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A Rogalski-Cornet type inclusion theorem based on two Hausdorff locally convex vector spaces
is proved and composed of two parts. An example is presented to show that the associated set-
valued map in the first part does not need any conventional continuity conditions including
upper hemicontinuous. As an application, solvability results regarding an abstract von Neumann
inclusion system are obtained.

1. Introduction

The Rogalski-Cornet inclusion theorem, based on a Hausdorff locally convex vector space
and as an useful tool to deal with some inclusion problems described by an upper
hemicontinuous set-valued map, can be stated as follows.

Theorem 1.1 (see [1]). Let X be a convex compact subset of a Hausdorff locally convex vector space
U, and S an upper hemicontinuous set-valued map fromX to U with nonempty closed convex values.
If S is outward, that is, ∀p ∈ U∗, ∀x ∈ X with 〈p, x〉 = infy∈X〈p, y〉, 〈p, x〉 ≥ infy∈Sx〈p, y〉, then
SX = ∪x∈XSx ⊇ X.

Two comments are in order.
(1) Theorem 1.1 can be used to deal with those inclusion problems described by a

set-valued map whose domain and range are contained in a same space. For example, if Rn
+

denotes the set of all nonnegative vectors of the n dimensional Euclidean space Rn, c ∈ Rn
+ is

an expected demand of the market, X ⊂ Rn
+ some enterprise’s admission output bundle set,

and A or F is the enterprise’s consuming map or correspondence (namely, set-valued map)
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from X to Rn
+. Then a class of Leontief type input-output inclusion system, as a nonlinear

extension to the classical input-output equation [2–4], is composed of

(a) x ∈ X s.t. x −Ax = c,

(b) x ∈ X s.t. x − Fx � c,
(1.1)

and has been studied by Sandberg [5] and Fujimoto [6]with the nonlinear analysis methods.
Moreover, some primary extensions to Theorem 1.1, also based on a Hausdorff locally convex
vector space, have been made by Liu and Zhang [7] such that the associated correspondence
S no longer needs the upper hemicontinuous condition, and the obtained results (see [7])
also have been used to deal with the solvability of (1.1)(b) (see [8]).

(2) However, if a problem is concerned with two different spaces, then Theorem 1.1 is
generally useless even if this problem can be changed into an inclusion system. For example,
assume that c ∈ Rm

+ is an expected demand of the market, X ⊂ Rn
+ is some enterprise’s

raw material bundle set, and B,A (or G,F) are the enterprise’s output and input maps (or
correspondences) from X to Rm

+ , respectively. If the semiordering in Rm is defined by y1 ≥ y2

iff y1 − y2 ∈ Rm
+ , then the following von Neumann type input-output inequality system,

composed of a single-valued inequality and a set-valued inequality,

(a) x ∈ X s.t. Bx −Ax ≥ c,

(b) x ∈ X s.t. ∃y ∈ Gx, ∃z ∈ Fx with y − z ≥ c,
(1.2)

has been studied by Liu and Zhang [9], and Liu [10, 11]with the nonlinear analysis methods
including the minimax and saddle point techniques attributed to [1, 12, 13]. We claim that
(1.2) also includes some economic growth problems. For example, if we restrict λ ≥ λ0 > 0
(where λ0 may be viewed as the minimal growth fact of the output regarding input accepted
by the enterprise) and replace A by λA, respectively, then (1.2)(a) reduces to a single-valued
vonNeumann economic growthmodel λ ≥ λ0, s.t. ∃x ∈ X with Bx ≥ λAx+c, which has been
studied by Medvegyev [14], and Bidard and Hosoda [15]. Some other research regarding
economic growth has also been made by Jones [16, 17], and Jones, Williams [18]. It is easy to
see that (1.2)(b) yields a set-valued economic growth problem. However, up to now, no any
corresponding references can be seen. This shows that to study (1.2)(b) is also useful.

Returning to (1.2), if we set S1x = Ax + Rm
+ and S2x = Fx + Rm

+ for x ∈ X, then (1.2)
equals to the following inclusion system:

(a) x ∈ X s.t. Bx − S1x � c,

(b) x ∈ X s.t. Gx − S2x � c,
(1.3)

which is difficult to be handled by Theorem 1.1 except for n = m. Moreover, the following

(a) x ∈ X s.t. Bx −Ax = c,

(b) x ∈ X s.t. Gx − Fx � c
(1.4)
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(as an inclusion system described by the preceding B,A or G,F, which is clearly more
practical than (1.1) and more fine than (1.2)) can also hardly be tackled by Theorem 1.1 even
along with the minimax method.

Now let v ∈ Rm, Y ⊂ Rm, and S : X ⊂ Rn → Rm be a set-valued map, then (1.2)–(1.4)
(equivalently, (1.3)-(1.4)) can be viewed as the special examples of the first inclusion in the
following von Neumann type inclusion system

(a) x ∈ X s.t. Sx � v, that is, v ∈ SX,

(b) x ∈ X s.t. Sx ∩ Y /= ∅, that is, SX ∩ Y /= ∅,

(c) ∀y ∈ Y, ∃x ∈ X s.t. Sx � y, that is, Y ⊆ SX.

(1.5)

We claim (1.5) an abstract von Neumann inclusion system if Rn and Rm are replaced by two
Hausdorff locally convex vector spaces U and V , respectively.

In the sequel, we attempt to extend Theorem 1.1 to a new situation, that is, to present
a Rogalski-Cornet type theorem composed of existence and continuity parts (as the main
result proved in Section 3), such that the abstract von Neumann inclusion system (1.5) could
be tackled, which means that the domain and range of S may probably be contained in two
different Hausdorff locally convex vector spacesU and V , respectively. Since Theorem 15.1.9
in [1] and Theorem 6.4.10 in [12] are such type of results while their correspondences
need the upper hemicontinuous assumption, and a new paper completed by Lignola [19]
provides some Ky Fan inequalities and Nash equilibrium points without semicontinuity
and compactness, we concentrate our attention to the instance such that the associated
correspondence no longer needs any conventional continuity conditions including upper
hemicontinuous.

The paper is arranged as follows. We introduce some necessary concepts in the next
section. In Section 3, we first prove a Rogalski-Cornet type inclusion theorem based on two
different Hausdorff locally convex vector spaces, followed by an example to show that
the first part of this theorem does not need any conventional continuity conditions such
as upper semicontinuous, lower semicontinuous, and upper hemicontinuous. Then, as an
application of this theorem, we provide some solvability results for (1.5). Finally we present
the conclusion in Section 4.

2. Preliminary

In the sections below, without any special explanations, we always assume U,V are two
Hausdorff locally convex vector spaces, U∗, V ∗ their duals and 〈·, ·〉 the duality paring on
〈U∗, U〉 or 〈V ∗, V 〉. We need some concepts with respect to a function f defined on U or
V such as convex or concave, upper semicontinuous or lower semicontinuous (in short,
u.s.c. or l.s.c.) and continuous, and concepts to a set-valued map S from a subset X ⊂ U
to V including closed, upper, and lower semicontinuous (in short, u.s.c. and l.s.c.) and
continuous, whose definitions can be consulted in [1, 12, 13], so the details are omitted
here.
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Let Z ⊂ V and q ∈ V ∗. Denote

σ�(Z, q
)
= inf

y∈Z
〈
q, y
〉
, σ�(Z, q

)
= sup

y∈Z

〈
q, y
〉
,

∂
(
Z, q
)
=
{
y ∈ Z :

〈
q, y
〉
= σ�(Z, q

)} (
the support set of Z at q

)
.

(2.1)

We also need the following.

Definition 2.1. (see [1, 12, 13]). Let U be a Hausdorff topological space and S a set-valued
map from U to V . Then S is said to be upper hemicontinuous (in short, u.h.c.) if for any
q ∈ V ∗, x �→ σ�(Sx, q) = supv∈Sx〈q, v〉 is u.s.c. on U.

3. Main Theorem and Application to (1.5)

In this section, we always assume that

(a) X ⊂ U, Y ⊂ V are two nonempty convex compact subsets,

(b) S : X → V is a set valued map with nonempty closed convex values,

(c) L ∈ L(U,V ) is a continuous linear map from U to V.

(3.1)

Under some additional assumptions, we first prove a Rogalski-Cornet type inclusion
theorem for a set-valued map S from X ⊂ U to V with and without u.h.c. condition, then
present an application of this theorem to the abstract von Neumann inclusion system (1.5).

3.1. Main Theorem and a Counterexample

The Rogalski-Cornet type inclusion theorem we will prove is the following.

Theorem 3.1.

(A) Results without u.h.c. Condition.

(i) Existence. (1) Assume that

(a) ∀q ∈ V ∗,
{
x ∈ X : σ�(Sx, q

) ≤ σ�(Y, q
)}

is closed,

(b) ∀q ∈ V ∗, ∀x ∈ X with Lx ∈ ∂
(
LX, q

)
, σ�(Sx, q

) ≤ σ�(Y, q
)
,

(3.2)

then Y ∩ SX /= ∅, that is, there exist y ∈ Y and x ∈ X such that y ∈ Sx.
(2) If Y0 is the set of all y ∈ Y such that

(a) ∀q ∈ V ∗,
{
x ∈ X : σ�(Sx, q

) ≤ 〈q, y〉
}
is closed,

(b) ∀q ∈ V ∗, ∀x ∈ X with Lx ∈ ∂
(
LX, q

)
, σ�(Sx, q

) ≤ 〈q, y〉,
(3.3)

then Y0 ⊂ SX, that is, for each y ∈ Y0, there exists x ∈ X such that y ∈ Sx.
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(ii) Continuity. Assume that Y1, the set of all y ∈ Y such that

(a) ∀q ∈ V ∗, ∀c ≥ 0,
{
x ∈ X : σ�(Sx, q

) ≤ 〈q, y〉 + c
}
is closed,

(b) (3.3)(b) holds also,
(3.4)

is nonempty, then Y1 ⊆ SX. Moreover, Y1 is compact, and the inverse of S restricting to Y1

defined by

S−1
Y1

: Y1 −→ X : y �−→ S−1
Y1

(
y
)
=
{
x ∈ X : y ∈ Sx

}
(3.5)

is a u.s.c. and u.h.c. set-valued map.

(B) Results with u.h.c. Condition.

Assume that S is u.h.c., then the following are true.

(i) If (3.2)(b) holds, then Y ∩SX is nonempty and compact, and the inverse of S restricting to
Y ∩ SX defined by

S−1
Y∩SX : Y ∩ SX −→ X : y �−→ S−1

Y∩SX
(
y
)
=
{
x ∈ X : y ∈ Sx

}
(3.6)

is a u.s.c. and u.h.c. set-valued map.

(ii) If Y1, the set of all y ∈ Y satisfying (3.3)(b), is nonempty, then Y1 is compact with Y1 ⊂ SX,
and the inverse of S restricting to Y1 defined by (3.5) is also a u.s.c and u.h.c. set-valued
map.

To prove this theorem, we need some known results and state them in lemmas as
follows.

Lemma 3.2 (see [1]). Let K be a convex compact subset of U and let φ : K × K → R satisfy
that ∀y ∈ K, x �→ φ(x, y) is lower semicontinuous, ∀x ∈ K, y �→ φ(x, y) is quasi-concave, and
supy∈Kφ(y, y) ≤ 0. Then there exists x ∈ K such that supy∈Kφ(x, y) ≤ 0.

Lemma 3.3 (see [12]). Let U be a Hausdorff topological space, V a compact Hausdorff topological
space, and S a closed set-valued map from U to V . Then S is u.s.c.

Lemma 3.4 (see [12]). Let U be a Hausdorff topological space, V supplied with the weak topology
σ(V, V ∗), and S a u.s.c. set-valued map from U to V . Then S is u.h.c.

Remark 3.5. Since the original vector topology τ on V is stronger than the weak topology
σ(V, V ∗), this Lemma is also true if V is supplied with the original topology τ .

Lemma 3.6 (see [12]). Let U be a Hausdorff topological space, V supplied with the weak topology,
and let S be a u.h.c. set-valued map fromU to V with nonempty closed convex values. Then the graph
of S denoted by graph S is closed, that is, S is closed.
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With these lemmas, we proceed to prove Theorem 3.1.

Proof. Proof of Part A. (i) First we prove (i).
(1) Under the assumptions (3.1) and (3.2), we will prove Y ∩ SX /= ∅ by contradiction.

If Y ∩ Sx = ∅ for all x ∈ X, then by (3.1), we see that for each x ∈ X, Sx − Y is closed convex
with 0 ∈ Sx − Y . So the Hahn-Banach separation theorem implies that

∀x ∈ X, ∃q = qx ∈ V ∗ s.t. σ�(Sx − Y, q
)
= inf

v∈Sx−Y
〈
q, v
〉
>
〈
q, 0
〉
= 0. (3.7)

Setting X�(q) = {x ∈ X : σ�(Sx − Y, q) > 0} for q ∈ V ∗, from (3.7) we have
X =

⋃
q∈V ∗ X�(q). Since X is compact and X�(q) = {x ∈ X : σ�(Sx, q) − σ�(Y, q) > 0} =

X \ {x ∈ X : σ�(Sx, q) ≤ σ�(Y, q)}, by (3.2)(a) we know that {X�(q) : q ∈ V ∗} forms an open
covering of X. Therefore, X =

⋃n
i=1 X

�(qi) holds for some finite subset {q1, q2, . . . , qn} ⊂ V ∗,
and there exists a continuous partition of unit {α1, α2, . . . , αn} associated to this finite covering
of X such that

(a) αi(x) (1 ≤ i ≤ n) are nonnegative continuous on X with
n∑

i=1

αi(x) = 1,

(b) suppαi ⊂ X�(qi
)
, hence, σ�(Sx − Y, qi

)
> 0 if αi(x) > 0 (1 ≤ i ≤ n),

(3.8)

where suppαi = {x ∈ X : αi(x) > 0} is the closure of the set {x ∈ X : αi(x) > 0}.
Define ϕ(·, ·) on X ×X by

ϕ
(
x, y
)
=

〈
n∑

i=1

αi(x)qi, L
(
x − y

)
〉

,
(
x, y
) ∈ X ×X. (3.9)

Clearly, ϕ satisfies the assumptions of Lemma 3.2. Indeed, it is easy to see that for any y ∈ X,
x �→ ϕ(x, y) is continuous, for any x ∈ X, y �→ ϕ(x, y) is affine, and supy∈X ϕ(y, y) = 0. So
there exists x ∈ X such that supy∈X ϕ(x, y) ≤ 0. Take q =

∑n
i=1 αi(x)qi and I = {i ∈ {1, 2, . . . , n} :

αi(x) > 0}, then from (3.8) and (3.9) we know that I /= ∅ and 0 ≤ 〈q, Lx〉 − infy∈X〈q, Ly〉 =
supy∈X 〈q, L(x − y)〉 = supy∈Y ϕ(x, y) ≤ 0. This further implies

(a)
〈
q, Lx

〉
= inf

y∈X
〈
q, Ly

〉
= σ�(LX, q

)
, that is, Lx ∈ ∂

(
LX, q

)
,

(b) ∀i ∈ I, αi(x) > 0, σ�(Sx − Y, qi
)
> 0, q =

∑

i∈I
αi(x)qi.

(3.10)

Associating this with (3.2)(b), we obtain that

0 ≥ σ�(Sx, q
) − σ�(Y, q

)
= σ�

(

Sx − Y,
∑

i∈I
αi(x)qi

)

≥
∑

i∈I
αi(x)σ�(Sx − Y, qi

)
> 0.

(3.11)

This is a contradiction. Therefore, Y ∩ SX /= ∅.
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(2) Statement (2) immediately follows from (1) because for each y ∈ Y0, {y} is
compact, and (3.2) holds for Y = {y} because of the assumption (3.3).

(ii) Then we prove (ii).

By (3.4) and statement (i)(2), it is easy to see that Y1 ⊆ SX, so the left is to show that
Y1 is compact and S−1

Y1
defined by (3.5) is u.s.c. and u.h.c.

(1) Since Y is compact and Y1 ⊆ Y , it is sufficient to verify that Y1 is closed, that is, to
verify that if {yλ : λ ∈ Λ} ⊂ Y1 is a generalized sequence such that yλ → y0 ∈ Y , then y0 ∈ Y1.
To this end, for each q ∈ V ∗, y ∈ Y and each c ≥ 0, we define

(a) X�(S, q, y, c
)
=
{
x ∈ X : σ�(Sx, q

) ≤ 〈q, y〉 + c
}
,

(b) X�(S, q, y
)
= X�(S, q, y, 0

)
,

(3.12)

and will prove that

(a) ∀q ∈ V ∗, ∀c ≥ 0, X�(S, q, y0, c
)
is closed,

(b) ∀q ∈ V ∗, ∀x ∈ X with Lx ∈ ∂
(
LX, q

)
, x ∈ X�(S, q, y0

)
,

(3.13)

which implies by (3.4) and (3.12) that y0 ∈ Y1, and thus Y1 is closed.
(a) First we prove (3.13)(a). Suppose that q ∈ V ∗, c ≥ 0 are fixed, and {xα : α ∈ I} ⊂

X�(S, q, y0, c) is a generalized sequence such that xα → x0. By (3.12)(a) we have

σ�(Sxα, q
) ≤ 〈q, y0

〉
+ c, ∀α ∈ I. (3.14)

Since yλ → y0, for each ε > 0 there exists λ0 ∈ Λ such that

∣∣〈q, yλ0 − y0
〉∣∣ <

ε

2
. (3.15)

Associating this with (3.14), we obtain

σ�(Sxα, q
) − 〈q, yλ0

〉 − c − ε

2
≤ σ�(Sxα, q

) − 〈q, y0
〉 − c −

(ε
2
− ∣∣〈q, y0 − yλ0

〉∣∣
)

≤ 0 for any α ∈ I.

(3.16)

As yλ0 ∈ Y1, from (3.4)(a), (3.12)(a), and (3.16), we conclude that {xα} ⊆ X�(S, q, yλ0 , c + ε/2)
and x0 ∈ X�(S, q, yλ0 , c + ε/2) because X�(S, q, yλ0 , c + ε/2) is closed. Hence, σ�(Sx0, q) ≤
〈q, yλ0〉 + c + ε/2, which together with (3.15) yields

σ�(Sx0, q
) − 〈q, y0

〉 − c − ε ≤ σ�(Sx0, q
) − 〈q, yλ0

〉 − c − ε

2
−
(ε
2
− ∣∣〈q, yλ0 − y0

〉∣∣
)
≤ 0.

(3.17)
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By taking ε → 0, from (3.17)we obtain that σ�(Sx0, q) ≤ 〈q, y0〉+ c. Hence, x0 ∈ X�(S, q, z0, c)
and (3.13)(a) follows.

(b) Then we prove (3.13)(b). Suppose that q ∈ V ∗, x ∈ X satisfy Lx ∈ ∂(LX, q), and
(3.15) holds for this q and some λ0 ∈ Λ. Since yλ0 ∈ Y1, by (3.4)(b), we have σ�(Sx, q) ≤
〈q, yλ0〉. In view of (3.15), we get

σ�(Sx, q
) − 〈q, y0

〉 ≤ σ�(Sx, q
) − 〈q, yλ0

〉
+
∣
∣〈q, yλ0 − y0

〉∣∣ ≤ ε

2
. (3.18)

Thus, σ�(Sx, q) ≤ 〈q, y0〉 because ε is arbitrary. This shows that x ∈ X�(S, q, y0) and (3.13)(b)
is also true. Therefore, y0 ∈ Y1.

(2) To prove the continuity of S−1
Y1
, by Lemmas 3.3 and 3.4 and Remark 3.5, it is

sufficient to verify that S−1
Y1

: Y1 → X(⊂ U) is closed because X is compact. Assume that
{(yα, xα) : α ∈ I} ⊂ graph S−1

Y1
satisfy (yα, xα) → (y0, x0) ∈ Y1 ×X, then yα ∈ Sxα (α ∈ I). This

implies that

∀q ∈ V ∗, ∀α ∈ Λ, σ�(Sxα, q
) ≤ 〈q, yα

〉
. (3.19)

Let q ∈ V ∗ be fixed. Since yα → y0 ∈ Y1, for any ε > 0, there exists α0 ∈ I such that |〈q, yα −
y0〉| < ε for α � α0, which together with (3.19) yields

σ�(Sxα, q
) − 〈q, y0

〉 − ε ≤ σ�(Sxα, q
) − 〈q, yα

〉 − (ε − ∣∣〈q, yα − y0
〉∣∣) ≤ 0 (α � α0).

(3.20)

Therefore, {xα : α � α0} ⊂ X�(S, q, y0, ε). This implies x0 ∈ X�(S, q, y0, ε) because y0 ∈ Y1 and
thus X�(S, q, y0, ε) is closed. Hence, σ�(Sx0, q) ≤ 〈q, y0〉 + ε. By letting ε → 0, it follows that
σ�(Sx0, q) ≤ 〈q, y0〉 holds for any fixed q ∈ V ∗. Since Sx0 is closed convex by assumption
(3.1), we have y0 ∈ Sx0 (also thanks to the Hahn-Banach separation theorem). Combing this
with the fact y0 ∈ Y1, we conclude that (y0, x0) ∈ graph S−1

Y1
. Therefore, S−1

Y1
defined by (3.5) is

closed, and statement (ii) follows.
Proof of Part B. Since S is u.h.c., by Definition 2.1 we know that for each q ∈ V ∗,

x �→ σ�(Sx, q) = −σ�(Sx,−q) is lower semicontinuous. Hence the lower sections {x ∈ X :
σ�(Sx, q) ≤ σ�(Y, q)} and {x ∈ X : σ�(Sx, q) ≤ 〈q, y〉 + c} of the function x �→ σ�(Sx, q) are
closed in X for all q ∈ V ∗, y ∈ Y and all c ∈ R1. This implies that all the conditions (a) from
(3.2) to (3.4) are satisfied, and thus all the statements of part (A) are true. So the remaining is
to show that both Y ∩ SX and graph S−1

Y∩SX (where S−1
Y∩SX is defined by (3.6)) are closed also

thanks to Lemmas 3.3 and 3.4 and Remark 3.5.
(1) Assume that {yα : α ∈ I} is a generalized sequence of Y ∩ SX with yα → y0, then

y0 ∈ Y (because Y is compact), and for each α ∈ I there exists xα ∈ X such that yα ∈ Sxα. AsX
is compact, choosing a generalized subsequence if necessary, we may assume xα → x0 ∈ X.
On the other hand, it is easy to see that in Definition 2.1, if τ denotes the original vector
topology on V , then V can be supplied with any compatible topologies T of τ including the
weak topology σ(V, V ∗) because (V,T)∗ = (V, σ(V, V ∗))∗ = V ∗. Associating this with (3.1)(b)
and using Hahn-Banach’s separation theorem, we conclude that S : X ⊂ U → V is also
a u.h.c. correspondence with nonempty closed convex values when V is supplied with the
weak topology σ(V, V ∗), which implies by Lemma 3.6 that S is closed. Therefore, y0 ∈ Sx0

and Y ∩ SX is closed.
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(2) Assume that {(yα, xα) : α ∈ Λ} ⊂ graph S−1
Y∩SX is a generalized sequence such that

(yα, xα) → (y0, x0), then y0 ∈ Y ∩SX (because Y ∩SX is closed), x0 ∈ X and yα ∈ Sxα (α ∈ Λ).
Thus, y0 ∈ Sx0 by the closeness of S, and S−1

Y∩SX is closed. This completes the proof.

Remark 3.7. We claim that the part (A) of Theorem 3.1 does not need any conventional
continuity conditions such as u.s.c., l.s.c. and u.h.c. See the following counterexample.

Example 3.8. Let U = R,V = Rn (n ≥ 2), ei = (

i
︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0) (i = 1, 2, . . . , n), X =

[0, 1], Y = [0, 1]n, and let Q0 be the set of all rational numbers of [0, 1], P0 = [0, 1] \ Q0.
Assume that k ∈ {1, 2, . . . , n} is a fixed number, L a single-valued map from R1 to Rn, and S a
set-valued map from X to Rn defined by

Lx = xek, for x ∈ R1, Sx =

⎧
⎨

⎩

[x − 3, x + 4]n if x ∈ Q0,

[x − 4, x + 3]n if x ∈ P0.
(3.21)

Thenwe have the following (i) It is easy to see that L ∈ L(R1, Rn) (i.e., L is a continuous linear
map from R1 to Rn), Sx is a nonempty convex compact subset of Rn for each x ∈ X, and S is
not u.s.c. or l.s.c. at any point of X. It can also be shown that S is not u.h.c. on X. Indeed, if
q = (q1, q2, . . . , qn) ∈ V ∗ = Rn with qi > 0 (i = 1, 2, . . . , n), then x �→ σ#(Sx, q) is not u.s.c. at any
points of P0 because

σ�(Sx, q
)
= sup
(y1,y2,...,yn)∈Sx

n∑

i=1

〈
qi, yi

〉
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1

qi(x + 4) if x ∈ Q0,

n∑

i=1

qi(x + 3) if x ∈ P0.

(3.22)

(ii) Now we verify that (3.2)–(3.4) hold for this example.
(1) It is easy to see that ∀p ∈ R1, ∀x ∈ X = [0, 1], and ∀y ∈ [0, 1], we have

σ�([x − 3, x + 4] − [0, 1], p
)
=

⎧
⎨

⎩

p(x − 4) < 0, if p > 0,

p(x + 4) < 0, if p < 0,

σ�([x − 3, x + 4] − y, p
)
=

⎧
⎨

⎩

p
(
x − 3 − y

)
< 0, if p > 0,

p
(
x + 4 − y

)
< 0, if p < 0,

σ�([x − 4, x + 3] − [0, 1], p
)
=

⎧
⎨

⎩

p(x − 5) < 0, if p > 0,

p(x + 3) < 0, if p < 0,

σ�([x − 4, x + 3] − y, p
)
=

⎧
⎨

⎩

p
(
x − 4 − y

)
< 0, if p > 0,

p
(
x + 3 − y

)
< 0, if p < 0.

(3.23)
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Since
∏n

i=1Ai−
∏n

i=1Bi =
∏n

i=1(Ai−Bi) and σ�(
∏n

i=1Fi, q) =
∑n

i=1 σ
�(Fi, qi) forAi, Bi, Fi ⊂ R1 (i =

1, 2, . . . , n) and q = (q1, q2, . . . , qn) ∈ Rn, from (3.23) and using the fact that σ�(F0, 0) = 0 for any
F0 ⊆ R1, we obtain that ∀x ∈ X = [0, 1], ∀q = (q1, q2, . . . , qn) ∈ Rn and ∀y = (y1, y2, . . . , yn) ∈
Y = [0, 1]n,

σ�(Sx − Y, q
)
=

n∑

i=1

σ�([x − 3, x + 4] − [0, 1], qi
) ≤ 0,

σ�(Sx − y, q
)
=

n∑

i=1

σ�([x − 3, x + 4] − yi, qi
) ≤ 0,

if x ∈ Q0, (3.24)

σ�(Sx − Y, q
)
=

n∑

i=1

σ�([x − 4, x + 3] − [0, 1], qi
) ≤ 0,

σ�(Sx − y, q
)
=

n∑

i=1

σ�([x − 4, x + 3] − yi, qi
) ≤ 0,

if x ∈ P0. (3.25)

Both (3.24) and (3.25) imply that

∀q ∈ Rn, ∀y ∈ Y, ∀c ≥ 0,

{
x ∈ X : σ�(Sx, q

) ≤ σ�(Y, q
)}

= [0, 1],

{
x ∈ X : σ�(Sx, q

) ≤ 〈q, y〉
}
= [0, 1], are closed,

{
x ∈ X : σ�(Sx, q

) ≤ 〈q, y〉 + c
}
= [0, 1].

(3.26)

Therefore, all (a) of (3.2)–(3.4) are satisfied.

(2) As Lx = (

k
︷ ︸︸ ︷
0, . . . , 0, x, 0, . . . , 0) (x ∈ X = [0, 1]), LX =

∏n
i=1Xi, where Xk = X and Xi = {0}

for i /= k, then for any q = (q1, q2, . . . , qn) ∈ Rn and any x ∈ X, we see that

〈
q, Lx

〉
= σ�(LX, q

)⇐⇒ qkx = σ�(X, qk
)
=

⎧
⎨

⎩

0, qk ≥ 0

qk, qk < 0
⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = 0, if qk > 0,

x = 1, if qk < 0,

x ∈ X, if qk = 0.
(3.27)

From (3.26) and (3.27), it follows that ∀q = (q1, q2, . . . , qn) ∈ Rn and ∀x ∈ X = [0, 1] with
Lx ∈ ∂(LX, q),

σ�(Sx − Y, q
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ�
(
S0 − Y, q

) ≤ 0, if qk > 0,

σ�
(
S1 − Y, q

) ≤ 0, if qk < 0,

σ�
(
Sx − Y, q

) ≤ 0, if qk = 0, (x ∈ X),

(3.28)
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∀y ∈ Y, σ�(Sx − y, q
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ�
(
S0 − y, q

) ≤ 0, if qk > 0,

σ�
(
S1 − y, q

) ≤ 0, if qk < 0,

σ�
(
Sx − y, q

) ≤ 0, if qk = 0, (x ∈ X).

(3.29)

Both (3.28) and (3.29) show that ∀q ∈ Rn, ∀x ∈ X with Lx ∈ ∂(LX, q), we have

σ�(Sx, q
) ≤ σ�(Y, q

)
, σ�(S, q

) ≤ 〈q, y〉 (
y ∈ Y

)
. (3.30)

Hence, all (b) of (3.2)-(3.4) are satisfied. Therefore, Theorem 3.1(A) holds for this example.
Indeed, we have Y0 = Y1 = Y ⊂ SX.

Remark 3.9. In case U = V and L = I (the identity map from U to itself), then part (A) of
Theorem 3.1 is just the main results in [7] and part (B) returns to the Theorem 1.1.

Remark 3.10. From the proof of Theorem 3.1(A), we see that the Ky-Fan inequality is very
important to the existence part. Regarding this inequality, some extensions have been made
by Lignola [19], Lin and Simons [20], Alzer [21], as well as S. J. Li and X. B. Li [22], we think
that probably in the future, these new Ky-Fan inequalities could also be used to obtain some
new useful Rogalski-Cornet type theorems.

3.2. Application to (1.5)

From Theorem 3.1, we can obtain a solvability theorem to (1.5) as follows.

Theorem 3.11. (i) If v ∈ V , and (3.2) holds for Y = {v}, then v ∈ SX, that is, (1.5)(a) is solvable.
(ii) Assume that

∀q ∈ V ∗, ∀x ∈ X with Lx ∈ ∂
(
LX, q

)
, σ�(Sx, q

) ≤ 〈q, Lx〉. (3.31)

Then (1) LX ⊂ SX if

∀q ∈ V ∗, ∀y ∈ LX,
{
x ∈ X : σ�(Sx, q

) ≤ 〈q, y〉
}
is closed. (3.32)

In particular,

(a) Equation (1.5)(a) is solvable (i.e., v ∈ SX) when v ∈ LX,

(b) Equation (1.5)(b) has a solution (i.e., SX ∩ Y /= ∅) when Y ∩ LX /= ∅,
(c) Equation (1.5)(c) is solvable (i.e., Y ⊂ SX) when Y ⊂ LX.

(2) The inverse of S restricting to LX defined by S−1
LX : LX → X : y �→ S−1

LX(y) = {x ∈ X : y ∈ Sx}
is u.s.c. and u.h.c. if

∀y ∈ LX, ∀q ∈ V ∗, ∀c ≥ 0,
{
x ∈ X : σ�(Sx, q

) ≤ 〈q, y〉 + c
}
is closed. (3.33)
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(iii) If S is u.h.c., then the assumptions (3.2)(a), (3.32), and (3.33) in statements (i) and (ii)
can be removed.

Proof. (i) Applying Theorem 3.1(A)(i)(1) to Y = {v}, we see that the statement (i) is true.
(ii) Set Y = LX. Since X is a convex compact subset of U, and L a continuous linear

map fromU to V , we see that Y is a convex compact subset of V . Moreover, for each y ∈ LX,
as Lx ∈ ∂(LX, q) equals to 〈q, Lx〉 = σ�(LX, q), from (3.31), we obtain that

∀q ∈ V ∗, ∀x ∈ X with Lx ∈ ∂
(
LX, q

)
, σ�(Sx, q

) ≤ 〈q, Lx〉 = σ�(LX, q
) ≤ 〈q, y〉.

(3.34)

This means that the assumption (3.3)(b) holds for any y ∈ LX.

(1) Associating (3.32) with (3.34) we know that (3.3) holds for all y ∈ Y , which
implies by Theorem 3.1(A)(i)(2), for Y = LX, that LX = Y0 ⊂ SX, and thus all
the statements (a), (b), and (c) of (ii)(1) are true.

(2) From (3.33) and (3.34), we see that Y1 defined by (3.4) is precisely equal to LX.
Hence by Theorem 3.1(A)(ii), the statement (ii)(2) follows.

(iii) The conclusion of (iii) is clear. This completes the proof.

4. Conclusion

In this paper, we have proved a Rogalski-Cornet type theorem (namely, Theorem 3.1)
based on two Hausdorff locally convex vector spaces, and presented a counterexample (i.e.,
Example 3.8) to show that the first part of this theorem does not need any conventional
continuity conditions such as upper semicontinuous, lower semicontinuous and upper
hemicontinuous conditions. Applying this theorem, by Theorem 3.11 we have also provided
the solvability results for a class of abstract von Neumann input-output inclusion system
(namely, (1.5)).
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[22] S. J. Li and X. B. Li, “Hölder continuity of solutions to parametric weak generalized Ky Fan
inequality,” Journal of Optimization Theory and Applications, vol. 149, no. 3, pp. 540–553, 2011.


