t)2 − 0.6)

T
, t ∈

[−1, 0]. It can be seen that these trajectories converge to e∗ = (0, 0)T . This is in accordance
with the conclusion of Theorem 3.2.
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Figure 1: The state trajectories e1 and e2 of the network with initial value (ϕ1(t), ϕ2(t))
T =

((tan 2t)2 − 0.3, (sin 2t)2 − 0.6)
T
, t ∈ [−1, 0].

Example 5.2. Consider the second-order switched interval neural network with discrete and
distributed delays described by

μ̇i(t) = −aiσ(t)μi(t) +
2∑

j=1

b
(1)
ijσ(t)

lj
(
μj(t − τ)

)
+

2∑

j=1

b
(2)
ijσ(t)

∫ t

t−h
lj
(
μj(s)

)
ds,

aiσ(t) ∈
[
aiσ(t) , aiσ(t)

]
, b

(k)
ijσ(t)

∈
[

b
(k)
ijσ(t)

, b
(k)
ijσ(t)

]

, k = 1, 2,

μi(t) = ηi(t), t ∈ [−h, 0], i, j = 1, 2,

(5.5)

where σ(t) : [0,+∞) → Γ = {1, 2}, li(x) = (1/2) tanx + (1/2) sinx, i = 1, 2, τ = h = 1. H1

and H2 are satisfied with Λ1 = Λ2 = diag(1, 1). The neural network system parameters are
defined as

A1 =
(
3.99 0
0 2.99

)

, A1 =
(
4.01 0
0 3.01

)

, B11 =
(
1.188 0.09
0.09 1.188

)

, B11 =
(
1.208 0.11
0.11 1.208

)

,

B21 =
(
0.09 0.14
0.05 0.09

)

, B21 =
(
0.11 0.16
0.07 0.11

)

,

A2 =
(
1.99 0
0 2.99

)

, A2 =
(
2.01 0
0 3.01

)

, B12 =
(−0.07 0.03
−0.01 0.02

)

, B12 =
(−0.05 0.05
−0.04 0.04

)

,

B22 =
(−0.47 −0.15

0.11 −0.54
)

, B22 =
(−0.45 −0.13

0.13 −0.54
)

.

(5.6)
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Figure 2: The state trajectories e1 and e2 of the network with initial value (η1(t), η2(t))
T =

((sin 3t)2 − 0.3, (cos 5t)2 − 0.6)
T
, t ∈ [−1, 0].

Solving the LMI in (4.5) by using appropriate LMI solver in the Matlab, the scalar β and
feasible positive definite matrices P,Qi, i = 1, 2, could be as follows:

P =
(

3.1369 −0.0638
−0.0638 4.4315

)

, Q1 =
(
0.7493 0

0 1.1935

)

, Q2 =
(
3.2851 0

0 9.0429

)

,

β = 0.5108.

(5.7)

By Theorem 4.1, the switched interval neural network in this example is exponentially stable.
Moreover, the state μ(t) of the system satisfies

∥
∥μ(t)

∥
∥ ≤ 1.7997e−0.2554

∥
∥η
∥
∥, t ≥ 0. (5.8)

Let A1 = A1, B11 = B11, B21 = B21, and A2 = A2, B12 = B12, B22 = B22. For
numerical simulation, assume that the two subsystems are switched every five seconds.
Figure 2 displays the state trajectories of this network with initial value (η1(t), η2(t))

T =

((sin 3t)2 − 0.3, (cos 5t)2 − 0.6)
T
, t ∈ [−1, 0]. It can be seen that these trajectories converge to

the unique equilibrium μ∗ = (0, 0)T of the network. This is in accordance with the conclusion
of Theorem 4.1.

6. Conclusion

In this paper, a novel class of switched interval neural networks with discrete and distributed
delays has been presented by combing the theories of the switched systems and the
interval neural networks with discrete and distributed delays. By using feasible output
measurements and constructing Lyapunov-Krasovskii functional, the existence conditions
and explicit characterization have been obtained for desired estimator and exponential
stability criteria for the switched interval neural networks with discrete and distributed
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delays under arbitrary switching rule in terms of LMIs. Two illustrative examples have been
also given to demonstrate the effectiveness and validity of the proposed LMI-based stability
criteria.
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