Research Article

# Generalized $\boldsymbol{k}$-Uniformly Close-to-Convex Functions Associated with Conic Regions 

Khalida Inayat Noor<br>Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan<br>Correspondence should be addressed to Khalida Inayat Noor, khalidanoor@hotmail.com

Received 24 January 2012; Accepted 31 January 2012
Academic Editor: Muhammad Aslam Noor
Copyright © 2012 Khalida Inayat Noor. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We define and study some subclasses of analytic functions by using a certain multiplier transformation. These functions map the open unit disc onto the domains formed by parabolic and hyperbolic regions and extend the concept of uniformly close-to-convexity. Some interesting properties of these classes, which include inclusion results, coefficient problems, and invariance under certain integral operators, are discussed. The results are shown to be the best possible.

## 1. Introduction

Let $A$ denote the class of analytic functions $f$ defined in the unit disc $E=\{z:|z|<1\}$ and satisfying the condition $f(0)=0, f^{\prime}(0)=1$. Let $S, S^{*}(\gamma), C(\gamma)$ and $K(\gamma)$ be the subclasses of $A$ consisting of functions which are univalent, starlike of order $\gamma$, convex of order $\gamma$, and close-to-convex of order $\gamma$, respectively, $0 \leq \gamma<1$. Let $S^{*}(0)=S^{*}, C(0)=C$ and $K(0)=K$.

For analytic functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, by $f * g$ we denote the convolution (Hadamard product) of $f$ and $g$, defined by

$$
\begin{equation*}
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n} \tag{1.1}
\end{equation*}
$$

We say that a function $f \in A$ is subordinate to a function $F \in A$ and write $f(z) \prec F(z)$ if and only if there exists an analytic function $w(z), w(0)=0,|w(z)|<1$ for $z \in E$ such that $f(z)=F(w(z)), \quad z \in E$.

If $F$ is univalent in $E$, then

$$
\begin{equation*}
f(z) \prec F(z) \Longleftrightarrow f(0)=F(0), \quad f(E) \subset F(E) \tag{1.2}
\end{equation*}
$$

For $k \in[0,1]$, define the domain $\Omega_{k}$ as follows, see [1]:

$$
\begin{equation*}
\Omega_{k}=\left\{u+i v: u>k \sqrt{(u-1)^{2}+v^{2}}\right\} \tag{1.3}
\end{equation*}
$$

For fixed $k, \Omega_{k}$ represents the conic region bounded, successively, by the imaginary axis ( $k=$ $0)$, the right branch of hyperbola $(0<k<1)$, a parabola $(k=1)$.

Related with $\Omega_{k}$, the domain $\Omega_{k, \gamma}$ is defined in [2] as follows:

$$
\begin{equation*}
\Omega_{k, \gamma}=(1-\gamma) \Omega_{k}+\gamma, \quad(0 \leq \gamma<1) \tag{1.4}
\end{equation*}
$$

The functions which play the role of extremal functions for the conic regions $\Omega_{k, \gamma}$ are denoted by $p_{k, r}(z)$ with $p_{k, \gamma}(0)=1$, and $p_{k, r}^{\prime}(0)>0$ are univalent, map $E$ onto $\Omega_{k, \gamma}$, and are given as

$$
p_{k, \gamma}(z)= \begin{cases}\frac{1+(1-2 \gamma) z}{(1-z)}, & k=0  \tag{1.5}\\ 1+\frac{2(1-\gamma)}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}, & k=1 \\ 1+\frac{2(1-\gamma)}{1-k^{2}} \sinh ^{2}\left[\left(\frac{2}{\pi} \arccos k\right) \operatorname{arctanh} \sqrt{z}\right], & (0<k<1)\end{cases}
$$

It has been shown $[3,4]$ that $p_{k, r}(z)$ is continuous as regards to $k$ and has real coefficients for all $k \in[0,1]$.

Let $P\left(p_{k, \gamma}\right)$ be the class of functions $p(z)$ which are analytic in $E$ with $p(0)=1$ such that $p(z) \prec p_{k, \gamma}(z)$ for $z \in E$. It can easily be seen that $P\left(p_{k, \gamma}\right) \subset P$, where $P$ is the class of Caratheodory functions of positive real part.

The class $P_{m}\left(p_{k, r}\right)$ is defined in [5] as follows.
Let $p(z)$ be analytic in $E$ with $p(0)=1$. Then $p \in P_{m}\left(p_{k, r}\right)$ if and only if, for $m \geq 2,0 \leq$ $r<1, k \in[0,1], z \in E$,

$$
\begin{equation*}
p(z)=\left(\frac{m}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) p_{2}(z), \quad p_{1}, p_{2} \in P\left(p_{k, r}\right) \tag{1.6}
\end{equation*}
$$

For $k=0, \gamma=0$, the class $P_{m}\left(p_{0,0}\right)$ coincides with the class $P_{m}$ introduced by Pinchuk in [6]. Also $P_{2}=P$.

The generalized Harwitz-Lerch Zeta function [7] $\phi(z, \lambda, \mu)$ is given as

$$
\begin{equation*}
\phi(z, \lambda, \mu)=\sum_{n=0}^{\infty} \frac{z^{n}}{(\mu+n)^{\lambda}}, \quad\left(\lambda \in \mathbb{C}, \mu \in \mathbb{C} \backslash Z^{-}=\{-1,-2, \ldots\}\right) \tag{1.7}
\end{equation*}
$$

Using (1.7), the following family of linear operators, see [7-9], is defined in terms of the Hadamard product as

$$
\begin{equation*}
J_{\lambda, \mu} f(z)=H_{\lambda, \mu}(z) * f(z) \tag{1.8}
\end{equation*}
$$

where $f \in A$,

$$
\begin{equation*}
H_{\lambda, \mu}(z)=(1+\mu)^{\lambda}\left[\phi(z, \lambda, \mu)-\mu^{-\lambda}\right], \quad(z \in E) \tag{1.9}
\end{equation*}
$$

and $\phi(z, \lambda, \mu)$ is given by (1.7).
From (1.7) and (1.8), we can write

$$
\begin{equation*}
J_{\lambda, \mu} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{1+\mu}{n+\mu}\right)^{\curlywedge} a_{n} z^{n} \tag{1.10}
\end{equation*}
$$

For the different permissible values of parameters $\lambda$ and $\mu$, the operator $J_{\lambda, \mu}$ has been studied in [3, 4, 7, 10-12].

We observe some special cases of the operator (1.10) as given below
(i) $J_{0, \mu} f(z)=f(z)$,
(ii) $J_{1,0} f(z)=z+\sum_{n=2}^{\infty}\left(a_{n} / n\right) z^{n}=\int_{0}^{z}(f(t) / t) d t$,
(iii) $J_{1, \mu} f(z)=z+\sum_{n=2}^{\infty}((1+\mu) /(n+\mu)) a_{n} z^{n}=\left((1+\mu) / z^{\mu}\right) \int_{0}^{z} t^{\mu-1} f(t) d t,(\mu>-1)$.

We remark that $J_{1,1} f(z)$ is the well-known Libera operator and $J_{1, \mu} f(z)$ is the generalized Bernardi operator, see [13, 14]. Also $J_{\lambda, 1} f(z)=L_{\lambda} f(z)$ represents the operator closely related to the multiplier transformation studied by Flett [3].

We define the operator $I_{\lambda, \mu}: A \rightarrow A$ as

$$
\begin{equation*}
I_{\lambda, \mu} f(z) * J_{\lambda, \mu} f(z)=\frac{z}{(1-z)}, \quad(\lambda \text { real }, \mu>-1) \tag{1.11}
\end{equation*}
$$

see [15]. This gives us

$$
\begin{equation*}
I_{\lambda, \mu} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{n+\mu}{1+\mu}\right)^{\lambda} a_{n} z^{n}, \quad(\lambda \text { real, } \mu>-1) \tag{1.12}
\end{equation*}
$$

From (1.12), the following identity can easily be verified

$$
\begin{equation*}
z\left(I_{\lambda, \mu} f(z)\right)^{\prime}=(\mu+1) I_{\lambda+1, \mu} f(z)-\mu I_{\lambda, \mu} f(z) \tag{1.13}
\end{equation*}
$$

## Remark 1.1.

(i) For $k \in(0,1)$, we note that the domain $\Omega_{k}$ given by (1.3) represents the following hyperbolic region:

$$
\begin{gather*}
\left(u+\frac{k^{2}}{1-k^{2}}\right)^{2}-\frac{k^{2}}{1-k^{2}} v^{2}>\left(\frac{k}{1-k^{2}}\right)^{2}  \tag{1.14}\\
u>\frac{k}{k+1}
\end{gather*}
$$

The extremal function $p_{k, r}(z)$, for $0<k<1$, can be written as

$$
\begin{equation*}
p_{k, \gamma}(z),=(1-\gamma) p_{k}(z)+\gamma \tag{1.15}
\end{equation*}
$$

where $p_{k}(z)$, in a simplified form, is given below

$$
\begin{align*}
p_{k}(z) & =1+\frac{1}{2 \sin ^{2} \sigma}\left\{\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2 \sigma / \pi}+\left(\frac{1-\sqrt{z}}{1+\sqrt{z}}\right)^{2 \sigma / \pi}-2\right\} \\
& =1+\frac{1}{2 \sin ^{2} \sigma} \sum_{n=1}^{\infty}\left(\sum_{j=0}^{2 n}(-1)^{j}\binom{2 \sigma / \pi}{j}\binom{-2 \sigma / \pi}{2 n-j}\right) z^{n}  \tag{1.16}\\
& =1+8\left(\frac{\sigma}{\pi \sin \sigma}\right)^{2} z+\cdots, \quad(z \in E, \sigma=\operatorname{arc} \cos k)
\end{align*}
$$

and the branch of $\sqrt{z}$ is chosen such that $\operatorname{Im} \sqrt{z} \geq 0$.
It is easy to see that, for $h \in P\left(p_{k, \gamma}\right), \operatorname{Re} h(z)>(k+\gamma) /(k+1), k \in(0,1)$. That is

$$
\begin{equation*}
P\left(p_{k, \gamma}\right) \subset P\left(\frac{k+\gamma}{1+k}\right) \tag{1.17}
\end{equation*}
$$

and the order $(k+\gamma) /(1+k)$ is sharp with the extremal function $p(z)=(1-\gamma) p_{k}(z)+\gamma$, where $p_{k}(z)$ is given by (1.16).
(ii) For $k=1$, the extremal function

$$
\begin{align*}
p_{1}(z) & =1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2} \\
& =1+\frac{8}{\pi^{2}} \sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{j=0}^{n-1} \frac{1}{2 j+1}\right) z^{n}  \tag{1.18}\\
& =1+\frac{8}{\pi^{2}}\left(z+\frac{2}{3} z^{2}+\frac{23}{45} z^{3}+\frac{44}{105} z^{4}+\cdots\right), \quad(z \in E)
\end{align*}
$$

maps $E$ conformally onto the parabolic region $\Omega_{1}=\left\{u+i v: u>\left(v^{2}+1\right) / 2\right\}$.

It can easily be verified that $\operatorname{Re} p_{1}(z)>1 / 2$ and, in this case, the order $1 / 2$ is sharp.
We now define the following.
Definition 1.2. Let $f \in A$ and let the operator $I_{\lambda, \mu} f$ be defined by (1.12). Then $f \in k-$ $\cup R_{m}^{\gamma}(\lambda, \mu)$ for $m \geq 2, k \in[0,1]$ and $\gamma \in[0,1)$ if and only if

$$
\begin{equation*}
\left\{\frac{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}{I_{\lambda, \mu} g(z)}\right\} \in P_{m}\left(p_{k, \gamma}\right), \quad z \in E \tag{1.19}
\end{equation*}
$$

We note the following.
(i) For $m=2, k=0$, and $\lambda=0$, the class $k-\cup R_{m}^{\gamma}(\lambda, \mu)$ reduces to $S^{*}(\gamma)$, and $\lambda=0$ gives us the class $k-\cup S T$ of uniformly starlike functions, see $[2,16]$.
(ii) $0-\cup R_{m}^{0}(0, \mu)=R_{m}$ is the class of functions of bounded radius rotation, see [13, 14].
(iii) We denote $k-\cup R_{m}^{\gamma}(0, \mu)$ as $k-\cup R_{m}^{\gamma}$, see [5].
(iv) Let $m=2$. Then $f \in k-\cup R_{2}^{\gamma}(\lambda, \mu)$ implies that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}{I_{\lambda, \mu} f(z)}\right\}>k\left|\frac{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}{I_{\lambda, \mu} f(z)}-1\right|+\gamma, \tag{1.20}
\end{equation*}
$$

and we note that, for $0 \leq k_{2}<k_{1}, k_{1}-\cup R_{2}^{\gamma}(\lambda, \mu) \subset k_{2}-\cup R_{2}^{\gamma}(\lambda, \mu)$.
Definition 1.3. Let $f \in A$. Then $f \in k-\cup T_{m}^{\gamma}(\lambda, \mu)$ if and only if there exists $g \in k-\cup R_{2}^{\gamma}(\lambda, \mu)$ such that

$$
\begin{equation*}
\left\{\frac{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}{I_{\lambda, \mu} g(z)}\right\} \in P_{m}\left(p_{k, \gamma}\right) \quad \text { in } E . \tag{1.21}
\end{equation*}
$$

## Special Cases.

(i) $0-\cup T_{2}^{\gamma}(0, \mu)=K(\gamma)$.
(ii) For $k=\gamma=\lambda=0$, we obtain the class $T_{m}$ introduced and discussed in [17].
(iii) When we take $m=2$ and $\lambda=0$, then $k-\cup T_{2}^{\gamma}(0, \mu)=k-\cup K_{\gamma}$, the class of uniformly close-to-convex functions, see [2].

## 2. Preliminary Results

We need the following results in our investigation.
Lemma 2.1 (see [18]). Let $q(z)$ be convex in $E$ and $j: E \rightarrow \mathbb{C}$ with $\operatorname{Re}[j(z)]>0, z \in E$. If $p(z)$, analytic in $E$ with $p(0)=1$, satisfies

$$
\begin{equation*}
\left(p(z)+j(z) z p^{\prime}(z)\right) \prec q(z), \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
p(z) \prec q(z) \tag{2.2}
\end{equation*}
$$

In the following, one gives an easy extension of a result proved in [1].
Lemma 2.2 (see [5]). Let $k \geq 0$ and let $\beta$, $\delta$ be any complex numbers with $\beta \neq 0$ and $\operatorname{Re}((\beta k /(k+$ $1))+\delta)>\gamma$. If $h(z)$ is analytic in $E, h(0)=1$ and satisfies

$$
\begin{equation*}
\left(h(z)+\frac{z h^{\prime}(z)}{\beta h(z)+\delta}\right) \prec p_{k, r}(z) \tag{2.3}
\end{equation*}
$$

and $q_{k, r}(z)$ is an analytic solution of

$$
\begin{equation*}
q_{k, r}(z)+\frac{z q_{k, r}^{\prime}(z)}{\beta q_{k, r}(z)+\delta}=p_{k, r}(z) \tag{2.4}
\end{equation*}
$$

then $q_{k, r}(z)$ is univalent,

$$
\begin{equation*}
h(z)<q_{k, r}(z)<p_{k, r}(z), \tag{2.5}
\end{equation*}
$$

and $q_{k, r}(z)$ is the best dominant of (2.3).
Lemma 2.3 (see [19]). If $f \in \mathbb{C}, g \in S^{*}$, then for each $h$ analytic in $E$ with $h(0)=1$,

$$
\begin{equation*}
\frac{(f * h g)(E)}{(f * g)(E)} \subset \overline{\operatorname{Co}} h(E) \tag{2.6}
\end{equation*}
$$

where $\overline{\operatorname{Co}} h(E)$ denotes the convex hull of $h(E)$.
Lemma 2.4 (see [18]). Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ and let $\psi(u, v)$ be a complex-valued function satisfying the conditions:
(i) $\psi(u, v)$ is continuous in a domain $D \subset \mathbb{C}^{2}$,
(ii) $(1,0) \in D$ and $\operatorname{Re} \psi(1,0)>0$,
(iii) $\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) \leq 0$, whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-(1 / 2)\left(1+u_{2}^{2}\right)$.

If $h(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is a function analytic in $E$ such that $\left(h(z), z h^{\prime}(z)\right) \in D$ and $\operatorname{Re} \psi(h(z)$, $\left.z h^{\prime}(z)\right)>0$ for $z \in E$, then $\operatorname{Re} h(z)>0$ in $E$.

Lemma 2.5 (see [20]). Let $h \in P_{m}(\rho), 0 \leq \rho<1$. Then, with $=r e^{i \theta}, z \in E$, one has
(i) $(1 / 2 \pi) \int_{0}^{2 \pi}\left|h\left(r e^{i \theta}\right)\right|^{2} d \theta \leq\left(1-\left[m^{2}(1-\rho)^{2}-1\right] r^{2}\right) /\left(1-r^{2}\right)$,
(ii) $(1 / 2 \pi) \int_{0}^{2 \pi}\left|h^{\prime}\left(r e^{i \theta}\right)\right| d \theta \leq m(1-\rho) /\left(1-r^{2}\right)$.

Lemma 2.6 (see [5]). Let $f \in k-\cup R_{m}^{\gamma}$. Then there exist $s_{1}, s_{2} \in k-\cup R_{2}^{\gamma}$ such that

$$
\begin{equation*}
f(z)=\frac{\left(s_{1}(z)\right)^{(m+2) / 4}}{\left(s_{2}(z)\right)^{(m-2) / 4}}, \quad k \geq 0, m \geq 2, z \in E \tag{2.7}
\end{equation*}
$$

Lemma 2.7. Let $p \in P_{m}\left(p_{k, \gamma}\right)$ and $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$. Then

$$
\begin{equation*}
\left|c_{n}\right| \leq \frac{m}{2}\left|\delta_{k, r}\right|, \quad n \geq 1 \tag{2.8}
\end{equation*}
$$

where

$$
\delta_{k, \gamma}=\left\{\begin{array}{cc}
\frac{8(1-\gamma)\left(\cos ^{-1} k\right)^{2}}{\pi^{2}\left(1-k^{2}\right)}, & 0 \leq k<1  \tag{2.9}\\
\frac{8(1-\gamma)}{\pi^{2}}, & k=1
\end{array}\right.
$$

Proof. Let $p(z)=(m / 4+1 / 2) p_{1}(z)-(m / 4-1 / 2) p_{2}(z)$. Then,

$$
\begin{equation*}
p_{i}(z)<p_{k, r}(z)=1+\delta_{k, r} z+\cdots, \quad i=1,2 . \tag{2.10}
\end{equation*}
$$

Now the proof follows immediately by using the well-known Rogosinski's result, see [21].

## 3. Main Results

We shall assume throughout, unless stated otherwise, that $k \in[0,1], m \geq 0,0 \leq \gamma<1, \lambda \in$ $\mathbb{C}, \mu>-1$ and $z \in E$.

Theorem 3.1. Let $f \in k-\cup R_{m}^{\gamma}(\lambda, \mu)$. Let, for $\alpha, \beta>0$,

$$
\begin{equation*}
F(z)=\left[(1+\beta) z^{-\beta} \int_{0}^{z} t^{\beta-1^{\prime}} f^{\alpha}(t) d t\right]^{1 / \alpha} \tag{3.1}
\end{equation*}
$$

Then, $F \in k-\cup R_{m}^{\gamma}(\lambda, \mu)$ in $E$.
Proof. Set

$$
\begin{equation*}
\frac{z\left(I_{\lambda, \mu} F(z)\right)^{\prime}}{I_{\lambda, \mu} F(z)}=H(z)=\left(\frac{m}{4}+\frac{1}{2}\right) H_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) H_{2}(z) . \tag{3.2}
\end{equation*}
$$

We note $H(z)$ is analytic in $E$ with $H(0)=1$.

From (3.1), we have

$$
\begin{equation*}
\left\{z^{\beta}\left(I_{\lambda, \mu} F(z)\right)^{\alpha}\right\}^{\prime}=z^{\beta-1}\left(I_{\lambda, \mu} f(z)\right)^{\alpha} \tag{3.3}
\end{equation*}
$$

That is

$$
\begin{equation*}
\left(I_{\lambda, \mu} F(z)\right)^{\alpha}[\beta+\alpha H(z)]=\left(I_{\lambda, \mu} f(z)\right)^{\alpha} . \tag{3.4}
\end{equation*}
$$

Logarithmic differentiation of (3.4) and simple computations give us

$$
\begin{equation*}
H(z)+\frac{z H^{\prime}(z)}{\alpha H(z)+\beta}=\frac{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}{I_{\lambda, \mu} f(z)} \in P_{m}\left(p_{k, \gamma}\right) \tag{3.5}
\end{equation*}
$$

Define

$$
\begin{equation*}
\phi_{a, b}(z)=\frac{1}{1+b} \frac{z}{(1-z)^{a+1}}+\frac{b}{b+1} \frac{z}{(1-z)^{a+2}}, \quad(a>0, b \geq 0) \tag{3.6}
\end{equation*}
$$

then, with $a=1 / \alpha, b=\beta / \alpha$, we have

$$
\begin{equation*}
H(z) *\left(\frac{\phi_{a, b}(z)}{z}\right)=\left\{H(z)+\frac{z H^{\prime}(z)}{\alpha H(z)+\beta}\right\} . \tag{3.7}
\end{equation*}
$$

From (3.2), (3.5), and (3.7), it follows that

$$
\begin{equation*}
\left\{H_{i}(z)+\frac{z H_{i}^{\prime}(z)}{\alpha H_{i}(z)+\beta}\right\} \in P\left(p_{k, r}\right), \quad z \in E, i=1,2 . \tag{3.8}
\end{equation*}
$$

On applying Lemma 2.2, we obtain

$$
\begin{equation*}
H_{i}(z)<q_{k, r}(z)<p_{k, r}(z) \quad \text { in } E, \tag{3.9}
\end{equation*}
$$

where $q_{k, r}(z)$ is the best dominant and is given as

$$
\begin{equation*}
q_{k, \gamma}(z)=\left[\alpha \int_{0}^{1}\left(t^{\beta+\alpha-1} \exp \int_{z}^{t z} \frac{p_{k, \gamma}(u)-1}{u} d u\right)^{\alpha} d t\right]^{-1}-\frac{\beta}{\alpha} . \tag{3.10}
\end{equation*}
$$

Consequently it follows, from (3.2), that $H \in P_{m}\left(p_{k, \gamma}\right)$ and $F \in k-\cup T_{m}^{\gamma}(\lambda, \mu)$ in $E$.
For $k=0, \gamma=0$, we have the following special case.

Corollary 3.2. Let $f \in 0-\cup R_{m}^{0}(\lambda, \mu)=R_{m}(\lambda, \mu)$ and let $F(z)$ be defined by (3.1). Then, $F \in$ $R_{m}^{\gamma_{1}}(\lambda, \mu)$, where

$$
\begin{equation*}
r_{1}=\frac{2}{\left\{(1+2 \beta)+\sqrt{(1+2 \beta)^{2}+8 \alpha}\right\}} \tag{3.11}
\end{equation*}
$$

Proof. We write

$$
\begin{align*}
\frac{z\left(I_{\lambda, \mu} F(z)\right)^{\prime}}{I_{\lambda, \mu} F(z)} & =\left(1-\gamma_{1}\right) H(z)+\gamma_{1}  \tag{3.12}\\
& =\left(\frac{m}{4}+\frac{1}{2}\right)\left\{\left(1-\gamma_{1}\right) H_{1}(z)+\gamma_{1}\right\}-\left(\frac{m}{4}-\frac{1}{2}\right)\left\{\left(1-\gamma_{1}\right) H_{2}(z)+\gamma_{1}\right\}
\end{align*}
$$

and proceeding as in Theorem 3.1, we obtain

$$
\begin{align*}
\frac{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}{I_{\lambda, \mu} f(z)}= & \left(\frac{m}{4}+\frac{1}{2}\right)\left[\left(1-\gamma_{1}\right)\left\{H_{1}(z)+\frac{\alpha z H_{1}^{\prime}(z)}{\alpha H_{1}(z)+\left(\alpha \gamma_{1}+\beta\right) /\left(1-\gamma_{1}\right)}\right\}+\gamma_{1}\right] \\
& -\left(\frac{m}{4}-\frac{1}{2}\right)\left[\left(1-\gamma_{1}\right)\left\{H_{2}(z)+\frac{\alpha z H_{2}^{\prime}(z)}{\alpha H_{2}(z)+\left(\alpha \gamma_{1}+\beta\right) /\left(1-\gamma_{1}\right)}\right\}+\gamma_{1}\right] \tag{3.13}
\end{align*}
$$

We construct the functional $\psi(u, v)$ by taking $u=H_{i}(z), v=z H_{i}{ }^{\prime}(z)$, as

$$
\begin{equation*}
\psi(u, v)=u+\frac{v}{\alpha u+\left(\alpha \gamma_{1}+\beta\right) /\left(1-\gamma_{1}\right)}+\frac{\gamma_{1}}{1-\gamma_{1}} \tag{3.14}
\end{equation*}
$$

The first two conditions of Lemma 2.4 can easily be verified. For condition (iii), we proceed as follows:

$$
\begin{align*}
\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) & =\frac{\gamma_{1}}{1-\gamma_{1}}+\operatorname{Re} \frac{\left(1-\gamma_{1}\right) v_{1}}{\alpha \gamma_{1}+\beta+i \alpha\left(1-\gamma_{1}\right) u_{2}} \\
& =\frac{1}{1-\gamma_{1}}\left[\gamma_{1}+\frac{\left(1-\gamma_{1}\right)\left(\alpha \gamma_{1}+\beta\right) v_{1}}{\left(\alpha \gamma_{1}+\beta\right)^{2}+\alpha^{2}\left(1-\gamma_{1}\right)^{2} u_{2}^{2}}\right] \\
& \leq \frac{1}{1-\gamma_{1}}\left[\gamma_{1}-\frac{\left(1-\gamma_{1}\right)\left(\alpha \gamma_{1}+\beta\right)\left(1+u_{2}^{2}\right)}{2\left\{\left(\alpha \gamma_{1}+\beta\right)^{2}+\alpha^{2}\left(1-\gamma_{1}\right)^{2} u_{2}^{2}\right\}}\right], \quad\left(v_{1} \leq \frac{-\left(1+u_{2}^{2}\right)}{2}\right)  \tag{3.15}\\
& =\frac{1}{1-\gamma_{1}}\left[\frac{A+B u_{2}^{2}}{2 C}\right]
\end{align*}
$$

where $A=2 \gamma_{1}\left(\alpha \gamma_{1}+\beta\right)^{2}-\left(1-\gamma_{1}\right)\left(\alpha \gamma_{1}+\beta\right), B=2 \gamma_{1} \alpha^{2}\left(1-\gamma_{1}\right)^{2}-\left(1-\gamma_{1}\right)\left(\alpha \gamma_{1}+\beta\right), C=\left\{\left(\alpha \gamma_{1}+\beta\right)^{2}+\right.$ $\left.\alpha^{2}\left(1-r_{1}\right)^{2} u_{2}^{2}\right\}>0$.

The right-hand side of (3.15) is less than equal to zero when $A \leq 0$ and $B \leq 0$. From $A \leq 0$, we obtain $\gamma_{1}$ as given by (3.11), and $B \leq 0$ ensures that $\gamma_{1} \in[0,1)$.

This shows that all the conditions of Lemma 2.4 are satisfied and therefore $\operatorname{Re} H_{i}(z)>$ 0 . This implies $H \in P_{m}$ and consequently $I_{\lambda, \mu} F \in R_{m}^{\gamma_{1}}$. That is $F \in R_{m}^{\gamma_{1}}(\lambda, \mu)$ as required.

By taking $\alpha=1, \beta=0, \lambda=0$, and $m=2$, we obtain a well-known result that every convex function is starlike of order $1 / 2$. Also, for $\beta=1, \lambda=0, \alpha=1$, and $m=2$, we obtain from (3.1) the Libera operator and in this case we obtain a known result with $\gamma_{1}=2 /(3+\sqrt{17})$ for starlike functions, see [18].

Assigning permissible values to different parameters, we obtain several new and known results from Theorem 3.1 and Corollary 3.2.

Theorem 3.3. Let $f \in k-\cup T_{m}^{\gamma}(\lambda, \mu)$ and let $F(z)$ be defined by (3.1). Then $F \in k-\cup T_{m}^{\gamma}(\lambda, \mu)$.
Proof. We can write (3.1) as

$$
\begin{align*}
I_{\lambda, \mu} F(z) & =\left[(1+\beta) z^{-\beta} \int_{0}^{z} t^{\beta-1^{\prime}}\left(I_{\lambda, \mu} f(t)\right)^{\alpha} d t\right]^{1 / \alpha}, \quad f \in k-\cup T_{m}^{\gamma}(\lambda, \mu) \\
& =\left[\left(\frac{I_{\lambda, \mu} f(z)}{z}\right)^{\alpha} * \frac{h_{\alpha, \beta}(z)}{z}\right]^{1 / \alpha}, \tag{3.16}
\end{align*}
$$

where

$$
\begin{equation*}
h_{\alpha, \beta}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n+\alpha+\beta^{\prime}}, \tag{3.17}
\end{equation*}
$$

is convex in $E$.
Let $f \in k-\cup T_{m}^{\gamma}(\lambda, \mu)$. Then there exists some $g \in k-\cup R_{2}^{\gamma}(\lambda, \mu)$ such that

$$
\begin{gather*}
\left\{\frac{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}{I_{\lambda, \mu} g(z)}\right\} \in P_{m}\left(p_{k, \gamma}\right)  \tag{3.18}\\
G(z)=\left[(\beta+1) z^{-\beta} \int_{0}^{z} t^{\beta-1} g^{\alpha}(t) d t\right]^{1 / \alpha} . \tag{3.19}
\end{gather*}
$$

From Theorem 3.1, it follows that $G \in k-\cup R_{2}^{\gamma}(\lambda, \mu)$. We can write (3.19) as

$$
\begin{equation*}
I_{\lambda, \mu} G(z)=z\left[\frac{I_{\lambda, \mu} g(z)}{z} * \frac{h_{\alpha, \beta}(z)}{z}\right]^{1 / \alpha} \tag{3.20}
\end{equation*}
$$

where $h_{\alpha, \beta}(z)$, given by (3.17), is convex in $E$.

Since $g \in k-\cup R_{2}^{\gamma}(\lambda, \mu)$, so $I_{\lambda, \mu} g \in S^{*}((k+\gamma) /(k+1)) \subset S^{*}$. It can easily be shown that $z\left(I_{\lambda, \mu} g / z\right)^{\alpha}$ and $z\left(I_{\lambda, \mu} G / z\right)^{\alpha}$ are in the class $S^{*}$.

Now, from (3.1), we have

$$
\begin{align*}
\frac{z\left(I_{\lambda, \mu} F(z)\right)^{\prime}\left(I_{\lambda, \mu} F(z)\right)^{\alpha-1}}{\left(I_{\lambda, \mu} G(z)\right)^{\alpha}}= & \frac{h_{\alpha, \beta}(z) * z\left(I_{\lambda, \mu} g(z) / z\right)^{\alpha}\left(z\left(I_{\lambda, \mu} f(z)\right)^{\prime}\left(I_{\lambda, \mu} f(z)\right)^{\alpha-1} /\left(I_{\lambda, \mu} g(z)\right)^{\alpha}\right)}{h_{\alpha, \beta}(z) * z\left(I_{\lambda, \mu} g(z) / z\right)^{\alpha}} \\
= & \left(\frac{m}{4}+\frac{1}{2}\right) \frac{\left[h_{\alpha, \beta}(z) * z\left(I_{\lambda, \mu} g(z) / z\right)^{\alpha} h_{1}(z)\right]}{h_{\alpha, \beta}(z) * z\left(I_{\lambda, \mu} g(z) / z\right)^{\alpha}} \\
& -\left(\frac{m}{4}-\frac{1}{2}\right) \frac{\left[h_{\alpha, \beta}(z) * z\left(I_{\lambda, \mu} g(z) / z\right)^{\alpha} h_{2}(z)\right]}{h_{\alpha, \beta}(z) * z\left(I_{\lambda, \mu} g(z) / z\right)^{\alpha}} . \tag{3.21}
\end{align*}
$$

We use Lemma 2.3 with $h_{i} \prec p_{k, r}, i=1,2$, to have

$$
\begin{equation*}
\left\{\frac{h_{\alpha, \beta}(z) * z\left(I_{\lambda, \mu} g(z) / z\right)^{\alpha} h_{i}(z)}{h_{\alpha, \beta}(z) * z\left(I_{\lambda, \mu} g(z) / z\right)^{\alpha}}\right\}<p_{k, \gamma}(z) \quad \text { in } E . \tag{3.22}
\end{equation*}
$$

Thus from (3.19), (3.21), and (3.22) we obtain the required result that $F \in k-\cup T_{m}^{\gamma}(\lambda, \mu)$. This completes the proof.

As a special case we note that, for $\lambda=0=k$, the subclass $T_{m}^{\gamma} \subset T_{m}$ is invariant under the integral operator defined by (3.1).

Theorem 3.4. One has

$$
\begin{equation*}
k-\cup R_{m}^{\gamma}(\lambda+1, \mu) \subset k-\cup R_{m}^{\gamma}(\lambda, \mu) \tag{3.23}
\end{equation*}
$$

Proof. Let $f \in k-\cup R_{m}^{\gamma}(\lambda+1, \mu)$ and let

$$
\begin{equation*}
\frac{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}{I_{\lambda, \mu} f(z)}=H(z) \tag{3.24}
\end{equation*}
$$

where $H(z)$ is analytic in $E$ and is defined by (3.2).
Then, from (1.13), we have

$$
\begin{equation*}
\frac{z\left(I_{\lambda+1, \mu} f(z)\right)^{\prime}}{I_{\lambda+1, \mu} f(z)}=\left\{H(z)+\frac{z H^{\prime}(z)}{H(z)+\mu}\right\} \in P_{m}\left(p_{k, \gamma}\right) \tag{3.25}
\end{equation*}
$$

Applying similar technique used before, we have from (3.2) and (3.7) for $i=1,2$

$$
\begin{equation*}
\left\{H_{i}(z)+\frac{z H_{i}^{\prime}(z)}{H_{i}(z)+\mu}\right\} \prec p_{k, r} . \tag{3.26}
\end{equation*}
$$

Thus, using Lemma 2.2, it follows that $H_{i} \prec p_{k, r}, i=1,2$ and $z \in E$, consequently $H \in P_{m}\left(p_{k, \gamma}\right)$ in $E$ and this completes the proof.

As special cases, we have the following.
(i) Let $m=2, \lambda \geq 0$. Then, from Theorem 3.4, it easily follows that

$$
\begin{equation*}
k-\cup R_{2}^{\gamma}(\lambda, \mu) \subset k-\cup R_{2}^{\gamma}(0, \mu) \subset S^{*}\left(\frac{k+\gamma}{1+k}\right) \subset S^{*} \tag{3.27}
\end{equation*}
$$

(ii) Let $k=0$ and $\lambda \geq 0$. Then $f \in 0-\cup R_{m}^{\gamma}(\lambda, \mu)$ implies $f \in R_{m}^{\gamma} \subset R_{m}$, that is, $f(z)$ is a function of bounded radius rotation in $E$.

Theorem 3.5. One has

$$
\begin{equation*}
k-\cup T_{m}^{\gamma}(\lambda+1, \mu) \subset k-\cup T_{m}^{\gamma}(\lambda, \mu), \quad \mu, \lambda \geq 0 \tag{3.28}
\end{equation*}
$$

Proof. Let $f \in k-\cup T_{m}^{\gamma}(\lambda+1, \mu)$. Then, for $z \in E$,

$$
\begin{equation*}
\frac{z\left(I_{\lambda+1, \mu} f(z)\right)^{\prime}}{I_{\lambda+1, \mu} g(z)} \in P_{m}\left(p_{k, r}\right) \tag{3.29}
\end{equation*}
$$

for some $g \in k-\cup R_{2}^{\gamma}(\lambda+1, \mu)$.
We define an analytic function $h(z)$ in $E$ such that

$$
\begin{equation*}
\frac{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}{I_{\lambda, \mu} g(z)}=h(z)=\left(\frac{m}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) h_{2}(z) \tag{3.30}
\end{equation*}
$$

where $h(0)=1$. We shall show that $h \in P_{m}\left(p_{k, \gamma}\right)$ in $E$.
Since $g \in k-\cup R_{2}^{\gamma}(\lambda+1, \mu)$ and $k-\cup R_{2}^{\gamma}(\lambda+1, \mu) \subset k-\cup R_{2}^{\gamma}(\lambda, \mu)$, we have

$$
\begin{equation*}
\frac{z\left(I_{\lambda, \mu} g(z)\right)^{\prime}}{I_{\Lambda, \mu} g(z)}=h_{0}(z), \quad h_{0} \in P\left(p_{k, r}\right), z \in E \tag{3.31}
\end{equation*}
$$

Now, on using (1.13), we have

$$
\begin{align*}
\frac{z\left(I_{\lambda+1, \mu} f(z)\right)^{\prime}}{I_{\lambda+1, \mu} g(z)} & =\frac{(1 /(\mu+1)) z\left[I_{\lambda, \mu}\left(z f^{\prime}(z)\right)^{\prime}\right]+(\mu /(\mu+1))\left[I_{\lambda, \mu} z f^{\prime}(z)\right]}{(1 /(\mu+1)) z\left(I_{\lambda, \mu} g(z)\right)^{\prime}+(\mu /(\mu+1)) I_{\lambda, \mu} g(z)}  \tag{3.32}\\
& =\frac{\left[\left(z\left[I_{\lambda, \mu}\left(z f^{\prime}(z)\right)^{\prime}\right] / I_{\lambda, \mu} g(z)\right)+\mu h(z)\right]}{h_{0}(z)+\mu}
\end{align*}
$$

Differentiation of (3.30) gives us

$$
\begin{equation*}
\frac{z\left(z\left(I_{\lambda, \mu} f(z)\right)^{\prime}\right)^{\prime}}{I_{\lambda, \mu} g(z)}=z h^{\prime}(z)+(h(z))\left(h_{0}(z)\right) \tag{3.33}
\end{equation*}
$$

and using (3.33) in (3.32), we obtain

$$
\begin{align*}
\frac{z\left(I_{\lambda+1, \mu} f(z)\right)^{\prime}}{I_{\lambda+1, \mu} g(z)} & =h(z)+\frac{z h^{\prime}(z)}{h_{0}(z)+\mu} \\
& =\left(\frac{m}{4}+\frac{1}{2}\right)\left[h_{1}(z)+\frac{z h_{1}^{\prime}(z)}{h_{0}(z)+\mu}\right]-\left(\frac{m}{4}-\frac{1}{2}\right)\left[h_{2}(z)+\frac{z h_{2}^{\prime}(z)}{h_{0}(z)+\mu}\right] \tag{3.34}
\end{align*}
$$

Since $f \in k-\cup T_{m}^{\gamma}(\lambda+1, \mu)$, we have with $1 / H_{0}(z)=\left\{h_{0}(z)+\mu\right\} \in P$,

$$
\begin{equation*}
\left\{h_{i}(z)+H_{0}(z)\left[z h_{i}^{\prime}(z)\right]\right\} \prec p_{k, r}(z) \quad \text { in } E, \tag{3.35}
\end{equation*}
$$

and thus, applying Lemma 2.1, we have $h_{i}(z)<p_{k, r}(z)$ in $E$. This shows $h \in P_{m}\left(p_{k, \gamma}\right)$ in $E$ and consequently $f \in k-\cup T_{m}^{\gamma}(\lambda, \mu)$.

As a special case, we note that $f \in k-\cup T_{2}^{\gamma}(\lambda, \mu)$ is a close-to-convex function for $z \in E$.
Theorem 3.6. Let $f \in k-\cup R_{2}^{\gamma}(\lambda, \mu)$ and let $\phi(z)$ be convex in $E$. Then $(f * \phi) \in k-\cup R_{2}^{\gamma}(\lambda, \mu)$ for $z \in E$.

Proof. We have

$$
\begin{align*}
\frac{z\left(I_{\lambda, \mu}(\phi * f)\right)^{\prime}}{I_{\lambda, \mu}(\phi * f)} & =\frac{\phi * z\left[I_{\lambda, \mu} f\right]^{\prime}}{\phi * I_{\lambda, \mu} f} \\
& =\frac{\phi *\left[z\left(I_{\lambda, \mu} f\right)^{\prime} / I_{\lambda, \mu} f\right] I_{\lambda, \mu} f}{\phi * I_{\lambda, \mu} f} \tag{3.36}
\end{align*}
$$

Now $k-\cup R_{2}^{\gamma}(\lambda, \mu) \subset S^{*}((k+\gamma) /(1+k)) \subset S^{*}$, and $\phi$ is a convex in $E$, we use Lemma 2.3 to (3.36) and conclude that $(\phi * f) \in k-\cup R_{2}^{\gamma}(\lambda, \mu)$ for $z \in E$. This completes the proof.

Remark 3.7. Following the similar technique, we can easily extend Theorem 3.6 to the class $k-\cup T_{m}^{\gamma}(\lambda, \mu)$, that is, $k-\cup T_{m}^{\gamma}(\lambda, \mu)$, is invariant under convolution with convex function.

### 3.1. Applications of Theorem 3.6

The classes $k-\cup R_{2}^{\gamma}(\lambda, \mu)$ and $k-\cup T_{m}^{\gamma}(\lambda, \mu)$ are preserved under the following integral operators:
(1) $f_{1}(z)=\int_{0}^{z}(f(t) / t) d t=\left(\phi_{1} * f\right)(z)$, where $\phi_{1}(z)=-\log (1-z)$,
(2) $f_{2}(z)=(2 / z) \int_{0}^{z} f(t) d t=\left(\phi_{2} * f\right)(z)$, where $\phi_{2}(z)=-2[z-\log (1-z)] / z$,
(3) $f_{3}(z)=\int_{0}^{z}((f(t)-f(t x)) /(t-t x)) d t=\left(\phi_{3} * f\right)(z),|x| \leq 1, x \neq 1$, where $\phi_{3}(z)=$ $(1 /(1-x)) \log ((1-x z) /(1-z)),|x| \leq 1, x \neq 1$,
(4) $f_{4}(z)=\left((1+c) / z^{c}\right) \int_{0}^{z} t^{c-1} f(t) d t=\left(\phi_{4} * f\right)(z), \operatorname{Re} c>0$, where $\phi_{4}(z)=\sum_{n=1}^{\infty}((1+$ c) $/(n+c)) z^{n}, \operatorname{Re} c>0$,

The proof is immediate since $\phi_{i}(z)$ is convex in $E$ for $i=1,2,3,4$.
With essentially the same method together with Lemma 2.7 , we can easily prove the following sharp coefficient results.

Theorem 3.8. Let $f \in k-\cup R_{m}^{\gamma}(\lambda, m)$ and let it be given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{3.37}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{m}{2[(n-1)!]}\left[\left(\frac{1+\mu}{n+\mu}\right)^{\lambda}\left(\left|\delta_{k, r}\right|\right)_{n-1}\right], \quad(n \geq 2) \tag{3.38}
\end{equation*}
$$

where $(\rho)_{n}$ is Pochhamer symbol defined, in terms of Gamma function $\Gamma$, by

$$
(\rho)_{n}=\frac{\Gamma(n+\rho)}{\Gamma(\rho)}=\left\{\begin{array}{l}
1, n=0  \tag{3.39}\\
\rho(\rho+1)(\rho+2) \cdots(\rho+n-1), \quad n \in N
\end{array}\right.
$$

and $\delta_{k, \gamma}$ is as given by (2.9).
As special case, one notes that
(i) $\lambda=0, m=2$, then one has

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{\left(\left|\delta_{k, r}\right|\right)_{n-1}}{(n-1)!} \tag{3.40}
\end{equation*}
$$

see [2].
(ii) Let $\mathcal{\lambda}=0, n=2$. Then,

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{m}{2}\left|\delta_{k, r}\right| . \tag{3.41}
\end{equation*}
$$

This coefficient bound is well known for $m=2$, see [2].
Using Theorem 3.8 with $m=2$, the following result can easily be proved.
Theorem 3.9. Let $f: f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in k-\cup T_{m}^{\gamma}(\lambda, \mu)$. Then, for $n \geq 2$

$$
\begin{equation*}
\left|a_{n}\right| \leq\left(\frac{1+\mu}{n+\mu}\right)^{\lambda}\left[\frac{\left(\left|\delta_{k, r}\right|\right)_{n-1}}{n!}+\frac{m\left|\delta_{k, r}\right|}{2 n} \sum_{j=1}^{n-1} \frac{\left(\left|\delta_{k, r}\right|\right)_{j-1}}{(j-1)!}\right] \tag{3.42}
\end{equation*}
$$

where $\delta_{k, r}$ is as given by (2.9).

By assigning different permissible values to the parameters, we obtain several known results, see $[2,22]$.

We now prove the following.
Theorem 3.10. Let $f: f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in k-\cup R_{m}^{\gamma}(\lambda, \mu)$ with $(m+2)(1-\gamma) / 2(1+k)>1$. Then, for $n \geq 1$,

$$
\begin{equation*}
\| a_{n+1}\left|-\left|a_{n}\right|\right| \leq c_{1}(m, \gamma, k, \lambda, \mu) n^{[l((m / 2)+1)((1-\gamma) /(1+k))\}-(2+\lambda)]}, \tag{3.43}
\end{equation*}
$$

where $c_{1}(m, \gamma, k, \lambda, \mu)$ is a constant.
Proof. Let $F(z)=I_{\lambda, \mu} f(z)=z+\sum_{n=2}^{\infty} A_{n} z^{n}, A_{n}=((n+\mu) /(1+\mu))^{\lambda} a_{n}$. Since $f \in k-\cup R_{m}^{\gamma}(\lambda, \mu)$, we can write

$$
\begin{equation*}
z F^{\prime}(z)=F(z) h(z), \quad h \in P_{m}\left(p_{k, r}\right) . \tag{3.44}
\end{equation*}
$$

That is

$$
\begin{equation*}
z\left(z F^{\prime}(z)\right)^{\prime}=F(z)\left[h^{2}(z)+z h^{\prime}(z)\right] . \tag{3.45}
\end{equation*}
$$

Now, $F \in k-\cup R_{m}^{\gamma} \subset R_{m}((k+\gamma) /(1+k))$, and it follows from a result proved in [5] that there exist $s_{1}, s_{2} \in S^{*}((k+\gamma) /(k+1))$ such that

$$
\begin{align*}
F(z) & =\frac{\left(s_{1}(z)\right)^{(m+2) / 4}}{\left(s_{2}(z)\right)^{(m-2) / 4}}, \quad m \geq 2, \\
& =\frac{\left(\left(g_{1}(z)\right)^{(1-(k+\gamma) /(k+1))}\right)^{(m+2) / 4}}{\left(\left(g_{2}(z)\right)^{(1-(k+\gamma) /(k+1))}\right)^{(m-2) / 4}}, \quad g_{1}, g_{2} \in S^{*},  \tag{3.46}\\
& =\frac{\left(g_{1}(z)\right)^{(1-\gamma) /(k+1))((m+2) / 4)}}{\left(g_{2}(z)\right)^{((1-\gamma) /(k+1))((m-2) / 4)}} .
\end{align*}
$$

Thus, for $\xi \in E$ and $n \geq 1$,

$$
\begin{align*}
\left|(n+1)^{2} \xi A_{n+1}-n^{2} A_{n}\right| & \leq \frac{1}{2 \pi r^{n+2}} \int_{0}^{2 \pi}|z-\xi|\left|z\left(z F^{\prime}(z)\right)^{\prime}\right| d \theta \\
& \left.=\frac{1}{2 \pi r^{n+2}} \int_{0}^{2 \pi}|z-\xi \||F(z)|| h^{2}(z)+z h^{\prime}(z) \right\rvert\, d \theta \\
& =\frac{1}{2 \pi r^{n+2}} \int_{0}^{2 \pi}|z-\xi|\left|\frac{\left(g_{1}(z)\right)^{(m / 4+1 / 2)}}{\left(g_{2}(z)\right)^{(m / 4-1 / 2)}}\right|^{(1-r) /(k+1))}\left|h^{2}(z)+z h^{\prime}(z)\right| d \theta, \tag{3.47}
\end{align*}
$$

where $g_{1}, g_{2} \in S^{*}$ and $h \in P_{m}\left(p_{k, \gamma}\right)$ in $E$.

Let $0<r<1$. Then, by a result [23], there exists a $\xi$ with $|\xi|=r$ such that, for $z,|z|=r$

$$
\begin{equation*}
|z-\xi|\left|g_{1}(z)\right| \leq \frac{2 r^{2}}{1-r^{2}} \tag{3.48}
\end{equation*}
$$

We now use (3.48), distortion theorems for starlike functions $g_{1}, g_{2}$ for $((m / 2)+1)((1-\gamma) /(1+$ $k))>1$, and Lemma 2.5 with $\rho=(k+\rho) /(k+1), r=(1-1 / n), n \rightarrow \infty$ and obtain from (3.47),

$$
\begin{equation*}
\left|(n+1)^{2} \xi\left(\frac{n+\mu+1}{1+\mu}\right)^{\lambda} a_{n+1}-n^{2}\left(\frac{n+\mu}{1+\mu}\right)^{\lambda} a_{n}\right| \leq C(m, \gamma, k) n^{\{((m / 2)+1)((1-\gamma) /(1+k))\}} \tag{3.49}
\end{equation*}
$$

From (3.48), we easily obtain the required result given by (3.43), $(n \rightarrow \infty)$.
This completes the proof.
Using the similar technique, we can easily prove the following.
Theorem 3.11. Let $f: f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in k-\cup T_{m}^{\gamma}(\lambda, \mu)$. Then

$$
\begin{equation*}
a_{n}=O(1) n^{\{2((1-\gamma) /(1+k))-\lambda-1\}}, \quad(n \longrightarrow \infty) \tag{3.50}
\end{equation*}
$$

where $O(1)$ is a constant depending on $\gamma, k, m, \mu$, and $\lambda$ only. The exponent $\{2((1-\gamma) /(1+k))-$ $\lambda-1\}$ is best possible.

## Acknowledgment

The authors are grateful to Dr. S. M. Junaid Zaidi, Rector, COMSATS Institute of Information Technology, Islamabad, Pakistan, for providing excellent research facilities and environment.

## References

[1] S. Kanas, "Techniques of the differential subordination for domains bounded by conic sections," International Journal of Mathematics and Mathematical Sciences, no. 38, pp. 2389-2400, 2003.
[2] K. I. Noor, M. Arif, and W. Ul-Haq, "On $k$-uniformly close-to-convex functions of complex order," Applied Mathematics and Computation, vol. 215, no. 2, pp. 629-635, 2009.
[3] T. M. Flett, "The dual of an inequality of Hardy and Littlewood and some related inequalities," Journal of Mathematical Analysis and Applications, vol. 38, pp. 746-765, 1972.
[4] I. B. Jung, Y. C. Kim, and H. M. Srivastava, "The Hardy space of analytic functions associated with certain one-parameter families of integral operators," Journal of Mathematical Analysis and Applications, vol. 176, no. 1, pp. 138-147, 1993.
[5] K. I. Noor, "On a generalization of uniformly convex and related functions," Computers \& Mathematics with Applications, vol. 61, no. 1, pp. 117-125, 2011.
[6] B. Pinchuk, "Functions of bounded boundary rotation," Israel Journal of Mathematics, vol. 10, pp. 6-16, 1971.
[7] H. M. Srivastava and A. A. Attiya, "An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination," Integral Transforms and Special Functions, vol. 18, no. 3-4, pp. 207-216, 2007.
[8] J. L. Li, "Some properties of two integral operators," Soochow Journal of Mathematics, vol. 25, no. 1, pp. 91-96, 1999.
[9] J. K. Prajapat and S. P. Goyal, "Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions," Journal of Mathematical Inequalities, vol. 3, no. 1, pp. 129-137, 2009.
[10] J. H. Choi, M. Saigo, and H. M. Srivastava, "Some inclusion properties of a certain family of integral operators," Journal of Mathematical Analysis and Applications, vol. 276, no. 1, pp. 432-445, 2002.
[11] S. Owa and H. M. Srivastava, "Some applications of the generalized Libera integral operator," Proceedings of the Japan Academy A, vol. 62, no. 4, pp. 125-128, 1986.
[12] J. Patel and A. K. Mishra, "On certain subclasses of multivalent functions associated with an extended fractional differintegral operator," Journal of Mathematical Analysis and Applications, vol. 332, no. 1, pp. 109-122, 2007.
[13] A. W. Goodman, Univalent Functions. Vol. I, Mariner Publishing, Tampa, Fla, USA, 1983.
[14] A. W. Goodman, Univalent Functions. Vol. II, Mariner Publishing, Tampa, Fla, USA, 1983.
[15] N. E. Cho and J. A. Kim, "Inclusion properties of certain subclasses of analytic functions defined by a multiplier transformation," Computers $\mathcal{E}$ Mathematics with Applications, vol. 52, no. 3-4, pp. 323-330, 2006.
[16] S. Kanas and A. Wisniowska, "Conic regions and $k$-uniform convexity," Journal of Computational and Applied Mathematics, vol. 105, no. 1-2, pp. 327-336, 1999.
[17] K. I. Noor, "On a generalization of close-to-convexity," International Journal of Mathematics and Mathematical Sciences, vol. 6, no. 2, pp. 327-333, 1983.
[18] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, vol. 225 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2000.
[19] St. Ruscheweyh and T. Sheil-Small, "Hadamard products of Schlicht functions and the PolyaSchoenberg conjecture," Commentarii Mathematici Helvetici, vol. 48, pp. 119-135, 1973.
[20] K. I. Noor, "Higher order close-to-convex functions," Mathematica Japonica, vol. 37, no. 1, pp. 1-8, 1992.
[21] W. Rogosinski, "On the coefficients of subordinate functions," Proceedings of the London Mathematical Society. Second Series, vol. 48, pp. 48-82, 1943.
[22] W. Kaplan, "Close-to-convex schlicht functions," The Michigan Mathematical Journal, vol. 1, pp. 169185, 1952.
[23] G. Golusin, "On distortion theorems and coefficients of univalent functions," vol. 19(61), pp. 183-202, 1946.

