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This paper investigates both the transient and the steady state of a one-step nth-order oxidation
exothermic reaction in a slab of combustible material with an insulated lower surface and an
isothermal upper surface, taking into consideration reactant consumption. The nonlinear partial
differential equation governing the transient reaction-diffusion problem is solved numerically
using a semidiscretization finite difference technique. The steady-state problem is solved using a
perturbation technique together with a special type of the Hermite-Padé approximants. Graphical
results are presented and discussed quantitatively with respect to various embedded parameters
controlling the systems. The crucial roles played by the boundary conditions in determining the
thermal ignition criticality are demonstrated.

1. Introduction

Analysis of possible development of runaway at production, storage, and use of a chemical
product and subsequent choice of measures that can prevent an accident or mitigate its
consequences are the important tasks of reaction hazards assessment [1]. The kinetic model of
a reaction that describes heat generation plays a crucial role in the complete explosion model.
Although thermal explosion has received much attention in the literature, the vast majority
of investigations have been concerned with homogeneous boundary conditions ranging from
the infinite Biot number case of a constant surface temperature [2] through a range of Biot
numbers to zero [3]. In most of these studies, the determination of critical conditions that
separate explosive and nonexplosive domains of a proceeding reaction and evaluation of
induction period of an explosion if it appears has been the main focus. Moreover, two main
approaches are used for obtaining the necessary data for critical condition. The first approach
is based on direct determination of the explosion characteristics by means of explosive
experiments. This approach is very expensive, dangerous, and time consuming [4]. The
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Figure 1: Geometry of the problem.

second approach involves the application of mathematical theory of thermal combustion.
It involves derivation of appropriate mathematical models that allow major chemical and
physical processes within an exothermic reacting system to be taken into account and
application of sophisticated analytical and numerical techniques to tackle the problem.
Several authors have analysed theoretically the problem of thermal explosion in a reacting
slab; they include Zaturska and Banks [5], Bebernes and Eberly [6] and Makinde [7]. In all
these earlier studies, the combined effect of asymmetric boundary condition and reactant
consumption on the thermal ignition criticality has not been properly reported.

In the present study, the theoretical analysis of Makinde [7] is extended to include the
effect of asymmetric boundary condition on both transient and steady-state exothermic nth-
order oxidation reaction in a slab of combustible material with reactant consumption. This
paper is organized as follows; firstly, the governing partial differential equations for oxidation
reactions are presented and solved numerically using the semidiscretization finite difference
technique known as method of lines. Secondly, the steady-state problem is tackled using
perturbation technique coupled with a special type of the Hermite-Padé approximant in
order to obtain the thermal criticality conditions in the system. Pertinent results are presented
graphically and discussed quantitatively.

2. Mathematical Model

We consider the transient problem of combustible material undergoing an nth-order
oxidation chemical reaction in a slab with insulated lower surface (see Figure1). The
complicated chemistry involved in this problem may be simplified by assuming a one-step
finite-rate irreversible reaction given by

CH; + (i ¥ i)oz —iCO; + JH,0 + Heat 2.1)

[Combustible material + Oxygen — Heat + Carbon dioxide + Water].
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The dimensionless equations that describe the physical situation are given by [2, 3, 5-
7]

00 %0

= = _6y2 +A(1 +£0)" et 140, (2.2)
0 02

a9 = TDapa v ey, 23)
Yy

with initial and boundary conditions as

0(y,0)=0,  ¢(y,0) =0, (2.4)
0Lt =6,  $LD=1, (2.5)
00

5¢qg=a $(0,1) =1, (2.6)

where 1 is the Frank-Kamenetskii parameter, ¢ is the activation energy parameter, f§ is oxygen
consumption rate parameter, a oxygen diffusivity parameter, n is the order of exothermic
chemical reaction, and m is the numerical exponent given such that m = {-2,0,1/2} represent
numerical exponent for sensitised, Arrhenius, and bimolecular kinetics, respectively (see
[6]). Equations (2.2)—(2.6) are obtained after introducing the dimensionless variables and
quantities into the governing energy balance and concentration equations; that is,

¢: (C_CO) QZE(T_TO) 9 :E(Tw_TO)
(Cowo = Co)’ RT? “ RT?
¥, K __ED
Y=o ltooa TR 2.7)
a= K 4 __KRT; _ QAEa*(Cu —Co)" [KTo]™ _e/(rmy)
Dpc,’ DQE(Cy — Co)’ kRT? vl !

where T is the absolute temperature, f is the time, T, is the slab upper surface temperature,
Cy is the slab surface oxygen concentration, Ty is the slab initial temperature, Cy is the initial
oxygen concentration in the material, 0 is the dimensionless temperature, 6, is the slab
upper surface dimensionless temperature, ¢ is the dimensionless oxygen concentration, (x, v)
represents the Cartesian coordinates, p is the density, ¢, specific heat at constant pressure, k
is the thermal conductivity of the material, Q is the exothermicity, A is the rate constant,
E is the activation energy, R is the universal gas constant, [ is the Planck number, K is
the Boltzmann constant, v is the vibration frequency, a is the slab width, ¥ is the distance
measured transverse direction, and D is the diffusivity of oxygen in the material.
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3. Numerical Procedure

Here we employed the method of lines as our solution technique [8]. The governing
equations (2.2)-(2.3) with the initial and boundary conditions (2.4)—(2.6) are transformed
into a system of ODEs using finite differences for the spatial derivatives. Let Ay = 1/N,
yi=({-1)Ay,1<i <N +1;and 6,(t), ¢i(t) represents O(y;, t), (yi, t) respectively, then the
semidiscrete system for the problem reads

do; 1  on L m g 0/ (1+e6;)
= (sz(el+1 20, + 0,1) + A(1 + £6;)™ ! [e ] 3.1)
dgi 1 m yn[ 6,/ (1+¢6,)
a = (A—y)2(¢,+1 ~ 2+ pia) — (1 +€6,)" ! [e | (3.2)
with initial conditions
0:(0)=0,  $:i(0)=0, 1<i<N+1 (3.3)

The first and last grid points are modified to incorporate the boundary conditions; that is,
01 =02,  Ona=0u, (3.4)
$r1=1, PN =1 (3.5)

The MAPLE program is employed to solve (3.1)—(3.5) using a fourth-order Runge-Kutta
method.

4. Steady-State Analysis

A body of chemically reacting material releasing heat to its surroundings may achieve a safe
steady state where the temperature of the body reaches some moderate value and stabilizes.
Once a steady state is attained, (2.2)-(2.6) then become

40 +A(1+£0)"¢me? 1+0) = o (4.1)
dy? !
dz(i) m an _0/(1+£0
i AB(1 +€0) ¢ ) =0, (4.2)
with
0(1)=0,,  ¢(1)=1, (4.3)

de
@(0) =0, $(0)=1. (4.4)
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The nonlinear nature of (4.1)-(4.4) precludes its exact solution. However, it is convenient to
form a power series expansion in the Frank-Kamenetskii parameter; \, that is,

0= ; 0\,  p= ZOL Pill. (4.5)

Substituting the solution series (4.5) into (4.1)-(4.4) and collecting the coefficients of like
powers of A, we obtained and solved the equations for the coefficients of solution series
iteratively. The solutions for the temperature and the oxygen concentration in the slab are
given as

Q(y) — Qw _ %(1 + gew)meew/(1+59w) <y2 _ 1) + O(./\2>,
" (4.6)
O(y) =1+ 5 (1+e0,)"e/ "0y (y ~ 1) + O(1?).

Using MAPLE, we obtained the first few terms of the above solution series. It is well known
that this power series solution is valid for very small parameter values. However, by using
the Hermite-Padé approximation technique [9], the usability of the solution series is extended
beyond small parameter values as illustrated in the following section.

5. Thermal Criticality Determination

When the rate of heat generation in the reacting slab exceeds the rate of heat loss to
the surroundings, then ignition can occur. Hence, the evaluation of critical regimes that
separate the regions of explosive and nonexplosive ways of chemical reactions is extremely
important from the application point of view. In order to achieve this goal, we employ a
simple technique of series summation and improvement based on the generalization of Padé
approximation technique (Baker and Graves-Morris [10]) and may be described as follows.
Let

N
Un() = Yaki + O(AN+1>, as A — 0, (5.1)
i=0

be a given partial sum. It is important to note here that (5.1) can be used to approximate any
output of the solution of the problem under investigation (e.g., the series for the wall heat
flux parameter in terms of the Nusselt number Nu = -d0/dy at y = 1), since everything can
be Taylor expanded in the given small parameter. Assume the U (\) is a local representation
of an algebraic function of A in the context of nonlinear problems; we construct a multivariate
series expression of the form

d m
Fa(L,U) = DD fnj A" U, (5.2)
m=1;j=0
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Table 1: Computations showing the criticality procedure rapid convergence (f =n=1,0, = € =0).

d N Nu=-0'(1) Aen
2 4 2.293830707 1.07039427340
3 8 2.289550271 1.07040213355
4 13 2.289549038 1.07040198565
5 19 2.289549037 1.07040198791
6 26 2.289549037 1.07040198791
Table 2: Computations showing thermal ignition criticality for different parameter values.
p n Ow m £ Nu=-6'(1) Ae
0.1 1 0.0 0.0 0.00 2.025223122 0.8941780502
0.5 1 0.0 0.0 0.00 2.134510046 0.9640287456
1.0 1 0.0 0.0 0.00 2.289549037 1.0704019879
0.1 3 0.0 0.0 0.00 2.074810972 0.9265325131
0.1 5 0.0 0.0 0.00 2.122974429 0.9600824416
0.1 1 0.5 0.0 0.00 2.025223122 0.5423464026
0.1 1 1.0 0.0 0.00 2.025223122 0.3289497214
0.1 1 0.0 0.5 0.01 2.057311239 0.8993850447
0.1 1 0.0 -2.0 0.01 2.112233348 0.9231510103
0.1 1 0.0 0.0 0.01 2.068063491 0.9040392715
0.1 1 0.0 0.0 0.10 2.600639145 1.0110740529
of degree d > 2, such that
OF4 _ _ N+1 5.3
S5 00=1 Fd()t,uN)_oQ ) as A — 0. (5.3)

The requirement (5.3) yields fo;1 = 1 ensuring that the polynomial F; has only one root
which vanishes at A = 0 and reduces the problem to a system of N linear equations for
the unknown coefficients of F,;. The entries of the underlying matrix depend only on the N
given coefficients a; in (5.1); consequently, we take N = (d* +3d - 2)/2, so that the number
of equations equals the number of unknowns. The polynomial F, is a special type of the
Hermite-Padé approximant [7, 9, 11] and is then investigated for bifurcation and criticality
conditions using the Newton diagram [12]. The chief merit of this method is its ability to
reveal the solution branches, criticality values as well as extending the usability of the power
series solution beyond small parameter values.

6. Results and Discussion

Computational results in Table 1 illustrate the rapid convergence of Hermite-Padé approxi-
mation procedure highlighted in the above section with gradual increase in the number of
series coefficients utilized for the approximants. In Table 2, we observed that the magnitude
of thermal ignition criticality (\.) increases with an increase in the parameter values of,
p,n, ¢ and a decrease in the slab upper surface temperature parameter 6,,. Consequently,
a delay in the development of thermal runaway in the reacting slab will be experienced,
hence, enhances thermal stability of the system. Moreover, it is noteworthy from Table 2 that
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Figure 2: A slice of approximate bifurcation diagram in the (A, Nu(fp=n=1, 6, = € = 0)) plane.
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Figure 3: Temperature and oxygen concentration profiles form =05, n=2,a==1=1, 6, =0, e=0.1.
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Figure 5: Temperature and oxygen concentration profiles forn =f=1A=1, 6, =0, ¢ =0.1.
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Figure 6: Temperature and oxygen concentration profiles form =0.5, A=p=1, 68, =0, € =0.1.

thermal ignition occur faster in a bimolecular (m = 0.5) type of exothermic oxidation reaction
as compared to the Arrhenius (m = 0) and sensitised (m = -2) type of reaction.

A slice of the bifurcation diagram for 0 < ¢ <« 1 in the (A, Nu) plane is shown in
Figure 2. It represents the qualitative change in the thermal system as parameter A increases.
In particular, for 0 < e « 1, f > 0, and n > 0, there is a critical value \. (a turning point)
such that, for 0 < A < A, there are two solutions (labeled I and II). The upper and lower
solution branches occur due to nonlinearity in model equations for energy and concentration
balance. When A > . the system has no real solution and displays a classical form indicating
thermal runaway. As exothermic reaction due to oxidation chemical kinetics increases, the
slab temperature increases uncontrollably until it ignites.

6.1. Effect of Various Parameters on Temperature and
Oxygen Concentration Profiles

The effects of various thermophysical parameters on the slab temperature and oxygen
concentration profiles are displayed in Figures 3, 4,5, 6,7, 8, and 9. Generally, the temperature
is maximum at the slab lower insulated surface and decreases transversely with minimum
value at its upper surface. Meanwhile, the oxygen concentration is lowest along the slab
centerline (y = 0.5) and maximum at the slab surfaces. This can be attributed to the
fact that oxygen is utilized within the slab during exothermic chemical kinetics and fresh
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Figure 7: Temperature and oxygen concentration profiles form =0.5, n=A=p=1, 0, =0.

supply of oxygen from the surrounding is obtained at the slab surfaces. The evolution of
the temperature and oxygen concentration in the slab is illustrated in Figures 3 and 4. It is
noteworthy that the slab temperature increases while the oxygen concentration decreases
gradually with time until it attains its steady-state value. Once the steady-state value is
attained, the slab temperature and oxygen concentration remain the same for a given set of
parameter values with respect to a further increase in time. In Figure 5, we observed that the
slab temperature is highest during bimolecular reaction (m = 0.5) and lowest for sensitized
reaction (m = -2), hence confirming the earlier results in Table 2. Consequently, oxygen
concentration in the slab is lowest during bimolecular reaction and highest for sensitized
reaction. In Figures 6 and 7, we observed that the slab temperature decreases while oxygen
concentration increases with an increase in the reaction order index (1) and activation energy
parameter (¢). This clearly implies that a higher-order exothermic oxidation chemical reaction
will be more thermally stable than a lower one. Figures 8 and 9 illustrated the effect of the
Frank-Kamenetskii parameter (1) and the slab upper surface temperature parameter (0,,)
on the slab temperature and oxygen concentration. The slab temperature increases while the
oxygen concentration decreases with an increase in the parameter values of A and 6,,. As
A and 6, increase, the oxygen consumption within the slab increases and the slab internal
heat generation due to exothermic oxidation reaction increases, this invariably leads to an
elevation in the slab temperature.
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Figure 8: Temperature and oxygen concentration profiles form =05, n=p=1, 0, =0, € =0.1.

7. Conclusions

We have computationally investigated the one-step nth -order oxidation exothermic reaction
in a slab with an insulated lower surface and an isothermal upper surface. The model,
which consists of a system of coupled heat and mass transfer differential equations,
has been solved numerically using a semi-discretization technique and analytical using a
perturbation technique coupled with a special type of the Hermite-Padé approximants. Our
results revealed, among others, the thermal ignition criticality conditions and with the right
combination of thermophysical parameters controlling the system, the thermal runaway can

be prevented.
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