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We define and study some subclasses of analytic functions by using a certain multiplier
transformation. These functions map the open unit disc onto the domains formed by parabolic
and hyperbolic regions and extend the concept of uniformly close-to-convexity. Some interesting
properties of these classes, which include inclusion results, coefficient problems, and invariance
under certain integral operators, are discussed. The results are shown to be the best possible.

1. Introduction

Let A denote the class of analytic functions f defined in the unit disc E = {z : |z| < 1} and
satisfying the condition f(0) = 0, f ′(0) = 1. Let S, S∗(γ), C(γ) and K(γ) be the subclasses
of A consisting of functions which are univalent, starlike of order γ , convex of order γ , and
close-to-convex of order γ , respectively, 0 ≤ γ < 1. Let S∗(0) = S∗, C(0) = C and K(0) = K.

For analytic functions f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n, by f ∗ g we denote the
convolution (Hadamard product) of f and g, defined by

(
f ∗ g)(z) =

∞∑

n=0

anbnz
n. (1.1)

We say that a function f ∈ A is subordinate to a function F ∈ A and write f(z) ≺ F(z)
if and only if there exists an analytic function w(z), w(0) = 0, |w(z)| < 1 for z ∈ E such that
f(z) = F(w(z)), z ∈ E.
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If F is univalent in E, then

f(z) ≺ F(z) ⇐⇒ f(0) = F(0), f(E) ⊂ F(E). (1.2)

For k ∈ [0, 1], define the domain Ωk as follows, see [1]:

Ωk =
{

u + iv : u > k
√

(u − 1)2 + v2
}

. (1.3)

For fixed k, Ωk represents the conic region bounded, successively, by the imaginary axis (k =
0), the right branch of hyperbola (0 < k < 1), a parabola (k = 1).

Related with Ωk, the domain Ωk,γ is defined in [2] as follows:

Ωk,γ =
(
1 − γ)Ωk + γ,

(
0 ≤ γ < 1

)
. (1.4)

The functions which play the role of extremal functions for the conic regions Ωk,γ are
denoted by pk,γ(z) with pk,γ(0) = 1, and p′

k,γ
(0) > 0 are univalent, map E onto Ωk,γ , and are

given as

pk,γ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
(
1 − 2γ

)
z

(1 − z) , k = 0,

1 +
2
(
1 − γ)

π2

(

log
1 +

√
z

1 − √
z

)2

, k = 1,

1 +
2
(
1 − γ)

1 − k2 sinh2
[(

2
π
arc cos k

)

arc tanh
√
z

]

, (0 < k < 1).

(1.5)

It has been shown [3, 4] that pk,γ(z) is continuous as regards to k and has real
coefficients for all k ∈ [0, 1].

Let P(pk,γ) be the class of functions p(z) which are analytic in E with p(0) = 1 such
that p(z) ≺ pk,γ(z) for z ∈ E. It can easily be seen that P(pk,γ) ⊂ P , where P is the class of
Caratheodory functions of positive real part.

The class Pm(pk,γ) is defined in [5] as follows.
Let p(z) be analytic in E with p(0) = 1. Then p ∈ Pm(pk,γ) if and only if, form ≥ 2, 0 ≤

γ < 1, k ∈ [0, 1], z ∈ E,

p(z) =
(
m

4
+
1
2

)

p1(z) −
(
m

4
− 1
2

)

p2(z), p1, p2 ∈ P
(
pk,γ

)
. (1.6)

For k = 0, γ = 0, the class Pm(p0,0) coincides with the class Pm introduced by Pinchuk
in [6]. Also P2 = P .

The generalized Harwitz-Lerch Zeta function [7] φ(z, λ, μ) is given as

φ
(
z, λ, μ

)
=

∞∑

n=0

zn

(
μ + n

)λ ,
(
λ ∈ C, μ ∈ C \ Z− = {−1, −2, . . .}). (1.7)



Abstract and Applied Analysis 3

Using (1.7), the following family of linear operators, see [7–9], is defined in terms of
the Hadamard product as

Jλ,μf(z) = Hλ,μ(z) ∗ f(z), (1.8)

where f ∈ A,

Hλ,μ(z) =
(
1 + μ

)λ
[
φ
(
z, λ, μ

) − μ−λ
]
, (z ∈ E), (1.9)

and φ(z, λ, μ) is given by (1.7).
From (1.7) and (1.8), we can write

Jλ,μf(z) = z +
∞∑

n=2

(
1 + μ
n + μ

)λ

anz
n. (1.10)

For the different permissible values of parameters λ and μ, the operator Jλ,μ has been
studied in [3, 4, 7, 10–12].

We observe some special cases of the operator (1.10) as given below
(i) J0,μf(z) = f(z),
(ii) J1,0f(z) = z +

∑∞
n=2(an/n)z

n =
∫z
0 (f(t)/t)dt,

(iii) J1,μf(z) = z +
∑∞

n=2((1 + μ)/(n + μ))anzn = ((1 + μ)/zμ)
∫z
0 t

μ−1f(t)dt, (μ > −1).
We remark that J1,1f(z) is the well-known Libera operator and J1,μf(z) is the

generalized Bernardi operator, see [13, 14]. Also Jλ,1f(z) = Lλf(z) represents the operator
closely related to the multiplier transformation studied by Flett [3].

We define the operator Iλ,μ : A → A as

Iλ,μf(z) ∗ Jλ,μf(z) = z

(1 − z) ,
(
λ real, μ > −1), (1.11)

see [15]. This gives us

Iλ,μf(z) = z +
∞∑

n=2

(
n + μ
1 + μ

)λ

anz
n,

(
λ real, μ > −1). (1.12)

From (1.12), the following identity can easily be verified

z
(
Iλ,μf(z)

)′ =
(
μ + 1

)
Iλ+1,μf(z) − μIλ,μf(z). (1.13)
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Remark 1.1.

(i) For k ∈ (0, 1), we note that the domain Ωk given by (1.3) represents the following
hyperbolic region:

(

u +
k2

1 − k2
)2

− k2

1 − k2v
2 >

(
k

1 − k2
)2

,

u >
k

k + 1
.

(1.14)

The extremal function pk,γ(z), for 0 < k < 1, can be written as

pk,γ(z), =
(
1 − γ)pk(z) + γ, (1.15)

where pk(z), in a simplified form, is given below

pk(z) = 1 +
1

2sin2 σ

{(
1 +

√
z

1 − √
z

)2σ/π

+
(
1 − √

z

1 +
√
z

)2σ/π

− 2

}

,

= 1 +
1

2sin2 σ

∞∑

n=1

⎛

⎝
2n∑

j=0
(−1)j

(
2σ/π
j

)(−2σ/π
2n − j

)
⎞

⎠zn,

= 1 + 8
(

σ

π sinσ

)2

z + · · · , (z ∈ E, σ = arc cos k),

(1.16)

and the branch of
√
z is chosen such that Im

√
z ≥ 0.

It is easy to see that, for h ∈ P(pk,γ),Reh(z) > (k + γ)/(k + 1), k ∈ (0, 1). That is

P
(
pk,γ

) ⊂ P
(
k + γ
1 + k

)

, (1.17)

and the order (k+γ)/(1+k) is sharp with the extremal function p(z) = (1−γ)pk(z)+γ , where
pk(z) is given by (1.16).

(ii) For k = 1, the extremal function

p1(z) = 1 +
2
π2

(

log
1 +

√
z

1 − √
z

)2

,

= 1 +
8
π2

∞∑

n=1

⎛

⎝ 1
n

n−1∑

j=0

1
2j + 1

⎞

⎠zn,

= 1 +
8
π2

(

z +
2
3
z2 +

23
45
z3 +

44
105

z4 + · · ·
)

, (z ∈ E),

(1.18)

maps E conformally onto the parabolic region Ω1 = {u + iv : u > (v2 + 1)/2}.
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It can easily be verified that Re p1(z) > 1/2 and, in this case, the order 1/2 is sharp.

We now define the following.

Definition 1.2. Let f ∈ A and let the operator Iλ,μf be defined by (1.12). Then f ∈ k −
∪Rγ

m(λ, μ) form ≥ 2, k ∈ [0, 1] and γ ∈ [0, 1) if and only if

{
z
(
Iλ,μf(z)

)′

Iλ,μg(z)

}

∈ Pm
(
pk,γ

)
, z ∈ E. (1.19)

We note the following.

(i) For m = 2, k = 0, and λ = 0, the class k − ∪Rγ
m(λ, μ) reduces to S∗(γ), and λ = 0

gives us the class k − ∪ST of uniformly starlike functions, see [2, 16].

(ii) 0 − ∪R0
m(0, μ) = Rm is the class of functions of bounded radius rotation, see [13, 14].

(iii) We denote k − ∪Rγ
m(0, μ) as k − ∪Rγ

m, see [5].

(iv) Letm = 2. Then f ∈ k − ∪Rγ

2(λ, μ) implies that

Re

{
z
(
Iλ,μf(z)

)′

Iλ,μf(z)

}

> k

∣
∣
∣
∣
∣

z
(
Iλ,μf(z)

)′

Iλ,μf(z)
− 1

∣
∣
∣
∣
∣
+ γ, (1.20)

and we note that, for 0 ≤ k2 < k1, k1 − ∪Rγ

2(λ, μ) ⊂ k2 − ∪Rγ

2(λ, μ).

Definition 1.3. Let f ∈ A. Then f ∈ k − ∪Tγm(λ, μ) if and only if there exists g ∈ k − ∪Rγ

2(λ, μ)
such that

{
z
(
Iλ,μf(z)

)′

Iλ,μg(z)

}

∈ Pm
(
pk,γ

)
in E. (1.21)

Special Cases.

(i) 0 − ∪Tγ2 (0, μ) = K(γ).

(ii) For k = γ = λ = 0, we obtain the class Tm introduced and discussed in [17].

(iii) When we takem = 2 and λ = 0, then k − ∪Tγ2 (0, μ) = k − ∪Kγ , the class of uniformly
close-to-convex functions, see [2].

2. Preliminary Results

We need the following results in our investigation.

Lemma 2.1 (see [18]). Let q(z) be convex in E and j : E → C with Re[j(z)] > 0, z ∈ E. If p(z),
analytic in E with p(0) = 1, satisfies

(
p(z) + j(z)zp′(z)

) ≺ q(z), (2.1)
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then

p(z) ≺ q(z). (2.2)

In the following, one gives an easy extension of a result proved in [1].

Lemma 2.2 (see [5]). Let k ≥ 0 and let β, δ be any complex numbers with β /= 0 and Re((βk/(k +
1)) + δ) > γ . If h(z) is analytic in E, h(0) = 1 and satisfies

(

h(z) +
zh′(z)

βh(z) + δ

)

≺ pk,γ(z), (2.3)

and qk,γ(z) is an analytic solution of

qk,γ(z) +
zq′

k,γ(z)

βqk,γ(z) + δ
= pk,γ(z), (2.4)

then qk,γ(z) is univalent,

h(z) ≺ qk,γ(z) ≺ pk,γ(z), (2.5)

and qk,γ(z) is the best dominant of (2.3).

Lemma 2.3 (see [19]). If f ∈ C, g ∈ S∗, then for each h analytic in E with h(0) = 1,

(
f ∗ hg)(E)
(
f ∗ g)(E) ⊂ Coh(E), (2.6)

where Coh(E) denotes the convex hull of h(E).

Lemma 2.4 (see [18]). Let u = u1 + i u2, v = v1 + iv2 and let ψ(u, v) be a complex-valued function
satisfying the conditions:

(i) ψ(u, v) is continuous in a domain D ⊂ C
2,

(ii) (1, 0) ∈ D and Reψ(1, 0) > 0,

(iii) Reψ(iu2, v1) ≤ 0, whenever (iu2, v1) ∈ D and v1 ≤ −(1/2)(1 + u22).

If h(z) = 1+ c1z+ c2z2 + · · · is a function analytic in E such that (h(z), zh′(z)) ∈ D and Reψ(h(z),
zh′(z)) > 0 for z ∈ E, then Reh(z) > 0 in E.

Lemma 2.5 (see [20]). Let h ∈ Pm(ρ), 0 ≤ ρ < 1. Then, with = reiθ, z ∈ E, one has

(i) (1/2π)
∫2π
0 |h(reiθ)|2dθ ≤ (1 − [m2(1 − ρ)2 − 1]r2)/(1 − r2),

(ii) (1/2π)
∫2π
0 |h′(reiθ)|dθ ≤ m(1 − ρ)/(1 − r2).
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Lemma 2.6 (see [5]). Let f ∈ k − ∪Rγ
m. Then there exist s1, s2 ∈ k − ∪Rγ

2 such that

f(z) =
(s1(z))(m+2)/4

(s2(z))(m−2)/4 , k ≥ 0, m ≥ 2, z ∈ E. (2.7)

Lemma 2.7. Let p ∈ Pm(pk,γ) and p(z) = 1 +
∑∞

n=1 cnz
n. Then

|cn| ≤ m

2
∣
∣δk,γ

∣
∣, n ≥ 1, (2.8)

where

δk,γ =

⎧
⎪⎪⎨

⎪⎪⎩

8
(
1 − γ)(cos−1k)2
π2(1 − k2) , 0 ≤ k < 1,

8
(
1 − γ)

π2
, k = 1.

(2.9)

Proof. Let p(z) = (m/4 + 1/2)p1(z) − (m/4 − 1/2)p2(z). Then,

pi(z) ≺ pk,γ(z) = 1 + δk,γz + · · · , i = 1, 2. (2.10)

Now the proof follows immediately by using the well-known Rogosinski’s result, see
[21].

3. Main Results

We shall assume throughout, unless stated otherwise, that k ∈ [0, 1], m ≥ 0, 0 ≤ γ < 1, λ ∈
C, μ > −1 and z ∈ E.

Theorem 3.1. Let f ∈ k − ∪Rγ
m(λ, μ). Let, for α, β > 0,

F(z) =
[
(
1 + β

)
z−β

∫z

0
tβ−1

′
fα(t)dt

]1/α
. (3.1)

Then, F ∈ k − ∪Rγ
m(λ, μ) in E.

Proof. Set

z
(
Iλ,μF(z)

)′

Iλ,μF(z)
= H(z) =

(
m

4
+
1
2

)

H1(z) −
(
m

4
− 1
2

)

H2(z). (3.2)

We noteH(z) is analytic in E withH(0) = 1.
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From (3.1), we have

{
zβ

(
Iλ,μF(z)

)α
}′

= zβ−1
(
Iλ,μf(z)

)α
. (3.3)

That is

(
Iλ,μF(z)

)α[
β + αH(z)

]
=

(
Iλ,μf(z)

)α
. (3.4)

Logarithmic differentiation of (3.4) and simple computations give us

H(z) +
zH ′(z)

αH(z) + β
=
z
(
Iλ,μf(z)

)′

Iλ,μf(z)
∈ Pm

(
pk,γ

)
. (3.5)

Define

φa,b(z) =
1

1 + b
z

(1 − z)a+1
+

b

b + 1
z

(1 − z)a+2
, (a > 0, b ≥ 0), (3.6)

then, with a = 1/α, b = β/α, we have

H(z) ∗
(
φa,b(z)
z

)

=
{

H(z) +
zH ′(z)

αH(z) + β

}

. (3.7)

From (3.2), (3.5), and (3.7), it follows that

{

Hi(z) +
zHi

′(z)
αHi(z) + β

}

∈ P(
pk,γ

)
, z ∈ E, i = 1, 2. (3.8)

On applying Lemma 2.2, we obtain

Hi(z) ≺ qk,γ(z) ≺ pk,γ(z) in E, (3.9)

where qk,γ(z) is the best dominant and is given as

qk,γ(z) =

[

α

∫1

0

(

tβ+α−1 exp
∫ tz

z

pk,γ(u) − 1
u

du

)α

dt

]−1
− β

α
. (3.10)

Consequently it follows, from (3.2), thatH ∈ Pm(pk,γ) and F ∈ k − ∪Tγm(λ, μ) in E.

For k = 0, γ = 0, we have the following special case.
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Corollary 3.2. Let f ∈ 0 − ∪R0
m(λ, μ) = Rm(λ, μ) and let F(z) be defined by (3.1). Then, F ∈

R
γ1
m(λ, μ), where

γ1 =
2

{
(
1 + 2β

)
+
√(

1 + 2β
)2 + 8α

} . (3.11)

Proof. We write

z
(
Iλ,μF(z)

)′

Iλ,μF(z)
=

(
1 − γ1

)
H(z) + γ1

=
(
m

4
+
1
2

)
{(

1 − γ1
)
H1(z) + γ1

} −
(
m

4
− 1
2

)
{(

1 − γ1
)
H2(z) + γ1

}
,

(3.12)

and proceeding as in Theorem 3.1, we obtain

z
(
Iλ,μf(z)

)′

Iλ,μf(z)
=

(
m

4
+
1
2

)[
(
1 − γ1

)
{

H1(z) +
αzH ′

1(z)

αH1(z) +
(
αγ1 + β

)
/
(
1 − γ1

)

}

+ γ1

]

−
(
m

4
− 1
2

)[
(
1 − γ1

)
{

H2(z) +
αzH ′

2(z)

αH2(z) +
(
αγ1 + β

)
/
(
1 − γ1

)

}

+ γ1

]

.

(3.13)

We construct the functional ψ(u, v) by taking u = Hi(z),v = zHi
′(z), as

ψ(u, v) = u +
v

αu +
(
αγ1 + β

)
/
(
1 − γ1

) +
γ1

1 − γ1 . (3.14)

The first two conditions of Lemma 2.4 can easily be verified. For condition (iii), we
proceed as follows:

Reψ(iu2, v1) =
γ1

1 − γ1 + Re

(
1 − γ1

)
v1

αγ1 + β + iα
(
1 − γ1

)
u2
,

=
1

1 − γ1

[

γ1 +

(
1 − γ1

)(
αγ1 + β

)
v1

(
αγ1 + β

)2 + α2
(
1 − γ1

)2
u22

]

,

≤ 1
1 − γ1

⎡

⎢
⎣γ1 −

(
1 − γ1

)(
αγ1 + β

)(
1 + u22

)

2
{(
αγ1 + β

)2 + α2
(
1 − γ1

)2
u22

}

⎤

⎥
⎦,

=
1

1 − γ1

[
A + Bu22

2C

]

,

(

v1 ≤
−(1 + u22

)

2

)

,

(3.15)
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whereA = 2γ1(αγ1 + β)
2−(1−γ1)(αγ1+β), B = 2γ1α2(1 − γ1)2−(1−γ1)(αγ1+β), C = {(αγ1 + β)2+

α2(1 − γ1)2u22} > 0.
The right-hand side of (3.15) is less than equal to zero when A ≤ 0 and B ≤ 0. From

A ≤ 0, we obtain γ1 as given by (3.11), and B ≤ 0 ensures that γ1 ∈ [0, 1).
This shows that all the conditions of Lemma 2.4 are satisfied and therefore ReHi(z) >

0. This impliesH ∈ Pm and consequently Iλ,μF ∈ Rγ1
m. That is F ∈ Rγ1

m(λ, μ) as required.

By taking α = 1, β = 0, λ = 0, and m = 2, we obtain a well-known result that every
convex function is starlike of order 1/2. Also, for β = 1, λ = 0, α = 1, and m = 2, we obtain
from (3.1) the Libera operator and in this case we obtain a known result with γ1 = 2/(3+

√
17)

for starlike functions, see [18].
Assigning permissible values to different parameters, we obtain several new and

known results from Theorem 3.1 and Corollary 3.2.

Theorem 3.3. Let f ∈ k − ∪Tγm(λ, μ) and let F(z) be defined by (3.1). Then F ∈ k − ∪Tγm(λ, μ).

Proof. We can write (3.1) as

Iλ,μF(z) =
[
(
1 + β

)
z−β

∫z

0
tβ−1

′(
Iλ,μf(t)

)α
dt

]1/α
, f ∈ k − ∪Tγm

(
λ, μ

)
,

=

[(
Iλ,μf(z)

z

)α

∗ hα,β(z)
z

]1/α

,

(3.16)

where

hα,β(z) =
∞∑

n=1

zn

n + α + β
, (3.17)

is convex in E.
Let f ∈ k − ∪Tγm(λ, μ). Then there exists some g ∈ k − ∪Rγ

2(λ, μ) such that

{
z
(
Iλ,μf(z)

)′

Iλ,μg(z)

}

∈ Pm
(
pk,γ

)
. (3.18)

G(z) =
[
(
β + 1

)
z−β

∫z

0
tβ−1gα(t)dt

]1/α
. (3.19)

From Theorem 3.1, it follows that G ∈ k − ∪Rγ

2(λ, μ). We can write (3.19) as

Iλ,μG(z) = z

[
Iλ,μg(z)

z
∗ hα,β(z)

z

]1/α

, (3.20)

where hα,β(z), given by (3.17), is convex in E.
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Since g ∈ k − ∪Rγ

2(λ, μ), so Iλ,μg ∈ S∗((k + γ)/(k + 1)) ⊂ S∗. It can easily be shown that
z(Iλ,μg/z)

α and z(Iλ,μG/z)
α are in the class S∗.

Now, from (3.1), we have

z
(
Iλ,μF(z)

)′(
Iλ,μF(z)

)α−1

(
Iλ,μG(z)

)α =
hα,β(z) ∗ z

(
Iλ,μg(z)/z

)α
(
z
(
Iλ,μf(z)

)′(
Iλ,μf(z)

)α−1
/
(
Iλ,μg(z)

)α
)

hα,β(z) ∗ z
(
Iλ,μg(z)/z

)α

=
(
m

4
+
1
2

)[
hα,β(z) ∗ z

(
Iλ,μg(z)/z

)α
h1(z)

]

hα,β(z) ∗ z
(
Iλ,μg(z)/z

)α

−
(
m

4
− 1
2

)[
hα,β(z) ∗ z

(
Iλ,μg(z)/z

)α
h2(z)

]

hα,β(z) ∗ z
(
Iλ,μg(z)/z

)α .

(3.21)

We use Lemma 2.3 with hi ≺ pk,γ , i = 1, 2, to have

{
hα,β(z) ∗ z

(
Iλ,μg(z)/z

)α
hi(z)

hα,β(z) ∗ z
(
Iλ,μg(z)/z

)α

}

≺ pk,γ(z) in E. (3.22)

Thus from (3.19), (3.21), and (3.22)we obtain the required result that F ∈ k−∪Tγm(λ, μ).
This completes the proof.

As a special case we note that, for λ = 0 = k, the subclass Tγm ⊂ Tm is invariant under
the integral operator defined by (3.1).

Theorem 3.4. One has

k − ∪Rγ
m

(
λ + 1, μ

) ⊂ k − ∪Rγ
m

(
λ, μ

)
. (3.23)

Proof. Let f ∈ k − ∪Rγ
m(λ + 1, μ) and let

z
(
Iλ,μf(z)

)′

Iλ,μf(z)
= H(z), (3.24)

whereH(z) is analytic in E and is defined by (3.2).
Then, from (1.13), we have

z
(
Iλ+1,μf(z)

)′

Iλ+1,μf(z)
=

{

H(z) +
zH ′(z)
H(z) + μ

}

∈ Pm
(
pk,γ

)
. (3.25)

Applying similar technique used before, we have from (3.2) and (3.7) for i = 1, 2

{

Hi(z) +
zHi

′(z)
Hi(z) + μ

}

≺ pk,γ . (3.26)
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Thus, using Lemma 2.2, it follows that Hi ≺ pk,γ , i = 1, 2 and z ∈ E, consequently
H ∈ Pm(pk,γ) in E and this completes the proof.

As special cases, we have the following.

(i) Letm = 2, λ ≥ 0. Then, from Theorem 3.4, it easily follows that

k − ∪Rγ

2

(
λ, μ

) ⊂ k − ∪Rγ

2

(
0, μ

) ⊂ S∗
(
k + γ
1 + k

)

⊂ S∗. (3.27)

(ii) Let k = 0 and λ ≥ 0. Then f ∈ 0 − ∪Rγ
m(λ, μ) implies f ∈ R

γ
m ⊂ Rm, that is, f(z) is a

function of bounded radius rotation in E.

Theorem 3.5. One has

k − ∪Tγm
(
λ + 1, μ

) ⊂ k − ∪Tγm
(
λ, μ

)
, μ, λ ≥ 0. (3.28)

Proof. Let f ∈ k − ∪Tγm(λ + 1, μ). Then, for z ∈ E,

z
(
Iλ+1,μf(z)

)′

Iλ+1,μg(z)
∈ Pm

(
pk,γ

)
, (3.29)

for some g ∈ k − ∪Rγ

2(λ + 1, μ).
We define an analytic function h(z) in E such that

z
(
Iλ,μf(z)

)′

Iλ,μg(z)
= h(z) =

(
m

4
+
1
2

)

h1(z) −
(
m

4
− 1
2

)

h2(z), (3.30)

where h(0) = 1. We shall show that h ∈ Pm(pk,γ) in E.
Since g ∈ k − ∪Rγ

2(λ + 1, μ) and k − ∪Rγ

2(λ + 1, μ) ⊂ k − ∪Rγ

2(λ, μ), we have

z
(
Iλ,μg(z)

)′

Iλ,μg(z)
= h0(z), h0 ∈ P

(
pk,γ

)
, z ∈ E. (3.31)

Now, on using (1.13), we have

z
(
Iλ+1,μf(z)

)′

Iλ+1,μg(z)
=

(
1/

(
μ + 1

))
z
[
Iλ,μ

(
zf ′(z)

)′] +
(
μ/

(
μ + 1

))[
Iλ,μzf

′(z)
]

(
1/

(
μ + 1

))
z
(
Iλ,μg(z)

)′ +
(
μ/

(
μ + 1

))
Iλ,μg(z)

,

=

[(
z
[
Iλ,μ

(
zf ′(z)

)′]/Iλ,μg(z)
)
+ μh(z)

]

h0(z) + μ
.

(3.32)
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Differentiation of (3.30) gives us

z
(
z
(
Iλ,μf(z)

)′)′

Iλ,μg(z)
= zh′(z) + (h(z))(h0(z)), (3.33)

and using (3.33) in (3.32), we obtain

z
(
Iλ+1,μf(z)

)′

Iλ+1,μg(z)
= h(z) +

zh′(z)
h0(z) + μ

=
(
m

4
+
1
2

)[

h1(z) +
zh′1(z)
h0(z) + μ

]

−
(
m

4
− 1
2

)[

h2(z) +
zh′2(z)
h0(z) + μ

]

.

(3.34)

Since f ∈ k − ∪Tγm(λ + 1, μ), we have with 1/H0(z) = {h0(z) + μ} ∈ P ,
{
hi(z) +H0(z)

[
zh′i(z)

]} ≺ pk,γ(z) in E, (3.35)

and thus, applying Lemma 2.1, we have hi(z) ≺ pk,γ(z) in E. This shows h ∈ Pm(pk,γ) in E and
consequently f ∈ k − ∪Tγm(λ, μ).

As a special case, we note that f ∈ k −∪Tγ2 (λ, μ) is a close-to-convex function for z ∈ E.

Theorem 3.6. Let f ∈ k − ∪Rγ

2(λ, μ) and let φ(z) be convex in E. Then (f ∗ φ) ∈ k − ∪Rγ

2(λ, μ) for
z ∈ E.

Proof. We have

z
(
Iλ,μ

(
φ ∗ f))′

Iλ,μ
(
φ ∗ f) =

φ ∗ z[Iλ,μf
]′

φ ∗ Iλ,μf ,

=
φ ∗ [

z
(
Iλ,μf

)′/Iλ,μf
]
Iλ,μf

φ ∗ Iλ,μf .

(3.36)

Now k−∪Rγ

2(λ, μ) ⊂ S∗((k+γ)/(1+k)) ⊂ S∗, and φ is a convex in E, we use Lemma 2.3
to (3.36) and conclude that (φ ∗ f) ∈ k − ∪Rγ

2(λ, μ) for z ∈ E. This completes the proof.

Remark 3.7. Following the similar technique, we can easily extend Theorem 3.6 to the class
k − ∪Tγm(λ, μ), that is, k − ∪Tγm(λ, μ), is invariant under convolution with convex function.

3.1. Applications of Theorem 3.6

The classes k − ∪Rγ

2(λ, μ) and k − ∪Tγm(λ, μ) are preserved under the following integral op-
erators:

(1) f1(z) =
∫z
0 (f(t)/t)dt = (φ1 ∗ f)(z), where φ1(z) = − log(1 − z),

(2) f2(z) = (2/z)
∫z
0 f(t)dt = (φ2 ∗ f)(z), where φ2(z) = −2[z − log(1 − z)]/z,

(3) f3(z) =
∫z
0 ((f(t) − f(tx))/(t − tx))dt = (φ3 ∗ f)(z), |x| ≤ 1, x /= 1, where φ3(z) =

(1/(1 − x)) log((1 − xz)/(1 − z)), |x| ≤ 1, x /= 1,
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(4) f4(z) = ((1 + c)/zc)
∫z
0 t

c−1f(t)dt = (φ4 ∗ f)(z), Re c > 0, where φ4(z) =
∑∞

n=1((1 +
c)/(n + c))zn, Re c > 0,

The proof is immediate since φi(z) is convex in E for i = 1, 2, 3, 4.
With essentially the same method together with Lemma 2.7, we can easily prove the

following sharp coefficient results.

Theorem 3.8. Let f ∈ k − ∪Rγ
m(λ,m) and let it be given by

f(z) = z +
∞∑

n=2

anz
n. (3.37)

Then

|an| ≤ m

2[(n − 1)!]

[(
1 + μ
n + μ

)λ(∣
∣δk,γ

∣
∣
)
n−1

]

, (n ≥ 2), (3.38)

where (ρ)n is Pochhamer symbol defined, in terms of Gamma function Γ, by

(
ρ
)
n =

Γ
(
n + ρ

)

Γ
(
ρ
) =

{
1, n = 0,
ρ
(
ρ + 1

)(
ρ + 2

) · · · (ρ + n − 1
)
, n ∈N,

(3.39)

and δk,γ is as given by (2.9).
As special case, one notes that

(i) λ = 0, m = 2, then one has

|an| ≤
(∣
∣δk,γ

∣
∣
)
n−1

(n − 1)!
, (3.40)

see [2].

(ii) Let λ = 0, n = 2. Then,

|an| ≤ m

2
∣
∣δk,γ

∣
∣. (3.41)

This coefficient bound is well known form = 2, see [2].

Using Theorem 3.8 withm = 2, the following result can easily be proved.

Theorem 3.9. Let f : f(z) = z +
∑∞

n=2 anz
n ∈ k − ∪Tγm(λ, μ). Then, for n ≥ 2

|an| ≤
(
1 + μ
n + μ

)λ
⎡

⎣

(∣
∣δk,γ

∣
∣
)
n−1

n!
+
m

∣
∣δk,γ

∣
∣

2n

n−1∑

j=1

(∣
∣δk,γ

∣
∣
)
j−1

(
j − 1

)
!

⎤

⎦, (3.42)

where δk,γ is as given by (2.9).
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By assigning different permissible values to the parameters, we obtain several known
results, see [2, 22].

We now prove the following.

Theorem 3.10. Let f : f(z) = z +
∑∞

n=2 anz
n ∈ k − ∪Rγ

m(λ, μ) with (m + 2)(1 − γ)/2(1 + k) > 1.
Then, for n ≥ 1,

||an+1| − |an|| ≤ c1
(
m, γ, k, λ, μ

)
n[{((m/2)+1)((1−γ)/(1+k))}−(2+λ)], (3.43)

where c1(m, γ, k, λ, μ) is a constant.

Proof. Let F(z) = Iλ,μf(z) = z+
∑∞

n=2Anz
n, An = ((n + μ)/(1 + μ))λan. Since f ∈ k−∪Rγ

m(λ, μ),
we can write

zF ′(z) = F(z)h(z), h ∈ Pm
(
pk,γ

)
. (3.44)

That is

z
(
zF ′(z)

)′ = F(z)
[
h2(z) + zh′(z)

]
. (3.45)

Now, F ∈ k −∪Rγ
m ⊂ Rm((k + γ)/(1+k)), and it follows from a result proved in [5] that

there exist s1, s2 ∈ S∗((k + γ)/(k + 1)) such that

F(z) =
(s1(z))(m+2)/4

(s2(z))(m−2)/4 , m ≥ 2,

=

((
g1(z)

)(1−(k+γ)/(k+1)))(m+2)/4

((
g2(z)

)(1−(k+γ)/(k+1)))(m−2)/4 , g1, g2 ∈ S∗,

=

(
g1(z)

)((1−γ)/(k+1))((m+2)/4)

(
g2(z)

)((1−γ)/(k+1))((m−2)/4) .

(3.46)

Thus, for ξ ∈ E and n ≥ 1,

∣
∣
∣(n + 1)2ξAn+1 − n2An

∣
∣
∣ ≤ 1

2πrn+2

∫2π

0
|z − ξ|∣∣z(zF ′(z)

)′∣∣dθ

=
1

2πrn+2

∫2π

0
|z − ξ||F(z)|

∣
∣
∣h2(z) + zh′(z)

∣
∣
∣dθ

=
1

2πrn+2

∫2π

0
|z − ξ|

∣
∣
∣
∣
∣

(
g1(z)

)(m/4+1/2)

(
g2(z)

)(m/4−1/2)

∣
∣
∣
∣
∣

((1−γ)/(k+1))∣
∣
∣h2(z) + zh′(z)

∣
∣
∣dθ,

(3.47)

where g1, g2 ∈ S∗ and h ∈ Pm(pk,γ) in E.
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Let 0 < r < 1. Then, by a result [23], there exists a ξ with |ξ| = r such that, for z, |z| = r

|z − ξ|∣∣g1(z)
∣
∣ ≤ 2r2

1 − r2 . (3.48)

We now use (3.48), distortion theorems for starlike functions g1, g2 for ((m/2)+1)((1−γ)/(1+
k)) > 1, and Lemma 2.5 with ρ = (k+ρ)/(k+1),r = (1−1/n), n → ∞ and obtain from (3.47),

∣
∣
∣
∣
∣
(n + 1)2ξ

(
n + μ + 1
1 + μ

)λ

an+1 − n2
(
n + μ
1 + μ

)λ

an

∣
∣
∣
∣
∣
≤ C(

m, γ, k
)
n{((m/2)+1)((1−γ)/(1+k))}. (3.49)

From (3.48), we easily obtain the required result given by (3.43), (n → ∞).
This completes the proof.

Using the similar technique, we can easily prove the following.

Theorem 3.11. Let f : f(z) = z +
∑∞

n=2 anz
n ∈ k − ∪Tγm(λ, μ). Then

an = O(1)n{2((1−γ)/(1+k))−λ−1}, (n −→ ∞), (3.50)

where O(1) is a constant depending on γ, k, m, μ, and λ only. The exponent {2((1 − γ)/(1 + k)) −
λ − 1} is best possible.
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