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Let T ⊂ R be a periodic time scale in shifts δ±. We use a fixed point theorem due to
Krasnosel’skiı̆ to show that nonlinear delay in dynamic equations of the form xΔ(t) = −a(t)xσ(t) +
b(t)xΔ(δ−(k, t))δΔ− (k, t) + q(t, x(t), x(δ−(k, t))), t ∈ T, has a periodic solution in shifts δ±. We extend
and unify periodic differential, difference, h-difference, and q-difference equations and more by a
new periodicity concept on time scales.

1. Introduction

The time scales approach unifies differential, difference, h-difference, and q-differences
equations and more under dynamic equations on time scales. The theory of dynamic
equations on time scales was introduced by Hilger in this Ph.D. thesis in 1988 [1]. The
existence problem of periodic solutions is an important topic in qualitative analysis of
ordinary differential equations. There are only a few results concerning periodic solutions
of dynamic equations on time scales such as in [2, 3]. In these papers, authors considered the
existence of periodic solutions for dynamic equations on time scales satisfying the condition

“there exists a ω > 0 such that t ±ω ∈ T ∀t ∈ T.′′ (1.1)

Under this condition all periodic time scales are unbounded above and below. However, there
are many time scales such as qZ = {qn : n ∈ Z} ∪ {0} and

√
N = {√n : n ∈ N} which do not

satisfy condition (1.1). Adıvar and Raffoul introduced a new periodicity concept on time
scales which does not oblige the time scale to be closed under the operation t ± ω for a fixed
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ω > 0. He defined a new periodicity concept with the aid of shift operators δ± which are first
defined in [4] and then generalized in [5].

Let T be a periodic time scale in shifts δ± with period P ∈ (t0,∞)
T
and t0 ∈ T is

nonnegative and fixed. We are concerned with the existence of periodic solutions in shifts δ±
for the nonlinear dynamic equation with a delay function δ−(k, t):

xΔ(t) = −a(t)xσ(t) + b(t)xΔ(δ−(k, t))δΔ− (k, t) + q(t, x(t), x(δ−(k, t))), t ∈ T, (1.2)

where k is fixed if T = R and k ∈ [P,∞)
T
if T is periodic in shifts δ± with period P .

Kaufmann and Raffoul in [2] used Krasnosel’skiı̆ fixed point theorem and showed
the existence of a periodic solution of (1.2) and used the contraction mapping principle to
show that the periodic solution is unique when T satisfies condition (1.1). Similar results
were obtained concerning (1.2) in [6, 7] in the case T = R, T = Z, respectively. Currently,
Adıvar and Raffoul used Lyapunov’s direct method to obtain inequalities that lead to stability
and instability of delay dynamic equations of (1.2) when q = 0 on a time scale having
a delay function δ− in [8] and also using the topological degree method and Schaefers
fixed point theorem, they deduce the existence of periodic solutions of nonlinear system of
integrodynamic equations on periodic time scales in [9].

Hereafter, we use the notation [a, b]
T
to indicate the time scale interval [a, b] ∩ T. The

intervals [a, b)
T
, (a, b]

T
and (a, b)

T
are similarly defined.

In Section 2, we will state some facts about the exponential function on time scales,
the new periodicity concept for time scales, and some important theorems which will be
needed to show the existence of a periodic solution in shifts δ±. In Section 3, we will give
some lemmas about the exponential function and the graininess function with shift operators.
Finally, we present our main result in Section 4 by using Krasnosel’skiı̆ fixed point theorem
and give an example.

2. Preliminaries

In this section, we mention some definitions, lemmas, and theorems from calculus on time
scales which can be found in [10, 11]. Next, we state some definitions, lemmas, and theorems
about the shift operators and the new periodicity concept for time scales which can be found
in [12].

Definition 2.1 (see [10]). A function p : T → R is said to be regressive provided 1+μ(t)p(t)/= 0
for all t ∈ T

κ, where μ(t) = σ(t)−t. The set of all regressive rd-continuous functions ϕ : T → R

is denoted by R while the set R+ is given by R+ = {ϕ ∈ R : 1 + μ(t)ϕ(t) > 0 for all t ∈ T}.

Let ϕ ∈ R and μ(t) > 0 for all t ∈ T. The exponential function on T is defined by

eϕ(t, s) = exp

(∫ t
s

ζμ(r)
(
ϕ(r)

)
Δr

)
, (2.1)
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where ζμ(s) is the cylinder transformation given by

ζμ(r)
(
ϕ(r)

)
:=

⎧⎪⎨
⎪⎩

1
μ(r)

Log
(
1 + μ(r)ϕ(r)

)
, if μ(r) > 0,

ϕ(r), if μ(r) = 0.
(2.2)

Also, the exponential function y(t) = ep(t, s) is the solution to the initial value problem yΔ =
p(t)y,y(s) = 1. Other properties of the exponential function are given in the following lemma
[10, Theorem 2.36].

Lemma 2.2 (see [10]). Let p, q ∈ R. Then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);

(iii) 1/ep(t, s) = e�(t, s), where, �p(t) = −(p(t))/(1 + μ(t)p(t));
(iv) ep(t, s) = 1/ep(s, t) = e�p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);

(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vii) ep(t, s)/eq(t, s) = ep�q(t, s);

(viii) (1/ep(·, s))Δ = −p(t)/eσp (·, s).

The following definitions, lemmas, corollaries, and examples are about the shift
operators and new periodicity concept for time scales which can be found in [12].

Definition 2.3 (see [12]). Let T
∗ be a nonempty subset of the time scale T including a fixed

number t0 ∈ T
∗ such that there exist operators δ± : [t0,∞)

T
×T

∗ → T
∗ satisfying the following

properties.

(P.1) The function δ± are strictly increasing with respect to their second arguments, that
is, if

(T0, t), (T0, u) ∈ D± := {(s, t) ∈ [t0,∞)
T
× T

∗ : δ∓(s, t) ∈ T
∗}, (2.3)

then

T0 ≤ t < u implies δ±(T0, t) < δ±(T0, u). (2.4)

(P.2) If (T1, u), (T2, u) ∈ D with T1 < T2, then δ−(T1, u) > δ−(T2, u), and if (T1, u), (T2, u) ∈
D+ with T1 < T2, then δ+(T1, u) < δ+(T2, u).

(P.3) If t ∈ [t0,∞)
T
, then (t, t0) ∈ D+ and δ+(t, t0) = t. Moreover, if t ∈ T

∗, then (t0, t) ∈ D+

and δ+(t0, t) = t holds.

(P.4) If (s, t) ∈ D±, then (s, δ±(s, t)) ∈ D∓ and δ∓(s, δ±(s, t)) = t, respectively.

(P.5) If (s, t) ∈ D± and (u, δ±(s, t)) ∈ D±, then (s, δ∓(u, t)) ∈ D± and δ∓(u, δ±(s, t)) =
δ±(s, δ∓(u, t)), respectively.
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Then the operators δ− and δ+ associated with t0 ∈ T
∗ (called the initial point) are

said to be backward and forward shift operators on the set T
∗, respectively. The variable

s ∈ [t0,∞)
T
in δ±(s, t) is called the shift size. The values δ+(s, t) and δ−(s, t) in T

∗ indicate
s units translation of the term t ∈ T

∗ to the right and left, respectively. The sets D± are the
domains of the shift operator δ±, respectively. Hereafter, T

∗ is the largest subset of the time
scale T such that the shift operators δ± : [t0,∞)

T
× T

∗ → T
∗ exist.

Example 2.4 (see [12]).

(i) T = R, t0 = 0, T
∗ = R, δ−(s, t) = t − s and δ+(s, t) = t + s.

(ii) T = Z, t0 = 0, T
∗ = Z, δ−(s, t) = t − s and δ+(s, t) = t + s.

(iii) T = qZ ∪ {0}, t0 = 1, T
∗ = qZ, δ−(s, t) = t/s and δ+(s, t) = ts.

(iv) T = N
1/2, t0 = 0, T

∗ = N
1/2, δ−(s, t) =

√
t2 − s2 and δ+(s, t) =

√
t2 + s2.

Definition 2.5 (periodicity in shifts [12]). Let T be a time scale with the shift operators δ±
associated with the initial point t0 ∈ T

∗. The time scale T is said to be periodic in shift δ± if
there exists a p ∈ (t0,∞)

T∗ such that (p, t) ∈ D± for all t ∈ T
∗. Furthermore, if

P := inf
{
p ∈ (t0,∞)

T∗ :
(
p, t
) ∈ D±, ∀t ∈ T

∗}
/= t0, (2.5)

then P is called the period of the time scale T.

Example 2.6 (see [12]). The following time scales are not periodic in the sense of condition
(1.1) but periodic with respect to the notion of shift operators given in Definition 2.5:

(i) T1 = {±n2 : n ∈ Z}, δ±(P, t) =
{

(
√
t±
√
P)2, t>0;

±P, t=0;
−(√−t±

√
P)2, t<0;

, P = 1, t0 = 0,

(ii) T2 = qZ, δ±(P, t) = P±1t, P = q, t0 = 1,

(iii) T3 = ∪n∈Z[22n, 22n+1], δ±(P, t) = P±1t, P = 4, t0 = 1,

(iv) T4 = {qn/(1 + qn) : q > 1 is constant and n ∈ Z} ∪ {0, 1},

δ±(P, t) =
q((ln(t/(1−t))±ln(P/(1−P)))/ ln q)

1 + q((ln(t/(1−t))±ln(P/(1−P)))/ ln q)
, P =

q

1 − q . (2.6)

Notice that the time scale T4 in Example 2.6 is bounded above and below and T
∗
4 =

{qn/(1 + qn) : q > 1 is constant and n ∈ Z}.

Remark 2.7 (see [12]). Let T be a time scale, that is, periodic in shifts with the period P . Thus,
by (P.4) of Definition 2.3 the mapping δP+ : T

∗ → T
∗ defined by δP+ (t) = δ+(P, t) is surjective.

On the other hand, by (P.1) of Definition 2.3 shift operators δ± are strictly increasing in their
second arguments. That is, the mapping δP+ (t) = δ+(P, t) is injective. Hence, δP+ is an invertible
mapping with the inverse (δP+ )

−1 = δP− defined by δP− (t) := δ−(P, t).
We assume that T is a periodic time scale in shift δ± with period P . The operators

δP± : T
∗ → T

∗ are commutative with the forward jump operator σ : T → T given by σ(t) :=
inf{s ∈ T : s > t}. That is, (δP± ◦ σ)(t) = (σ ◦ δP± )(t) for all t ∈ T

∗.
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Lemma 2.8 (see [12]). The mapping δP+ : T
∗ → T

∗ preserves the structure of the points in T
∗. That

is,

σ(t) = t implies σ(δ+(P, t)) = δ+(P, t) andσ(t) > t implies σ(δ+(P, t)) > δ+(P, t). (2.7)

Corollary 2.9 (see [12]). δ+(P, σ(t)) = σ(δ+(P, t)) and δ−(P, σ(t)) = σ(δ−(P, t)) for all t ∈ T
∗.

Definition 2.10 (periodic function in shift δ± [12]). Let T be a time scale that is periodic in
shifts δ± with the period P . We say that a real value function f defined on T

∗ is periodic in
shifts δ± if there exists a T ∈ [P,∞)

T∗ such that

(T, t) ∈ D±, f
(
δT±(t)

)
= f(t) ∀t ∈ T

∗, (2.8)

where δT± := δ±(T, t). The smallest number T ∈ [P,∞)
T∗ such that (5) holds is called the period

of f .

Definition 2.11 (Δ-periodic function in shifts δ± [12]). Let T be a time scale that is periodic in
shifts δ± with the period P . We say that a real value function f defined on T

∗ is Δ-periodic in
shifts δ± if there exists a T ∈ [P,∞)

T∗ such that

(T, t) ∈ D± ∀t ∈ T
∗,

the shifts δT± areΔ-differentiablewith rd-continuous derivatives,

f
(
δT±(t)

)
δΔT± = f(t) ∀t ∈ T

∗,

(2.9)

where δT± := δ±(T, t). The smallest number T ∈ [P,∞)
T∗ such that (2.9) hold is called the

period of f .

Notice that Definitions 2.10 and 2.11 give the classic periodicity definition on time
scales whenever δT± := t ± T are the shifts satisfying the assumptions of Definitions 2.10 and
2.11.

Now, we give two theorems concerning the composition of two functions. The first
theorem is the chain rule on time scales [10, Theorem 1.93].

Theorem 2.12 (chain rule [10]). Assume that υ : T → R is strictly increasing and T̃ := υ(T) is a
time scale. Let w : T̃ → R. If νΔ(t) and wΔ̃ exist for t ∈ T

κ, then

(w ◦ v)Δ =
(
wΔ̃ ◦ ν

)
νΔ. (2.10)

Let T be a time scale that is periodic in shifts δ±. If one takes ν(t) = δ±(T, t), then one
has ν(T) = T and [f(ν(t))]Δ = (fΔ ◦ ν(t))νΔ(t).

The second theorem is the substitution rule on periodic time scales in shifts δ± which
can be found in [12].
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Theorem 2.13 (see [12]). Let T be a time scale that is periodic in shifts δ± with period P ∈ [t0,∞)
T∗

and f a Δ-periodic function in shifts δ± with the period T ∈ [P,∞)
T∗ . Suppose that f ∈ Crd(T), then

∫ t
t0

f(s)Δs =
∫δT± (t)
δT± (t0)

f(s)Δs. (2.11)

This work is mainly based on the following theorem [13].

Theorem 2.14 (Krasnosel’skiı̆). Let M be a closed convex nonempty subset of a Banach space
(B, ‖.‖). Suppose that A and B mapM into B such that

(i) x, y ∈M imply Ax + By ∈M,

(ii) A is completely continuous,

(iii) B is a contraction mapping.

Then there exists z ∈M with z = Az + Bz.

3. Some Lemmas

In this section, we show some interesting properties of the exponential functions ep(t, t0) and
shift operators on time scales.

Lemma 3.1. Let T be a time scale that is periodic in shifts δ± with the period P and the shift δT± is Δ-
differentiable on t ∈ T

∗ where T ∈ [P,∞)
T∗ . Then the graininess function μ : T → [0,∞) satisfies

μ
(
δT±(t)

)
= δΔT± (t)μ(t). (3.1)

Proof. Since δT± is Δ-differentiable at t we can use Theorem 1.16 (iv) in [10]. Then we have

μ(t)δΔT± (t) = δT±(σ(t)) − δT±(t). (3.2)

Then by using Corollary 2.9 we have

μ(t)δΔT± (t) = σ
(
δT±(t)

)
− δT±(t)

= μ
(
δT±(t)

)
.

(3.3)

Thus, the proof is complete.

Lemma 3.2. Let T be a time scale, that is, periodic in shifts δ± with the period P and the shift δT± is
Δ-differentiable on t ∈ T

∗, where T ∈ [P,∞)
T∗ . Suppose that p ∈ R is Δ-periodic in shifts δ± with the

period T ∈ [P,∞)
T∗ . Then,

ep
(
δT±(t), δ

T
±(t0)

)
= ep(t, t0) for t, t0 ∈ T

∗. (3.4)
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Proof. Assume that μ(τ)/= 0. Set f(τ) = (1/μ(τ))Log(1 + p(τ)μ(τ)). Using Lemma 3.1 and
Δ-periodicity of p in shifts δ± we get

f
(
δT±(τ)

)
δΔT± (τ) =

δΔT± (τ)

μ
(
δT±(τ)

)Log(1 + p(δT±(τ))μ(δT±(τ)))

=
δΔT± (τ)

μ
(
δT±(τ)

)Log
(
1 + p

(
δT±(τ)

)
δΔT±

1
δΔT±

μ
(
δT±(τ)

))

=
1

μ(τ)
Log
(
1 + p(τ)μ(τ)

)
= f(τ).

(3.5)

Thus, f is Δ−periodic in shifts δ± with the period T . By using Theorem 2.13 we have

ep
(
δT±(t), δ

T
±(t0)

)
=

⎧⎪⎪⎨
⎪⎪⎩
exp
(∫δT± (t)

δT± (t0)

1
μ(τ)

Log
(
1 + p(τ)μ(τ)

)
Δτ
)
, for μ(τ)/= 0,

exp
(∫δT± (t)

δT± (t0)
p(τ)Δτ

)
, for μ(τ) = 0,

=

⎧⎪⎪⎨
⎪⎪⎩
exp
(∫ t

t0

1
μ(τ)

Log
(
1 + p(τ)μ(τ)

)
Δτ
)
, for μ(τ)/= 0,

exp
(∫ t

t0
p(τ)Δτ

)
, for μ(τ) = 0,

= ep(t, t0).

(3.6)

The proof is complete.

Lemma 3.3. Let T be a time scale, that is, periodic in shifts δ± with the period P and the shift δT± is
Δ-differentiable on t ∈ T

∗ where T ∈ [P,∞)
T∗ . Suppose that p ∈ R is Δ-periodic in shifts δ± with the

period T ∈ [P,∞)
T∗ . Then

ep
(
δT±(t), σ

(
δT±(s)

))
= ep(t, σ(s)) =

ep(t, s)
1 + μ(t)p(t)

for t, s ∈ T
∗. (3.7)

Proof. From Corollary 2.9, we know σ(δT±(s)) = δ
T
±(σ(s)). By Lemmas 3.2 and 2.2 we obtain

ep
(
δT±(t), σ

(
δT±(s)

))
= ep

(
δT±(t), δ

T
±(σ(s))

)
= ep(t, σ(s)) =

ep(t, s)
1 + μ(t)p(t)

. (3.8)

The proof is complete.
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4. Main Result

We will state and prove our main result in this section. We define

PT =
{
x ∈ C(T,R) : x

(
δT+(t)

)
= x(t)

}
, (4.1)

where C(T,R) is the space of all real valued continuous functions. Endowed with the norm

‖x‖ = max
t∈[t0, δT+ (t0)]T

|x(t)|, (4.2)

PT is a Banach space.

Lemma 4.1. Let x ∈ PT . Then ‖xσ‖ exists and ‖xσ‖ = ‖x‖.

Proof. Since x ∈ PT , then x(δT+(t0)) = x(t0), and by Corollary 2.9, we have x(σ(δT+(t0))) =
x(σ(t0)). For all t ∈ [t0, δT+(t0)]T

,|x(σ(t))| ≤ ‖x‖. Hence ‖xσ‖ ≤ ‖x‖. Since x ∈ C(T,R), there
exists t1 ∈ [t0, δT+(t0)] such that ‖x‖ = |x(t1)|. If t1 is left scattered, then σ(ρ(t1)) = t1. And
so, ‖xσ‖ ≥ |xσ(ρ(t1))| = x(t1) = ‖x‖. Thus, we have ‖xσ‖ = ‖x‖. If t1 is dense, σ(t1) = t1 and
‖xσ‖ = ‖x‖.

Assume that t1 is left dense and right scattered. Note that if t1 = t0 then we work
t1 = δT+(t0). Fix ε > 0 and consider a sequence {an} such that an ↑ t1. Note that σ(an) ≤ t1
for all n. By the continuity of x, there exists N such that for all n > N, |x(t1) − xσ(an)| < ε.
This implies that ‖x‖ − ε ≤ ‖xσ‖. Since ε > 0 was arbitrary, then ‖x‖ = ‖xσ‖ and the proof is
complete.

In this paper we assume that a(t) ∈ R+ is a continuous function with a(t) > 0 for all
t ∈ T and

a
(
δT+(t)

)
δΔT+ (t) = a(t), b

(
δT+(t)

)
= b(t), (4.3)

where bΔ(t) is continuous. We further assume that q(t, x, y) is continuous and periodic with
δ± in t and Lipschitz continuous in x and y. That is,

q
(
δT+(t), x, y

)
δΔT+ (t) = q

(
t, x, y

)
, (4.4)

and there are some positive constants L and E such that

∣∣q(t, x, y) − q(t, z,w)
∣∣ ≤ L‖x − z‖ + E∥∥y −w∥∥. (4.5)
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Lemma 4.2. Suppose that (4.3)–(4.5) hold. If x(t) ∈ PT , then x(t) is a solution of (1.2) if and only if

x(t) = b(t)x(δ−(k, t)) +
1

1 − e�a(t)
(
t, δT−(t)

)
×
∫ t
δT− (t)

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))]e�a(s)(t, s)Δs,
(4.6)

where

r(s) = a(s)bσ(s) + bΔ(s). (4.7)

Proof. Let x(t) ∈ PT be a solution of (1.2). We can rewrite (1.2) as

xΔ(t) + a(t)xσ(t) = b(t)xΔ(δ−(k, t))δΔ− (k, t) + q(t, x(t), x(δ−(k, t))). (4.8)

Multiply both sides of the above equation by ea(t)(t, t0) and then integrate from δT−(t) to t to
obtain

∫ t
δT− (t)

[
x(s)ea(s)(s, t0)

]ΔΔs

=
∫ t
δT− (t)

[
b(s)xΔ(δ−(k, s))δΔ− (k, s) + q(s, x(s), x(δ−(k, s)))

]
ea(s)(s, t0)Δs.

(4.9)

We arrive at

x(t)
[
ea(t)(t, t0) − ea(t)

(
δT−(t), t0

)]

=
∫ t
δT− (t)

[
b(s)xΔ(δ−(k, s))δΔ− (k, s) + q(s, x(s), x(δ−(k, s)))

]
ea(s)(s, t0)Δs.

(4.10)

Dividing both sides of the above equation by ea(t)(t, t0) and using x(δT+(t)) = x(t) and
Lemma 2.2, we have

x(t)
(
1 − ea(t)

(
δT−(t), t

))

=
∫ t
δT− (t)

[
b(s)xΔ(δ−(k, s))δΔ− (k, s) + q(s, x(s), x(δ−(k, s)))

]
ea(s)(s, t)Δs.

(4.11)

Now, we consider the first term of the integral on the right-hand side of (4.11)

∫ t
δT− (t)

b(s)xΔ(δ−(k, s))δΔ− (k, s)ea(s)(s, t)Δs. (4.12)
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Using integration by parts from rule [10]we obtain

∫ t
δT− (t)

b(s)xΔ(δ−(k, s))δΔ− (k, s)ea(s)(s, t)Δs

=
∫ t
δT− (t)

[
b(s)ea(s)(s, t)x(δ−(k, s))

]ΔΔs − ∫ t
δT− (t)

[
b(s)ea(s)(s, t)

]Δ
s x

σ(δ−(k, s))Δs

(4.13)

∫ t
δT− (t)

b(s)xΔ(δ−(k, s))δΔ− (k, s)ea(s)(s, t)Δs

= b(t)ea(t)(t, t)x(δ−(k, t)) − b
(
δT−(t)

)
ea(s)

(
δT−(t), t

)
x
(
δ−
(
k, δT−(t)

))

−
∫ t
δT− (t)

[
bσ(s)a(s)ea(s)(s, t) + bΔ(s)ea(s)(s, t)

]
xσ(δ−(k, s))Δs.

(4.14)

Since b(δT−(t)) = b(t) and x(δ
T
−(t)) = x(t), the above equality reduces to

∫ t
δT− (t)

b(s)xΔ(δ−(k, s))δΔ− (k, s)ea(s)(s, t)Δs

= b(t)x(δ−(k, t))
(
1 − ea(s)

(
δT−(t), t

))

−
∫ t
δT− (t)

[
a(s)bσ(s) + bΔ(s)

]
xσ(δ−(k, s))ea(s)(s, t)Δs.

(4.15)

Substituting (4.15) into (4.11) we get

x(t) = b(t)x(δ−(k, t))

+
1

1 − e�a(t)
(
t, δT−(t)

)
×
∫ t
δT− (t)

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))]e�a(s)(t, s)Δs.
(4.16)

Thus the proof is complete.

Define the mappingH : PT → PT by

Hx(t) := b(t)x(δ−(k, t))

+
1(

1 − e�a(t)
(
t, δT−(t)

))
×
∫ t
δT− (t)

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))]e�a(s)(t, s)Δs.
(4.17)
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To apply Theorem 2.14 we need to construct two mappings: one map is a contraction and the
other map is compact and continuous. We express (4.17) as

Hx(t) = Bx(t) +Ax(t), (4.18)

where A, B are given

Bx(t) = b(t)x(δ−(k, t)), (4.19)

Ax(t) =
1

1 − e�a(t)
(
t, δT−(t)

)
×
∫ t
δT− (t)

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))]e�a(s)(t, s)Δs,
(4.20)

and r(s) is defined in (4.7).

Lemma 4.3. Suppose that (4.3)–(4.5) hold. ThenA : PT → PT , as defined by (4.20), is compact and
continuous.

Proof. We show that A : PT → PT . Evaluate (4.20) at δT+(t),

Ax
(
δT+(t)

)
=

1
1 − e�a(t)

(
δT+(t), δT−

(
δT+(t)

))

×
∫δT+ (t)
δT−(δT+ (t))

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))]e�a(s)(δT+(t), s)Δs
=

1
1 − ep(t)

(
δT+(t), t

)

×
∫δT+ (t)
δT+(δT− (t))

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))]e�a(s)(δT+(t), s)Δs.
(4.21)

Now, since (4.3) and Corollary 2.9 hold, then we have

r
(
δT+(s)

)
δTΔ+ (s) = a

(
δT+(s)

)
δTΔ+ (s)bσ

(
δT+(s)

)
+ bΔ

(
δT+(s)

)
δTΔ+ (s)

= a(s)bσ(s) + bΔ(s) = r(s).
(4.22)
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That is, r(s) isΔ-periodic in δ± with period T . Using the periodicity of r, x, q, and Lemma 3.2
we get

[
−r
(
δT+(s)

)
xσ
(
δ−
(
k, δT+(s)

))
+ q
(
δT+(s), x

(
δT+(s)

)
, x
(
δ−
(
k, δT+(s)

)))]
δTΔ+ (s)

× e�a(s)
(
δT+(t), δ

T
+(s)
)

=
[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))]e�a(s)(t, s).

(4.23)

That is, inside the integral of (4.21) is Δ-periodic in δ± with period T . By Theorem 2.13 and
Lemma 3.2 we have

Ax
(
δT+(t)

)
=

1
1 − e�a(t)

(
t, δT−(t)

)
×
∫ t
δT− (t)

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))]e�a(s)(t, s)Δs
= Ax(t).

(4.24)

That is, A : PT → PT .
To see that A is continuous, we let ϕ, ψ ∈ PT with ‖ϕ‖ ≤ C and ‖ψ‖ ≤ C and define

η := max
t∈[t0, δT+ (t0)]

T

∣∣∣∣(1 − e�a(t)(t, δT−(t)))−1
∣∣∣∣, γ := max

u∈[δT− (t),t]T

e�a(t)(t, u),

β := max
t∈[t0, δT+ (t0)]

T

|r(t)|.
(4.25)

Given that ε > 0, take δ = ε/M such that ‖ϕ − ψ‖ < δ. By making use of the Lipschitz
inequality (4.5) in (4.20), we get

∥∥Aϕ −Aψ∥∥ ≤ γη
∫ t
δT− (t)

β
∥∥ϕ − ψ∥∥ + L∥∥ϕ − ψ∥∥ + E∥∥ϕ − ψ∥∥Δs

= ηγ
[
β + L + E

](
t0 − δT−(t0)

)∥∥ϕ − ψ∥∥
≤M∥∥ϕ − ψ∥∥ < ε,

(4.26)

where L, E are given by (4.5) and M = ηγ[β + L + E](t0 − δT−(t0)). This proves that A is
continuous.
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We need to show that A is compact. Consider the sequence of periodic functions in
δ±{ϕn} ⊂ PT and assume that the sequence is uniformly bounded. Let R > 0 be such that
‖ϕn‖ ≤ R, for all n ∈ N. In view of (4.5)we arrive at

∣∣q(t, x, y)∣∣ = ∣∣q(t, x, y) − q(t, 0, 0) + q(t, 0, 0)∣∣
≤ ∣∣q(t, x, y) − q(t, 0, 0)∣∣ + ∣∣q(t, 0, 0)∣∣
≤ L‖x‖ + E∥∥y∥∥ + α,

(4.27)

where α := maxt∈[t0, δT+ (t0)]T
|q(t, 0, 0)|. Hence,

∣∣Aϕn∣∣ =
∣∣∣∣∣ 1
1 − e�a(t)

(
t, δT−(t)

)
∫ t
δT− (t)

[−r(s)ϕσn(δ−(k, s)) + q(s, ϕn(s), ϕn(δ−(k, s)))]e�a(s)(t, s)Δs
∣∣∣∣∣

≤ ηγ[(β + L + E
)∥∥ϕn∥∥ + α](t0 − δT−(t0))

≤ ηγ[(β + L + E
)
R + α

](
t0 − δT−(t0)

)
:= D.

(4.28)

Thus, the sequence {Aϕn} is uniformly bounded. If we find the derivative of Aϕn, we have

(
Aϕn

)Δ(t) = a(t)Aϕn(t)

+
−a(t) + �a(t)

1 − e�a(t)
(
σ(t), δT−(σ(t))

)

×
∫ t
δT− (t)

[−r(s)ϕσn(δ−(k, s)) + q(s, ϕn(s), ϕn(δ−(k, s)))]e�a(s)(t, s)Δs
+

1
1 + μ(t)a(t)

[−r(t)ϕσ(δ−(k, s)) + q(s, ϕn(s), ϕn(δ−(k, s)))].

(4.29)

Consequently,

∣∣∣(Aϕn)Δ(t)∣∣∣ ≤ D‖a‖ + [(β + E + L
)
R + α

][
2‖a‖γη

(
t0 − δT−(t0)

)]
:= F. (4.30)

for all n. That is, |(Aϕn)Δ(t)| ≤ F, for some positive constant F. Thus the sequence {Aϕn}
is uniformly bounded and equicontinuous. The Arzela-Ascoli theorem implies that {Aϕnk}
uniformly converges to a continuous T -periodic function ϕ∗ in δ±. Thus A is compact.

Lemma 4.4. Let B be defined by (4.19) and

‖b(t)‖ ≤ ξ < 1. (4.31)

Then B : PT → PT is a contraction.
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Proof. Trivially, B : PT → PT . For ϕ, ψ ∈ PT , we have

∥∥Bϕ − Bψ∥∥ = max
t∈[t0, δT+ (t0)]

T

∣∣Bϕ(t) − Bψ(t)∣∣
= max

t∈[t0, δT+ (t0)]
T

{|b(t)|∣∣ϕ(δ−(k, s)) − ψ(δ−(k, s))∣∣}

≤ ξ∥∥ϕ − ψ∥∥.
(4.32)

Hence B defines a contraction mapping with contraction constant ξ.

Theorem 4.5. Let α := maxt∈[t0, δT+ (t0)]T
|q(t, 0, 0)|. Let β, η, and γ be given by (4.39). Suppose that

(4.3)–(4.5) and (4.31) hold and that there is a positive constantG such that all solutions x(t) of (1.2),
x ∈ PT , satisfy |x(t)| ≤ G, the inequality

{
ξ + γη

(
β + L + E

)(
t0 − δT−(t0)

)}
G + γηα

(
t0 − δT−(t0)

)
≤ G (4.33)

holds. Then (1.2) has a T -periodic solution in δ±.

Proof. DefineM := {x ∈ PT : ‖x‖ ≤ G}. Then Lemma 4.3 implies thatA : PT → PT is compact
and continuous. Also, from Lemma 4.4, the mapping B : PT → PT is contraction.

We need to show that if ϕ, ψ ∈ M, we have ‖Aϕ − Bψ‖ ≤ G. Let ϕ, ψ ∈ M with
‖ϕ‖, ‖ψ‖ ≤ G. From (4.19) and (4.20) and the fact that |q(t, x, y)| ≤ L‖x‖ + E‖y‖ + α, we have

∥∥Aϕ + Bψ
∥∥ ≤ γη

∫ t
δT− (t)

[
L
∥∥ϕ∥∥ + E∥∥ϕ∥∥ + β∥∥ϕ∥∥ + α]Δs + ξ∥∥ψ∥∥

≤
{
ξ + γη

(
β + L + E

)(
t0 − δT−(t0)

)}
G + γηα

(
t0 − δT−(t0)

)
≤ G.

(4.34)

We see that all the conditions of Krasnosel’skiı̆ theorem are satisfied on the setM. Thus there
exists a fixed point z inM such that z = Bz +Az. By Lemma 4.2, this fixed point is a solution
of (2) has a T -periodic solution in δ±.

Theorem 4.6. Suppose that (4.3)–(4.5) and (4.31) hold. Let β, η, and γ be given by (4.39). If

ξ + γη
(
β + L + E

)(
t0 − δT−(t0)

)
≤ 1, (4.35)

then (1.2) has a unique T -periodic solution in δ±.
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Proof. Let the mappingH be given by (4.17). For ϕ, ψ ∈ PT we have

∥∥Hϕ −Hψ
∥∥ ≤ ξ∥∥ϕ − ψ∥∥ + γη ∫ t

δT− (t)

[
L
∥∥ϕ − ψ∥∥ + E∥∥ϕ − ψ∥∥ + β∥∥ϕ − ψ∥∥]Δs

≤
[
ξ + γη

(
β + L + E

)(
t0 − δT−(t0)

)]∥∥ϕ − ψ∥∥.
(4.36)

This completes the proof.

Example 4.7. Let T = {2n}n∈N0
∪ {1/4, 1/2} be a periodic time scale in shift δ±(P, t) = P±1t

with period P = 2. We consider the dynamic equation (1.2) with a(t) = 1/5t, b(t) =
(1/500)(−1)ln t/ ln q and q(t, x, y) = (sinx + arctanx + 1)/1000t.

The operators δ−(s, t) = t/s and δ+(s, t) = st are backward and forward shift operators
for (s, t) ∈ D±. Here T

∗ = T, the initial point t0 = 1 and δ−(k, t) = t/k for k ∈ [2,∞)
T
. If we

consider conditions (4.3)-(4.4)we find T = 4. Then a(t), b(t) satisfy condition (4.3), a(t) ∈ R+

and q(t, x, y) satisfies the condition (4.4) for all t ∈ T. Also, q(t, x, y) is Lipschitz continuous
in x and y for L = E = 1/250. Since ‖b(t)‖ = ‖(1/500)(−1)ln t/ ln q‖ = (1/500) = ξ < 1, then the
condition (4.31) holds.

If we compute η, γ , and β, we have

η = max
t∈[t0, δT+ (t0)]

T

∣∣∣∣(1 − e�a(t)(t, δT−(t)))−1
∣∣∣∣ ∼= 3, 45, α = max

t∈[t0, δT+(t0)]T

∣∣q(t, 0, 0)∣∣ = 1
250 (4.37)

γ = max
u∈[δT− (t), t]T

e�a(t)(t, u) ∼= 1, 5, β = max
t∈[t0, δT+ (t0)]

T

|r(t)| = 11
2500

. (4.38)

If we take G = 1, then inequality (4.33) satisfies.
Let x(t) ∈ PT . We show that ‖x(t)‖ ≤ G = 1. Integrate (1.2) from 1 to 4, we get

x(4) − x(1) =
∫4

1

[
−a(t)xσ(t) + b(t)xΔ

(
t

k

)
1
k
+ q
(
t, x(t), x

(
t

k

))]
Δt. (4.39)

Since x(t) ∈ PT , then x(4) = x(1) and so after integration by parts (23) becomes

∫4

1
a(t)xσ(t)Δt =

∫4

1
q

(
t, x(t), x

(
t

k

))
− bΔ(t)x

(
t

k

)
Δt. (4.40)

Claim 1. There exist t∗ ∈ [1, 4]
T
such that 3a(t∗)xσ(t∗) ≤ ∫41 a(t)xσ(t)Δt.

Suppose that the claim is false. Define S :=
∫4
1 a(t)x

σ(t)Δt. Then there exists ε > 0 such
that

3a(t)xσ(t) > S + ε, (4.41)
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for all t ∈ [1, 4]
T
. So,

S =
∫4

1
a(t)xσ(t)Δt >

1
3

∫4

1
(S + ε)ΔT = S + ε. (4.42)

That is, S > S + ε, a contradiction.
As a consequence of the claim, we have

3|a(t∗)||xσ(t∗)| ≤
∫4

1

∣∣∣∣q
(
t, x(t), x

(
t

k

))∣∣∣∣ +
∣∣∣∣bΔ(t)x

(
t

k

)∣∣∣∣Δt
≤
∫4

1
[(L + E)‖x‖ + α + δ‖x‖]Δt

= 3
[(

2
250

+
1

250

)
‖x‖ + 1

250

]
= 3
[

3
250

‖x‖ + 1
250

]
,

(4.43)

where δ = max[1,4]
T
|bΔ(t)| = 1/250.

So, |a(t∗)||xσ(t∗)| ≤ (3/250)‖x‖ + (1/250), which implies |xσ(t∗)| ≤ 20[(3/250)‖x‖ +
(1/250)]. Since for all t ∈ [1, 4]

T
,

xσ(t) = xσ(t∗) +
∫ t
t∗
xΔ(σ(s))Δs, (4.44)

we have

|xσ(t)| ≤ |xσ(t∗)| +
∫ t
1

∣∣∣xΔ(σ(s))
∣∣∣Δs ≤ 20

[
3

250
‖x‖ + 1

250

]
+ 3
∥∥∥xΔ
∥∥∥. (4.45)

This implies that

‖x‖ ≤ 2
19

+
1500
19

∥∥∥xΔ
∥∥∥. (4.46)

Taking the norm in (1.2) yields

∥∥∥xΔ
∥∥∥ ≤ (‖a‖ + L + E)‖x‖ + α

1 − ‖b‖ =
(1/5 + 2/250)‖x‖ + 1/250

1 − 1/500
=

104‖x‖ + 2
250.499

. (4.47)

Substitution of (4.47) into (4.46) yields that for all x(t) ∈ PT , ‖x(t)‖ ≤ G = 1. Then by
Theorem 4.5, (1.2) has a 4-periodic solution in shifts δ±.

In this example, if we take q(t, x, y) = (sinx + arctanx)/1000t, we have

ξ + γη
(
β + L + E

)(
t0 − δT−(t0)

)
=

1
500

+
96255
2.106

< 1. (4.48)
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So, all the conditions of Theorem 4.6 are satisfied. Therefore, (1.2) has a unique
4-periodic solution in shifts δ±.
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