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A homotopy perturbation transformation method (HPTM) which is based on homotopy per-
turbation method and Laplace transform is first applied to solve the approximate solution of
the fractional nonlinear equations. The nonlinear terms can be easily handled by the use of
He’s polynomials. Illustrative examples are included to demonstrate the high accuracy and fast
convergence of this new algorithm.

1. Introduction

In recent years, system of fractional nonlinear partial differential equations [1–3] have attract-
ed much attention in a variety of applied sciences. The importance of obtaining the exact and
approximate solutions of fractional nonlinear equations in physics and mathematics is still
a significant problem that needs new methods to discover exact and approximate solutions.
But these nonlinear fractional differential equations are difficult to get their exact solutions
[4–7]. So, numerical methods have been used to handle these equations [8–11], and some
semianalytical techniques have also largely been used to solve these equations. Such as,
Adomian decomposition method [12, 13], variational iteration method [14, 15], differential
transform method [16, 17], Laplace decomposition method [18, 19], and homotopy
perturbation method [20–25]. Most of these methods have their inbuilt deficiencies like the
calculation of Adomian’s polynomials, the Lagrange multiplier, divergent results, and huge
computational work.
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In this work, we will use homotopy perturbation transformation method introduced
by Khan [26, 27] to solve fractional nonlinear partial differential equations. This new method
basically illustrates how two powerful algorithms, homotopy perturbation method and
Laplace transform method, can be combined and used to approximate the solutions of non-
linear equation. The proposed algorithm provides the solution in a rapid convergent series
which may lead to the solution in a closed form. This paper considers the effectiveness of the
homotopy perturbation transformation method in solving fractional nonlinear equations.

2. Description of the HPTM

To illustrate the basic idea of this method [26, 27], we consider a general fractional nonlinear
nonhomogeneous partial differential equation with initial conditions of the form

Dα
t u(x, t) + Ru(x, t) +Nu(x, t) = g(x, t), (2.1)

u(x, 0) = h(x), ut(x, 0) = f(x), (2.2)

where g(x, t) is the source term, N represents the general nonlinear differential operator
and R is the linear differential operator, and Dα

t u(x, t) is the Caputo fractional derivative
of function u(x, t)which is defined as

0D
α
t u(x, t) =

1
Γ(n − α)

∫ t

0

u(n)(x, τ)dτ

(t − τ)α+1−n
, (n − 1 < Re(α)n, n ∈ N), (2.3)

where Γ(·) denotes the Gamma function. The properties of fractional derivative can be found
in [1, 2]. Laplace transform (denoted throughout this paper by L) of the Caputo operator is
an important property will be used in this paper

L
[
0D

α
t u(x, t)

]
= sαu(x, s) −

n−1∑
k=0

uk(x, 0+)sα−1−k, (n − 1 < α � n). (2.4)

Taking the Laplace transform on both sides of (2.1),

L
[
0D

α
t u(x, t)

]
+ L[Ru(x, t)] + L[Nu(x, t)] = L

[
g(x, t)

]
, (2.5)

Using the property of the laplace transform, we have

L[u(x, t)] =
h(x)
s

+
f(x)
s2

− 1
sα

L[Ru(x, t)] − 1
sα

L[Nu(x, t)] +
1
sα

L
[
g(x, t)

]
. (2.6)

Operating with the Laplace inverse on both sides of (2.6) gives

u(x, t) = G(x, t) − L−1
[
1
sα

L[Ru(x, t)] +
1
sα

L[Nu(x, t)]
]
, (2.7)
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where G(x, t) represent the term arising from the source term and the prescribed initial
conditions. Then, we apply the homotopy perturbation method; the basic assumption is that
the solutions can be written as a power series in p

u(x, t) =
∞∑
n=0

pnun(x, t) = u0 + pu1 + p2u2 + p3u3 + · · · , (2.8)

and the nonlinear term can be decomposed as

Nu(x, t) =
∞∑
n=0

pnHn(u), (2.9)

where p ∈ [0, 1] is an embedding parameter. Hn(u) is He’s polynomials [28, 29] and can be
generated by

Hn(u0, . . . , un) =
1
n!

∂n

∂pn

[
N

( ∞∑
i=0

piui

)]
p=0

, n = 0, 1, 2 . . . . (2.10)

Substituting (2.8) and (2.9) in (2.7) we get

∞∑
n=0

pnun(x, t) = G(x, t) − p

(
L−1

[
1
sα

L

[
R

∞∑
n=0

pnun(x, t)

]
+

1
sα

L

[ ∞∑
n=0

pnHn(u)

]])
. (2.11)

Equating the terms with identical powers in p, we obtain the following approximations:

p0 : u0(x, t) = G(x, t),

p1 : u1(x, t) = −L−1
[
1
sα

L[Ru0(x, t)] +
1
sα

L[H0(u)]
]
,

p2 : u2(x, t) = −L−1
[
1
sα

L[Ru1(x, t)] +
1
sα

L[H1(u)]
]
,

...

(2.12)

The best approximations for the solution are

u(x, t) = u0 + u1 + u2 + u3 + · · · . (2.13)

This method does not resort to linearization or assumptions of weak nonlinearity, the
solution generated in the form of general solution, and it is more realistic compared to the
method of simplifying the physical problems.
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3. Approximate Solutions of Fractional Equations

In order to assess the advantages and the accuracy of the homotopy perturbation transform
method for fractional nonlinear equations, we have applied it to the following several
problems.

Case 1. Consider the following time fractional advection nonhomogeneous equation [27]:

Dα
t u(x, t) + uux = 2t + x + t3 + xt2, (3.1)

u(x, 0) = 0, (3.2)

where 0 < α � 1, taking the Laplace transform on both sides of (3.1)-(3.2)

L
[
Dα

t u(x, t)
]
+ L[uux] = L

[
2t + x + t3 + xt2

]
. (3.3)

Using the property of the Laplace transform, we have

L[u(x, t)] =
1
sα

(
2
s2

+
x

s
+

6
s4

+
2x
s3

)
− 1
sα

L[uux]. (3.4)

Operating with the Laplace inverse on both sides of (3.4) gives

u(x, t) =
2tα+1

Γ(2 + α)
+

xtα

Γ(1 + α)
+

6tα+3

Γ(4 + α)
+

2xtα+2

Γ(3 + α)
− L−1

[
1
sα

L[uux]
]
. (3.5)

Then, we apply the homotopy perturbation method, and substituting (2.8) and (2.9) in (3.5)
we get

∞∑
n=0

pnun =
2tα+1

Γ(2 + α)
+

xtα

Γ(1 + α)
+

6tα+3

Γ(4 + α)
+

2xtα+2

Γ(3 + α)
− p

(
L−1

[
1
sα

L

[ ∞∑
n=0

pnHn(u)

]])
,

(3.6)

whereHn(u) is He’s polynomials that represents nonlinear term uux; we have a few terms of
the He’s polynomials for uux which are given by

H0(u) = u0u0x,

H1(u) = u0u1x + u1u0x,

H2(u) = u0u2x + u1u1x + u2u0x,

...

(3.7)
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Comparing the coefficient of like powers of p, we have

u0(x, t) =
2tα+1

Γ(2 + α)
+

xtα

Γ(1 + α)
+

6tα+3

Γ(4 + α)
+

2xtα+2

Γ(3 + α)
,

u1(x, t) = −L−1
[
1
sα

L[u0u0x]
]

= − xΓ(1 + 2α)t3α

Γ2(1 + α)Γ(1 + 3α)
− 2Γ(2 + 2α)t1+3α

Γ(1 + α)Γ(2 + α)Γ(2 + 3α)
− 4xΓ(3 + 2α)t2+3α

Γ(1 + α)Γ(3 + α)Γ(3 + 3α)

− 4Γ(3 + 3α)t4+2α

Γ(2 + α)Γ(3 + α)Γ(4 + 3α)
− 6Γ(4 + 2α)t3+3α

Γ(1 + α)Γ(4 + α)Γ(4 + 3α)

− 4xΓ(5 + 2α)t4+3α

Γ2(3 + α)Γ(5 + 3α)
− 12Γ(6 + 2α)t5+3α

Γ(3 + α)Γ(4 + α)Γ(6 + 3α)
,

u2(x, t) = −L−1
[
1
sα

L[u0u1x + u1u0x]
]

=
2xΓ(1 + 2α)Γ(1 + 4α)t5α

Γ2(1 + α)Γ(1 + 3α)Γ(1 + 5α)
+

2Γ(1 + 2α)Γ(2 + 4α)t1+5α

Γ2(1 + α)Γ(2 + α)Γ(1 + 3α)Γ(2 + 5α)

+
2Γ(2 + 2α)Γ(2 + 4α)t1+5α

Γ2(1 + α)Γ(2 + α)Γ(2 + 3α)Γ(2 + 5α)
+

4xΓ(1 + 2α)Γ(3 + 4α)t2+5α

Γ2(1 + α)Γ(3 + α)Γ(1 + 3α)Γ(3 + 5α)
+ . . .

...
(3.8)

and so on; in this manner the rest of component of the solution can be obtained. The solution
of (3.1) in series form is given by

u(x, t) =
2tα+1

Γ(2 + α)
+

xtα

Γ(1 + α)
+

6tα+3

Γ(4 + α)
+

2xtα+2

Γ(3 + α)
− xΓ(1 + 2α)t3α

Γ2(1 + α)Γ(1 + 3α)
+ · · · . (3.9)

If we take α = 1, the first few components the solution of (3.1) are as follows:

u0(x, t) = t2 + xt +
t4

4
+
xt3

3
,

u1(x, t) = − t
4

4
− xt3

3
− 2xt5

15
− 7t6

72
− xt7

63
− t8

96
,

u2(x, t) =
5t12
8064

+
2xt11
2079

+
2783t10
302400

+
38xt9

2835
+
143t8

2880
+
22xt7

315
+
7t6

12
+
2xt5

15
,

...

(3.10)
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The noise terms −t4/4 − xt3/3 between the components u0 and u1 can be canceled and the
remaining term of u0 still satisfies the equation. For this special case, the exact solution is
therefore

u(x, t) = t2 + xt. (3.11)

which was given in [27].

Case 2. Consider the following time-space fractional nonlinear Fokker-Planck equation [30]:

Dα
t u(x, t) = −Dβ

x

(
4u2

x
− xu

3

)
+D

2β
x

(
u2
)
, (3.12)

u(x, 0) = x2, (3.13)

where 0 < α, β � 1, and α and β are parameters describing the order of the time- and space-
fractional derivatives, respectively.Dβ

x is also the Caputo fractional derivative with respect to
x and is defined as

D
β
xu(x, t) =

1
Γ
(
m − β

)
∫x

0

u(m)(ξ, t)dξ

(x − ξ)β+1−m
,

(
m − 1 < Re

(
β
)

� m, m ∈ N
)

(3.14)

taking the Laplace transform on both sides of (3.12)-(3.13)

sαL[u(x, t)] − x2sα−1 = L

[
−Dβ

x

(
4u2

x
− xu

3

)
+D

2β
x

(
u2
)]

. (3.15)

We have

L[u(x, t)] =
x2

s
+

1
sα

L

[
−Dβ

x

(
4u2

x
− xu

3

)
+D

2β
x

(
u2
)]

. (3.16)

Operating with the Laplace inverse on both sides of (3.16) gives

u(x, t) = x2 + L−1
[
1
sα

L

[
−Dβ

x

(
4u2

x
− xu

3

)
+D

2β
x

(
u2
)]]

. (3.17)

Then, we apply the homotopy perturbation method, and substituting (2.8) and (2.9) in (3.17)
we get

∞∑
n=0

pnun = x2 + p

(
L−1

[
1
sα

L

[
D

2β
x

( ∞∑
n=0

pnHn(u)

)
−D

β
x

(
4
∑∞

n=0 p
nHn(u)
x

− x
∑∞

n=0 p
nun

3

)]])
,

(3.18)
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where Hn(u) is He’s polynomials that represents nonlinear term u2; we have a few terms of
the He’s polynomials for u2 which are given by

H0(u) = u2
0, (3.19)

H1(u) = 2u0u1, (3.20)

H2(u) = u2
1 + 2u0u2,

...
(3.21)

Comparing the coefficient of like powers of p, we have (3.22)

u0(x, t) = x2,

u1(x, t) = L−1
[
1
sα

L

[
D

2β
x

(
u2
0

)
−D

β
x

(
4u2

0

x
− xu0

3

)]]
,

=
24tαx4−2β

Γ(1 + α)Γ
(
5 − 2β

) − 22tαx3−β

Γ(1 + α)Γ
(
4 − β

) ,

u2(x, t) = L−1
[
1
sα

L

[
D

2β
x (2u0u1) −D

β
x

(
8u0u1

x
− xu1

3

)]]

= − 184t2αx5−3βΓ
(
6 − 2β

)
Γ(1 + 2α)Γ

(
6 − 3β

)
Γ
(
5 − 2β

) +
48t2αx6−4βΓ

(
7 − 2β

)
Γ(1 + 2α)Γ

(
7 − 4β

)
Γ
(
5 − 2β

)

+
506t2αx4−2βΓ

(
5 − β

)
3Γ(1 + 2α)Γ

(
5 − 2β

)
Γ
(
4 − β

) − 44t2αx5−3βΓ
(
6 − β

)
Γ(1 + 2α)Γ

(
6 − 3β

)
Γ
(
4 − β

) ,

...

(3.22)

and so on; in this manner the rest of component of the solution can be obtained. The solution
of (3.12) in series form is given by

u(x, t) = x2 +
24tαx4−2β

Γ(1 + α)Γ
(
5 − 2β

) − 22tαx3−β

Γ(1 + α)Γ
(
4 − β

) − 184t2αx5−3βΓ
(
6 − 2β

)
Γ(1 + 2α)Γ

(
6 − 3β

)
Γ
(
5 − 2β

) + · · · .
(3.23)
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If we take α = β = 1, the first few components the solution of (3.12) are as follows:

u0(x, t) = x2,

u1(x, t) = x2t,

u2(x, t) = x2 t
2

2!
,

...

(3.24)

and so on. Hence, for this special case, we have

u(x, t) = x2

(
1 + t +

t2

2!
+ · · ·

)
= x2et (3.25)

which was given in [30].
Figure 1 shows the approximate solution for (3.12)-(3.13) by using the homotopy

perturbation transformation method when choosing x = 0.8, α = 1. From the figure, it is
clear to see the time evolution of fractional Fokker-Planck equation and we also know the
approximate solution of the model is continuous with the fractional parameter β. Figure 2
shows the approximate solution for (3.12)-(3.13) when t = 0.8, α = 1, and the approximate
solution of the model is continuous with the fractional parameter β. Figures 3 and 4 show the
approximate solution for (3.12)-(3.13) when the parameter β = 1, and from the figures, we
also know that the solution of the fractional nonlinear equation changes with the parameters
α and x, t.

Table 1 shows the approximate solutions for (3.12) by using the homotopy perturba-
tion transformation method, Adomian decomposition method, variational iteration method
and the exact solution u(x, t) = x2et when α = β = 1. It is noted that only the third-order of
the homotopy perturbation transformation solution is used in evaluating the approximate
solutions in Table 1, and it is evident that the method used in this paper and the Adomian
decomposition method have high accuracy compare with the variational iteration method,
and we take 15 terms of the VIM solution. And for nonlinear equations, Adomian’s poly-
nomials are very difficult to calculate. In brief, the homotopy perturbation transformation
method is an effectiveness tool to solve fractional nonlinear equation only usingMathematica
symbol computing software.

Case 3. Consider the following time fractional nonhomogeneous nonlinear system [31]:

Dα
t u − uxv − u = 1, (3.26)

D
β
t v + uvx + v = 1, (3.27)

with the initial conditions

u(x, 0) = e−x, v(x, 0) = ex, (3.28)
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Figure 1: The surface of second-order approximate solution of (3.12) when x = 0.8, α = 1.
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Figure 2: The surface of second-order approximate solution of (3.12) when t = 0.8, α = 1.

Table 1: Approximate values and exact solutions when α = 1, β = 1 for (3.12).

t x solutionHPTM solutionADM solutionVIM exact solution

0.06

0.25 0.066367 0.066367 0.066363 0.066365
0.50 0.265468 0.265468 0.265450 0.265459
0.75 0.597303 0.597303 0.597262 0.597283
1.0 1.061970 1.061970 1.061800 1.061840

0.2

0.25 0.076417 0.076416 0.076250 0.076338
0.50 0.305667 0.305667 0.305000 0.305351
0.75 0.687750 0.687750 0.686250 0.687039
1.0 1.222670 1.222670 1.220000 1.221400

0.4

0.25 0.093833 0.093833 0.092500 0.093239
0.50 0.375330 0.375330 0.370000 0.372956
0.75 0.844500 0.844500 0.832500 0.839151
1.0 1.501330 1.501330 1.480000 1.491820
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Figure 3: The surface of second-order approximate solution of (3.12) when x = 0.8, β = 1.
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Figure 4: The surface of second-order approximate solution of (3.12)when t = 0.8, β = 1.

where 0 < α, β � 1; in a similar way as above we have

∞∑
n=0

pnun = e−x +
tα

Γ(α + 1)
+ p

(
L−1

[
1
sα

L

[ ∞∑
n=0

pnH1n(u, v) +
∞∑
n=0

pnun

]])
,

∞∑
n=0

pnvn = ex +
tβ

Γ
(
β + 1

) − p

(
L−1

[
1
sα

L

[ ∞∑
n=0

pnH2n(u, v) +
∞∑
n=0

pnvn

]])
,

(3.29)
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where H1n(u, v) and H2n(u, v) are He’s polynomials that represent nonlinear term vux and
uvx respectively, and we have a few terms of the He’s polynomials for vux and uvx which are
given by

H10(u, v) = v0u0x,

H11(u, v) = v1u0x + v0u1x,

H12(u, v) = v2u0x + v1u1x + v0u2x,

...

H20(u, v) = u0v0x,

H21(u, v) = u1u0x + u0v1x,

H22(u, v) = u2v0x + u1v1x + u0v2x,

...

(3.30)

Comparing the coefficient of like powers of p, we have

u0(x, t) = e−x +
tα

Γ(1 + α)
,

v0(x, t) = ex +
tβ

Γ
(
1 + β

) ,

u1(x, t) = L−1
[
1
sα

L[v0u0x + u0]
]
,

= − tα

Γ(1 + α)
+

e−xtα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
− e−xtα+β

Γ
(
1 + α + β

) ,

v1(x, t) = −L−1
[
1
sα

L[u0v0x + v0]
]
,

= − tβ

Γ
(
1 + β

) − extβ

Γ
(
1 + β

) − t2β

Γ
(
1 + 2β

) − extα+β

Γ
(
1 + α + β

) ,

u2(x, t) = L−1
[
1
sα

L[v1u0x + v0u1x + u1]
]

= − 2t2α

Γ(1 + 2α)
+

e−xt2α

Γ(1 + 2α)
+

t3α

Γ(1 + 3α)
+

tα+β

Γ
(
1 + α + β

)

+
e−xtα+β

Γ
(
1 + α + β

) +
2t2α+β

Γ
(
1 + 2α + β

) − e−xt2α+β

Γ
(
1 + 2α + β

) +
e−xtα+2β

Γ
(
1 + α + 2β

)

− e−xt2α+βΓ
(
1 + α + β

)
Γ(1 + α)Γ

(
1 + β

)
Γ
(
1 + 2α + β

) +
e−xt2α+2βΓ

(
1 + α + 2β

)
Γ
(
1 + β

)
Γ
(
1 + α + β

)
Γ
(
1 + 2α + 2β

) ,
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v2(x, t) = −L−1
[
1
sα

L[u1v0x + u0v1x + v1]
]

= − tα+β

Γ
(
1 + α + β

) +
extα+β

Γ
(
1 + α + β

) − ext2α+β

Γ
(
1 + 2α + β

) +
2t2β

Γ
(
1 + 2β

)

+
ext2β

Γ
(
1 + 2β

) +
2tα+2β

Γ
(
1 + α + 2β

) +
extα+2β

Γ
(
1 + α + 2β

) +
t3β

Γ
(
3β

)

+
extα+2βΓ

(
1 + α + β

)
Γ(1 + α)Γ

(
1 + β

)
Γ
(
1 + α + 2β

) +
ext2α+2βΓ

(
1 + 2α + β

)
Γ(1 + α)Γ

(
1 + α + β

)
Γ
(
1 + 2α + 2β

) ,
...

(3.31)

and so on; in this manner the rest of component of the solution can be obtained. The solution
of (3.26) and (3.27) in series form is given by

u(x, t) = e−x +
e−xtα

Γ(1 + α)
− t2α

Γ(1 + 2α)
− e−xtα+β

Γ
(
1 + α + β

) +
e−xt2α

Γ(1 + 2α)
+ · · · ,

v(x, t) = ex − extβ

Γ
(
1 + β

) +
t2β

Γ
(
1 + 2β

) − extα+β

Γ
(
1 + α + β

) +
ext2β

Γ
(
1 + 2β

) + · · · .
(3.32)

If we take α = β = 1, the first few components the solution of (3.26) and (3.27) are as follows:

u0(x, t) = e−x + t,

v0(x, t) = ex + t,

u1(x, t) = −t + e−xt +
t2

2
− e−xt2

2
,

v1(x, t) = −t − ext − t2

2
− ext2

2
,

u2(x, t) = − t
2

2
+ e−xt2 +

t3

2
− e−xt3

3
+
e−xt4

8
,

v2(x, t) =
t2

2
+ ext2 +

t3

2
+
ext3

3
+
ext4

8
,

...

(3.33)



Abstract and Applied Analysis 13

and so on. Hence, for this special case, we have

u(x, t) = e−x
(
1 + t +

t2

2!
+
t3

3!
+ · · ·

)
= e−x+t,

v(x, t) = ex
(
1 − t +

t2

2!
− t3

3!
+ · · ·

)
= ex−t,

(3.34)

which was given in [31].

4. Conclusion

In this work, a homotopy perturbation transformation method which is based on homotopy
perturbationmethod and Laplace transform is used to solve fractional nonlinear partial equa-
tions. The nonlinear terms can be easily handled by the use of He’s polynomials. It is worth
mentioning that the method is capable of reducing the volume of the computational work
as compared to the classical methods while still maintaining the high accuracy of the result,
and the size reduction amounts to an improvement of the performance of the approach. The
HPTM can be applied for some other engineering system with less computational work.
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