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The two most important steps in application of the homotopy perturbation method are to construct
a suitable homotopy equation and to choose a suitable initial guess. The homotopy equation
should be such constructed that when the homotopy parameter is zero, it can approximately
describe the solution property, and the initial solution can be chosen with an unknown parameter,
which is determined after one or two iterations. This paper suggests an alternative approach to
construction of the homotopy equation with an auxiliary term; Dufing equation is used as an
example to illustrate the solution procedure.

1. Introduction

The homotopy perturbation method [1–7] has been worked out over a number of years by
numerous authors, and it has matured into a relatively fledged theory thanks to the efforts
of many researchers, see Figure 1. For a relatively comprehensive survey on the concepts,
theory, and applications of the homotopy perturbation method, the reader is referred to re-
view articles [8–11].

The homotopy perturbation method has been shown to solve a large class of nonlinear
differential problems effectively, easily, and accurately; generally one iteration is enough
for engineering applications with acceptable accuracy, making the method accessible to
nonmathematicians.

In case of higher-order approximates needed, we can use parameter-expansion tech-
nology [12–14]; in this paper, we suggest an alternative approach by adding a suitable term
in the homotopy equation.
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Figure 1: Number of publications on homotopy perturbation according to web of science, August 20, 2011.

2. Homotopy Perturbation Method

Consider a general nonlinear equation

Lu +Nu = 0, (2.1)

where L and N are, respectively, the linear operator and nonlinear operator.
The first step for the method is to construct a homotopy equation in the form [3–5]

˜Lu + p
(

Lu − ˜Lu +Nu
)

= 0, (2.2)

where ˜L is a linear operator with a possible unknown constant and ˜Lu = 0 can approximately
describe the solution property. The embedding parameter p monotonically increases from
zero to unit as the trivial problem (˜Lu = 0) is continuously deformed to the original one
(Lu +Nu = 0).

For example, consider a nonlinear oscillator

u′′ + εu3 = 0, u(0) = A, u′(0) = 0. (2.3)

For an oscillator, we can use sine or cosine function. We assume that the approximate solution
of (2.3) is

u(t) = A cosωt, (2.4)

where ω is the frequency to be determined later. We, therefore, can choose

˜Lu = ü +ω2u. (2.5)
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Accordingly, we can construct a homotopy equation in the form

ü +ω2u + p
(

u3 −ω2u
)

= 0. (2.6)

When p = 0, we have

ü +ω2u = 0, u(0) = A, u′(0) = 0, (2.7)

which describes the basic solution property of the original nonlinear equation, (2.3).
When p = 1, (2.6) becomes the original one. So the solution procedure is to deform

from the initial solution, (2.4), to the real one. Due to one unknown parameter in the initial
solution, only one iteration is enough. For detailed solution procedure, refer to [5].

If a higher-order approximate solution is searched for, we can construct a homotopy
equation in the form

ü + 0 · u + pu3 = 0. (2.8)

We expand the solution and the coefficient, zero, of the linear term into a series in p:

u = u0 + pu1 + p2u2 + · · · , (2.9)

0 = ω2 + pa1 + p2a2 + · · · , (2.10)

where the unknown constant, ai, is determined in the (i + 1)th iteration. The solution
procedure is given in [5].

3. Homotopy Equation with an Auxiliary Term

In this paper, we suggest an alternative approach to construction of homotopy equation,
which is

˜Lu + p
(

Lu − ˜Lu +Nu
)

+ αp
(

1 − p
)

u = 0, (3.1)

where α is an auxiliary parameter. When α = 0, (3.1) turns out to be that of the classical
one, expressed in (2.2). The auxiliary term, αp(1 − p)u, vanishes completely when p = 0 or
p = 1; so the auxiliary term will affect neither the initial solution (p = 0) nor the real solution
(p = 1). The homotopy perturbation method with an auxiliary term was first considered by
Noor [15].

To illustrate the solution procedure, we consider a nonlinear oscillator in the form

d2u

dt2
+ bu + cu3 = 0, u(0) = A, u′(0) = 0, (3.2)

where b and c are positive constants.
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Equation (3.2) admits a periodic solution, and the linearized equation of (3.2) is

u′′ +ω2u = 0, u(0) = A, u′(0) = 0, (3.3)

where ω is the frequency of (3.2).
We construct the following homotopy equation with an auxiliary term:

u′′ +ω2u + p
[(

b −ω2
)

u + cu3
]

+ αp
(

1 − p
)

u = 0. (3.4)

Assume that the solution can be expressed in a power series in p as shown in (2.9).
Substituting (2.9) into (3.4), and processing as the standard perturbation method, we

have

u′′
0 +ω2u0 = 0, u0(0) = A, u′

0(0) = 0, (3.5)

u′′
1 +ω2u1 +

(

b −ω2
)

u0 + cu3
0 + αu0 = 0, u1(0) = 0, u′

1(0) = 0, (3.6)

u′′
2 +ω2u2 +

(

b −ω2
)

u1 + 3cu2
0u1 + α(u1 − u0) = 0, (3.7)

with initial conditions

∑

i=0

ui(0) = A,
∑

i=0

u′
i(0) = 0. (3.8)

Solving (3.5), we have

u0 = A cosωt. (3.9)

Substituting u0 into (3.6) results into

u′′
1 +ω2u1 +A

(

α + b −ω2 +
3
4
cA2

)

cosωt +
1
4
cA3 cos 3ωt = 0. (3.10)

Eliminating the secular term needs

α + b −ω2 +
3
4
cA2 = 0. (3.11)

A special solution of (3.10) is

u1 = − cA3

32ω2
cos 3ωt. (3.12)
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If only a first-order approximate solution is enough, we just set α = 0; this results in

ω =

√

b +
3
4
cA2. (3.13)

The accuracy reaches 7.6% even for the case cA2 → ∞.
The solution procedure continues by submitting u1 into (3.7); after some simple

calculation, we obtain

u′′
2 +ω2u2 −

(

αA +
3c2A5

128ω2

)

cosωt −
(

cA3(b −ω2)

32ω2
+

3c2A5

64ω2
+
αcA3

32ω2

)

cos 3ωt

− 3c2A5

128ω2
cos 5ω = 0.

(3.14)

No secular term in u2 requires

αA +
3c2A5

128ω2
= 0. (3.15)

Solving (3.11) and (3.15) simultaneously, we obtain

ω =

√

√

√

√b + (3/4)cA2 +
√

(b + (3/4)cA2)2 + (3/32)c2A4

2
, (3.16)

and the approximate solution is u(t) = A cosωt, where ω is given in (3.16).
In order to compare with the perturbation solution and the exact solution, we set b = 1.

In case c � 1, (3.16) agrees with that obtained by classical perturbation method; when c →
∞, we have

lim
c→∞

ω =

√

√

√

√ (3/4) +
√

(3/4)2 + 3/32

2

√

cA2 = 0.8832
√

cA2. (3.17)

The exact period reads

Tex =
4√

1 + cA2

∫π/2

0

dx√
1 − k sin2x

, (3.18)

where k = cA2/2(1 + cA2).
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In case c → ∞, we have

lim
c→∞

Tex =
6.743√
cA2

, (3.19)

ωex ≈ 2π
6.743

√

cA2. (3.20)

Comparing between (3.17) and (3.20), we find that the accuracy reaches 5.5%, while accuracy
of the first-order approximate frequency is 7.6%.

If a higher-order approximate solution is needed, we rewrite the homotopy equation
in the form

u′′ +ω2u + p
[(

b −ω2
)

u + cu3
]

+ 1 · p(1 − p
)

u = 0. (3.21)

The coefficient, 1, in the auxiliary term, is also expanded in a series in p in the form

1 = α0 + pα1 + p2α2 + · · · , (3.22)

where αi is identified in the (i + 2)th iteration. The solution procedure is similar to that
illustrated above.

4. Discussions and Conclusions

Generally the homotopy equation can be constructed in the form

˜Lu + p
(

Lu − ˜Lu +Nu
)

+ 1 · f(p)g(p)h(u, u′, u′′, . . .
)

= 0, (4.1)

where f and g are functions of p, satisfying f(0) = 0 and g(1) = 0, and h can be generally
expressed in the form

h = u + β1u
′ + β2u

′′ + · · · . (4.2)

For example, for the Blasius equation

u′′′(η
)

+
1
2
u
(

η
)

u′′(η
)

= 0, u(0) = u′(0) = 0, u′(+∞) = 1, (4.3)

where the superscript denotes derivative with respect to η, we can construct a homotopy
equation in the form

u′′′ + au′′ + p

(

1
2
uu′′ − au′′

)

+ bp
(

1 − p
)

u′′ = 0, (4.4)

where a and b are unknown constants to be determined.
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The operator ˜L() can be also a nonlinear one, for example, if we want to search for a
solitonary solution, we can choose ˜Lu = ut + 6uux + uxxx.

The homotopy equation can be easily constructed, and the solution procedure is sim-
ple. This paper can be considered a standard homotopy perturbation algorithm and can be
used as a paradigm for many other applications.
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