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Rössler Chaotic and Hyperchaotic Systems

Asad Freihat and Shaher Momani

Department of Mathematics, Faculty of Science, The University of Jordan, Amman 1194, Jordan

Correspondence should be addressed to Asad Freihat, asadfreihat@yahoo.com

Received 20 November 2011; Accepted 15 December 2011

Academic Editor: Muhammad Aslam Noor

Copyright q 2012 A. Freihat and S. Momani. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

A new reliable algorithm based on an adaptation of the standard generalized differential transform
method (GDTM) is presented. The GDTM is treated as an algorithm in a sequence of intervals
(i.e., time step) for finding accurate approximate solutions of fractional-order Rössler chaotic and
hyperchaotic systems. A comparative study between the new algorithm and the classical Runge-
Kutta method is presented in the case of integer-order derivatives. The algorithm described in this
paper is expected to be further employed to solve similar nonlinear problems in fractional calculus.

1. Introduction

Mathematical modelling of complex processes is a major challenge for contemporary scien-
tists. In contrast to simple classical systems, where the theory of integer-order differential
equations is sufficient to describe their dynamics, complex systems are characterized by the
variability of structures in them, multiscale behavior, and nonlinearity in the mathematical
description of the mutual relationship between parameters [1]. Recent investigations have
shown that many complex physical and biological systems can be represented more
accurately through fractional derivative formulation [2]. Fractional derivatives provide an
excellent instrument for the description of memory and hereditary properties of various
complexmaterials and systems. Therefore, the number of scientific and engineering problems
involving fractional derivatives is already very large and still growing, and perhaps the
fractional calculus (i.e., derivatives and integrals of any real or complex order) will be the
calculus of the twenty-first century [1–10].

Chaotic systems have a profound effect on its numerical solutions and highly sensitive
to time step sizes. It will be beneficial to find a reliable analytical tool to test its long-
term accuracy and efficiency. Also, the hyperchaotic systems have more complex dynamical
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behaviors that is because it is defined as a chaotic system with two positive Lyapunov
exponents. Li and Chen [11] have studied the dynamics of both the fractional-order
generalizations of the well-known Rössler equation and Rössler hyperchaos equation. They
key finding of their study is that chaotic behavior exists in the fractional-order Rössler
equation of order as low as 2.4, and hyperchaos exists in the fractional-order Rössler
hyperchaos equation of order as low as 3.8. Moaddy et al. [12] used the nonstandard finite
difference method to study the dynamic behaviors in the fractional-order Rössler chaotic and
hyperchaotic systems. They found that the lowest value to have chaos in this system is 2.1
and hyperchaos exists in the fractional-order Rössler system of order as low as 3.8.

In this paper, we intend to obtain the approximate solution of the fractional-
order Rössler chaotic and hyperchaotic systems via a reliable algorithm based on an
adaptation of the generalized differential transform method (GDTM) [13–16], called the
multistep generalized differential transform method (MSGDTM). It can be found that the
corresponding numerical solutions obtained by using GDTM are valid only for a short time
while the ones obtained by using the MSGDTM are more valid and accurate during a long
time [17, 18].

This paper is organized as follows. In Section 2, we present some necessary definitions
and notations related to fractional calculus. In Section 3, the proposedmethod is described. In
Sections 4 and 5, the method is applied to the problems (4.1) and (4.6) and numerical simu-
lations are presented graphically, respectively. Finally, the conclusions are given in Section 6.

2. Fractional Calculus

There are several approaches to define the fractional calculus, for example, Riemann-
Liouville, Grünwald-Letnikov, Caputo, and Generalized Functions approach. Riemann-
Liouville fractional derivative is mostly used by mathematicians, but this approach is not
suitable for real-world physical problems since it requires the definition of fractional order
initial conditions, which have no physically meaningful explanation yet, Caputo introduces
an alternative definition, which has the advantage of defining integer-order initial conditions
for fractional order differential equations.

Definition 2.1. A function f(x) (x > 0) is said to be in the space Cα (α ∈ R) if it can be written
as f(x) = xpf1(x) for some p > α where f1(x) is continuous in [0,∞), and it is said to be in
the space Cm

α if f (m) ∈ Cα, m ∈ N.

Definition 2.2. The Riemann-Liouville integral operator of order α > 0 with a ≥ 0 is defined as

(
Jαaf
)
(x) =

1
Γ(α)

∫x

a

(x − t)α−1f(t)dt, x > a,

(
J0af
)
(x) = f(x).

(2.1)

Properties of the operator can be found in [3, 19–21]. We only need here the following. For
f ∈ Cα, α, β > 0, a ≥ 0, c ∈ R, and γ > −1, we have

(
Jαa J

β
af
)
(x) =

(
J
β
aJ

α
af
)
(x) =

(
J
α+β
a f

)
(x),

Jαa xγ =
xγ+α

Γ(α)
B(x−a)/x

(
α, γ + 1

)
,

(2.2)
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where Bτ (α, γ + 1) is the incomplete beta function which is defined as

Bτ

(
α, γ + 1

)
=
∫ τ

0
tα−1(1 − t)γdt,

Jαa e
cx = eac(x − a)α

∞∑

k=0

[c(x − a)]k

Γ(α + k + 1)
.

(2.3)

The Riemann-Liouville derivative has certain disadvantages when trying to model real-
world phenomena with fractional differential equations. Therefore, we shall introduce a
modified fractional differential operatorDα

a proposed by Caputo in his work on the theory of
viscoelasticity.

Definition 2.3. The Caputo fractional derivative of f(x) of order α > 0 with a ≥ 0 is defined as

(
Dα

af
)
(x) =

(
Jm−α
a f (m)

)
(x) =

1
Γ(m − α)

∫ x

a

f (m)(t)

(x − t)α+1−m
dt, (2.4)

for m − 1 < α ≤ m,m ∈ N, x ≥ a, f(x) ∈ Cm
−1.

The Caputo fractional derivative was investigated by many authors; form−1 < α ≤ m,
f(x) ∈ Cm

α , and α ≥ −1, we have

(
JαaD

α
af
)
(x) = JmDmf(x) = f(x) −

m−1∑

k=0

f (k)(a)
(x − a)k

k!
. (2.5)

For mathematical properties of fractional derivatives and integrals, one can consult the
mentioned references.

3. Multistep Generalized Differential Transform Method (MSGDTM)

Although the generalized differential transform method (GDTM) is used to provide
approximate solutions for nonlinear problems in terms of convergent series with easily
computable components, it has been shown that the approximated solution obtained is not
valid for large t for some systems [13–16]. Therefore, we use the multistep generalized
differential transform method (MSGDTM), which offers accurate solution over a longer time
frame compared to the standard generalized differential transform method [17, 18].

For this purpose, we consider the following initial value problem for systems of
fractional differential equations

Dα1∗ y1(t) = f1
(
t, y1, y2, . . . , yn

)
,

Dα2∗ y2(t) = f1
(
t, y1, y2, . . . , yn

)
,

...

Dαn∗ yn(t) = f1
(
t, y1, y2, . . . , yn

)
,

(3.1)
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subject to the initial conditions

yi(t0) = ci, i = 1, 2, . . . , n, (3.2)

where Dαi∗ is the Caputo fractional derivative of order αi, where 0 < αi ≤ 1, for i = 1, 2, . . . , n.
Let [t0, T] be the interval over which we want to find the solution of the initial value problem
(3.1)-(3.2). In actual applications of the generalized differential transform method (GDTM),
the Kth-order approximate solution of the initial value problem (3.1)-(3.2) can be expressed
by the finite series

yi(t) =
K∑

i=0

Yi(k)(t − t0)kαi , t ∈ [t0, T], (3.3)

where Yi(k) satisfied the recurrence relation

Γ((k + 1)αi + 1)
Γ(kαi + 1)

Yi(k + 1) = Fi(k, Y1, Y2, . . . , Yn), (3.4)

Yi(0) = ci, and Fi(k, Y1, Y2, . . . , Yn) is the differential transform of function fi(t, y1, y2, . . . , yn)
for i = 1, 2, . . . , n. The basic steps of the GDTM can be found in [12, 15].

Assume that the interval [t0, T] is divided into M subintervals [tm−1, tm], m =
1, 2, . . . ,M of equal step size h = (T − t0)/M by using the nodes tm = t0 + mh. The main
ideas of the MSGDTM are as follows.

First, we apply the GDTM to the initial value problem (3.1)-(3.2) over the interval
[t0, t1], we will obtain the approximate solution yi,1(t), t ∈ [t0, t1], using the initial condition
yi(t0) = ci, for i = 1, 2, . . . , n. For m ≥ 2 and at each subinterval [tm−1, tm], we will use the
initial condition yi,m(tm−1) = yi,m−1(tm−1) and apply the GDTM to the initial value problem
(3.1)-(3.2) over the interval [tm−1, tm]. The process is repeated and generates a sequence
of approximate solutions yi,m(t), m = 1, 2, . . . ,M, for i = 1, 2, . . . , n. Finally, the MSGDTM
assumes the following solution:

yi(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yi,1(t), t ∈ [t0, t1],
yi,2(t), t ∈ [t1, t2],
...
yi,M(t), t ∈ [tM−1, tM].

(3.5)

The new algorithm, MSGDTM, is simple for computational performance for all values of
h. As we will see in the next section, the main advantage of the new algorithm is that the
obtained solution converges for wide time regions.

4. Solving the Fractional-Order Rössler Chaotic and Hyperchaotic
Systems Using the MSGDTM Algorithm

To demonstrate the effectiveness of this scheme, we consider two kinds of systems: the
fractional-order Rössler chaotic and hyperchaotic systems. These examples are considered
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because approximate numerical solutions are available for them using other numerical
schemes. This allows one to compare the results obtained using this scheme with solutions
obtained using other schemes.

4.1. The Fractional-Order Rössler Chaotic System

Consider a fractional-order generalization of the Rössler [22]. In this system, the integer-order
derivatives are replaced by the fractional-order derivatives, as follows:

Dα1x(t) = −y − z,

Dα2y(t) = x + ay,

Dα3z(t) = b + z(x − c),

(4.1)

where (x, y, z) are the state variables, (a, b, c) are positive constants, and αi, i = 1, 2, 3,
are parameters describing the order of the fractional time-derivatives in the Caputo sense.
The general response expression contains parameters describing the order of the fractional
derivatives that can be varied to obtain various responses. Obviously, the classical integer-
order Rössler system can be viewed as a special case from the fractional-order system by
setting α1 = α2 = α3 = 1, which chaotic when a = 0.15, and for the fractional case, the
parameter a is allowed to be varied. In other words, the ultimate behavior of the fractional
system response must converge to the response of the integer-order version of the equation.

Applying the MSGDTM algorithm to (4.1) gives

X(k + 1) =
Γ(α1k + 1)

Γ(α1(k + 1) + 1)
(−Y (k) − Z(k)),

Y (k + 1) =
Γ(α2k + 1)

Γ(α2(k + 1) + 1)
(X(k) + aY (k)),

Z(k + 1) =
Γ(α3k + 1)

Γ(α3(k + 1) + 1)

[

bδ(k) +

(
k∑

l=0

Z(l)X(k − l)

)

− cZ(k)

]

,

(4.2)

where X(k), Y (k), and Z(k) are the differential transformation of x(t), y(t), and z(t),
respectively, and δ(k) equals 1 when k = 0 and equals 0 otherwise. The differential transform
of the initial conditions is given by X(0) = c1, Y (0) = c2, Z(0) = c3. In view of the
differential inverse transform, the differential transform series solution for the system (4.1)
can be obtained as

X(t) =
N∑

n=0

X(n)tα1n,

Y (t) =
N∑

n=0

Y (n)tα2n,

Z(t) =
N∑

n=0

Z(n)tα3n.

(4.3)
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According to the multistep generalized differential transform method, the series solution for
the system (4.1) is suggested by

X(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

X1(n)tα1n, t ∈ [0, t1],

K∑

n=0

X2(n)(t − t1)α1n, t ∈ [t1, t2],

...
K∑

n=0

XM(n)(t − tM−1)α1n, t ∈ [tM−1, tM],

Y (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

Y1(n)tα2n, t ∈ [0, t1],

K∑

n=0

Y2(n)(t − t1)α2n, t ∈ [t1, t2],

...
K∑

n=0

YM(n)(t − tM−1)α2n, t ∈ [tM−1, tM],

Z(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

Z1(n)tα3n, t ∈ [0, t1],

K∑

n=0

Z2(n)(t − t1)α3n, t ∈ [t1, t2],

...
K∑

n=0

ZM(n)(t − tM−1)α3n, t ∈ [tM−1, tM],

(4.4)

where Xi(n), Yi(n), and Zi(n) for i = 1, 2, . . . ,M satisfy the following recurrence relations:

Xi(k + 1) =
Γ(α1k + 1)

Γ(α1(k + 1) + 1)
(−Yi(k) − Zi(k)),

Yi(k + 1) =
Γ(α2k + 1)

Γ(α2(k + 1) + 1)
(Xi(k) + aYi(k)),

Zi(k + 1) =
Γ(α3k + 1)

Γ(α3(k + 1) + 1)

[

bδ(k) +

(
k∑

l=0

Zi(l)Xi(k − l)

)

− cZi(k)

]

,

(4.5)

such that Xi(0) = xi(ti−1) = xi−1(ti−1), Yi(0) = yi(ti−1) = yi−1(ti−1), and Zi(0) = zi(ti−1) =
zi−1(ti−1).

Finally, we start with X0(0) = c1, Y0(0) = c2, and Z0(0) = c3, using the recurrence
relation given in (4.5), then we can obtain the multistep solution given in (4.4).
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4.2. The Fractional-Order Rössler Hyperchaotic System

The fractional-order Rössler hyperchaotic system [23] is given by

Dα1x(t) = −y − z,

Dα2y(t) = x + ay +w,

Dα3z(t) = b + xz,

Dα4w(t) = cz + dw,

(4.6)

where (x, y, z,w) are the state variables, (a, b, c, d) are positive constants, and αi, i = 1, 2, 3, 4
are parameters describing the order of the fractional time-derivatives in the Caputo sense.
In the case of αi = 1 (i = 1, 2, 3, 4), the fractional system reduces to the classical Rössler
hyperchaotic system, and it exhibits a hyperchaotic behavior when a = 0.25, b = 3, c = 0.5,
and d = 0.05.

Following the same procedure as the previous system and applying MSGDTM
algorithm to (4.6) yield

X(k + 1) =
Γ(α1k + 1)

Γ(α1(k + 1) + 1)
(−Y (k) − Z(k)),

Y (k + 1) =
Γ(α2k + 1)

Γ(α2(k + 1) + 1)
(X(k) + aY (k) +W(k)),

Z(k + 1) =
Γ(α3k + 1)

Γ(α3(k + 1) + 1)

[

bδ(k) +

(
k∑

l=0

X(l)Z(k − l)

)]

,

W(k + 1) =
Γ(α4k + 1)

Γ(α4(k + 1) + 1)
(−cZ(k) + dW(k)),

(4.7)

where X(k), Y (k), Z(k), and W(k) are the differential transformation of x(t), y(t), z(t), and
w(t), respectively. The differential transform of the initial conditions is given by X(0) = c1,
Y (0) = c2, Z(0) = c3, and W(0) = c4. In view of the differential inverse transform, the
differential transform series solution for the system (4.6) can be obtained as

X(t) =
N∑

n=0

X(n)tα1n,

Y (t) =
N∑

n=0

Y (n)tα2n,

Z(t) =
N∑

n=0

Z(n)tα3n,

W(t) =
N∑

n=0

W(n)tα4n.

(4.8)
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Now, according to the MSGDTM algorithm, the series solution for the system (4.6) is
suggested by

X(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

X1(n)tα1n, t ∈ [0, t1],

K∑

n=0

X2(n)(t − t1)α1n, t ∈ [t1, t2],

...
K∑

n=0

XM(n)(t − tM−1)α1n, t ∈ [tM−1, tM],

Y (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

Y1(n)tα2n, t ∈ [0, t1],

K∑

n=0

Y2(n)(t − t1)α2n, t ∈ [t1, t2],

...
K∑

n=0

YM(n)(t − tM−1)α2n, t ∈ [tM−1, tM],

Z(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

Z1(n)tα3n, t ∈ [0, t1],

K∑

n=0

Z2(n)(t − t1)α3n, t ∈ [t1, t2],

...
K∑

n=0

ZM(n)(t − tM−1)α3n, t ∈ [tM−1, tM],

W(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

W1(n)tα3n, t ∈ [0, t1],

K∑

n=0

W2(n)(t − t1)α3n, t ∈ [t1, t2],

...
K∑

n=0

WM(n)(t − tM−1)α3n, t ∈ [tM−1, tM],

(4.9)

where Xi(n), Yi(n), Zi(n), and Wi(n) for i = 1, 2, . . . ,M satisfy the following recurrence
relations:

Xi(k + 1) =
Γ(α1k + 1)

Γ(α1(k + 1) + 1)
(−Yi(k) − Zi(k)),

Y (k + 1) =
Γ(α2k + 1)

Γ(α2(k + 1) + 1)
(Xi(k) + aYi(k)),
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Figure 1: Phase plot of chaotic attractor in the x-y space, with a = 0.15 and α1 = α2 = α3 = 1: (a)MSGDTM,
(b) RK4.

Zi(k + 1) =
Γ(α3k + 1)

Γ(α3(k + 1) + 1)

[

bδ(k) +

(
k∑

l=0

Zi(l)Xi(k − l)

)

− cZi(k)

]

,

Wi(k + 1) =
Γ(α4k + 1)

Γ(α4(k + 1) + 1)
(−cZi(k) + dWi(k)),

(4.10)

such that Xi(0) = xi(ti−1) = xi−1(ti−1), Yi(0) = yi(ti−1) = yi−1(ti−1), Zi(0) = zi(ti−1) = zi−1(ti−1),
and Wi(0) = wi(ti−1) = wi−1(ti−1).

Starting with X0(0) = c1, Y0(0) = c2, Z0(0) = c3, W0(0) = c4 and using the recurrence
relation given in (4.10), we can obtain the multistep solution given in (4.9).

5. Numerical Results

We shall demonstrate the accuracy of the MSGDTM against the Mathemtica’s built-in
fourth-order Runge-Kutta (RK4) procedure for the solutions of both Rössler chaotic and
hyperchaotic systems in the case of integer-order derivatives. The MSGDTM is coded in
the computer algebra package Mathematica. The Mathematica environment variable digits
controlling the number of significant digits are set to 20 in all the calculations done in this
paper. The time range studied in this work is [0, 200] and the step size Δt = 0.05.

Figures 1 and 2 show the phase portrait for the classical Rössler chaotic system
using the multistep generalized differential transform method and the fourth-order Runge-
Kutta method (RK4). From the graphical results in Figures 1 and 2, it can be seen the
results obtained using the multistep generalized differential transform method match the
results of the RK4 very well, which implies that the multistep generalized differential
transformmethod can predict the behaviour of these variables accurately for the region under
consideration. Figures 3 and 4 show the phase portrait for the fractional Rössler chaotic
system using the multistep generalized differential transform method. From the numerical
results in Figures 3 and 4, it is clear that the approximate solutions depend continuously on
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Figure 2: Phase plot of chaotic attractor in the x-y-z space, with a = 0.15 and α1 = α2 = α3 = 1: (a)
MSGDTM, (b) RK4.
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Figure 3: Phase plot of chaotic attractor in the x-y-z space, with a = 0.15, b = 0.2, c = 10: (a) α1 = α2 =
α3 = 0.9, (b) α1 = 0.8, α2 = 0.7, α3 = 0.8.

the time-fractional derivative αi, i = 1, 2, 3. The effective dimension Σ of (4.1) is defined as the
sum of orders α1 + α2 + α3 = Σ. We can see that the chaos exists in the fractional-order Rössler
system with order as low as 2.0 as shown in Figure 4.

Simulations were performed for the classical integer-order Rössler hyperchaotic
system in Figure 5. This system has a hyperchaotic attractor when a = 0.25. Figure 6 shows
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Figure 4: Phase plot of chaotic attractor in the x-y-z space, with a = 0.15, b = 0.2, c = 10: (a) α1 = 0.71,
α2 = 0.66, α3 = 0.71, (b) α1 = 0.69, α2 = 0.60, α3 = 0.71.
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Figure 5: Phase plot of hyperchaotic attractor in the x-y-z and x-y-w spaces, with a = 0.25, b = 3, c = 0.5,
d = 0.05, and α1 = α2 = α3 = α3 = 1.

that the hyperchaos exists in the fractional-order Rössler hyperchaotic system with order as
low as 3.64.
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Figure 6: Phase plot of chaotic attractor in x-y-z spaces, with a = 0.25, b = 3, c = 0.5, d = 0.05: (a)
α1 = α2 = 0.98, α3 = α4 = 0.99, (b) α1 = 0.9, α2 = 0.89, α3 = 0.88, α4 = 0.99.

6. Conclusions

In this paper, the multistep generalized differential transform method was utilized
successfully to find accurate approximate solutions of fractional-order Rössler chaotic and
hyperchaotic systems. The approximate solutions obtained by MSGDTM are highly accurate
and valid for a long time. The reliability of the method and the reduction in the size of
computational domain give this method a wider applicability. Many of the results obtained
in this paper can be extended to significantly more general classes of linear and nonlinear
differential equations of fractional order.
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