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Existence of nontrivial solutions for the following fractional differential equation with integral
boundary conditions Dα

0+u(t) + h(t)f(t, u(t)) = 0, 0 < t < 1, u(0) = u′(0) = u′′(0) = 0, u(1) =
λ
∫η
0 u(s)ds is investigated by using results for the computation of topological degree under the

lattice structure, where 3 < α ≤ 4, 0 < η ≤ 1, 0 ≤ ληα/α < 1, Dα
0+ is the standard Riemann-Liouville

derivative. h(t) is allowed to be singular at t = 0 and t = 1.

1. Introduction

Fractional differential equations have been of great interest for many researchers recently. It
is caused both by the intensive development of the theory of fractional calculus itself and
by the applications of such constructions in various fields of sciences and engineering such
as control, porous media, electromagnetic, and other fields. For an extensive collection of
such results, we refer the readers to the monographs by Samko et al. [1], Podlubny [2], and
Kilbas et al. [3]. Recently, there are some papers dealing with the existence of solutions (or
positive solutions) for nonlinear fractional differential equation by means of techniques of
nonlinear analysis (fixed point theorems, Leray-Schauder theory, adomian decomposition
method, lower and upper solution method, etc.); see [4–16].

As is well known, the first eigenvalue is a character of great significance for the linear
operator. For some integer order differential equations, many authors have investigated the
existence of positive and nontrivial solutions concerning the first eigenvalue corresponding to
the relevant linear operators when the nonlinearities are sublinear, see [17–22] for reference.
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On the other hand, papers [23–26] obtained similar results to the sublinear case. The main
discussion is based on the concepts of dual space, dual cone, and a constructed cone on them.

Recently, Xu et al. [27] and Bai [28] obtained the existence results of positive solutions
for some fractional differential equations under the conditions with respect to the first
eigenvalue corresponding to the relevant linear operators.

In two recent papers [29, 30], Sun and Liu established some results about the
computation of the topological degree for nonlinear operators which are not cone mappings
using the lattice structure.

Motivated by the above papers, by using results for the computation of topological
degree under the lattice structure, we investigate the existence of nontrivial solutions for the
following nonlinear fractional differential equations with integral boundary conditions:

Dα
0+u(t) + h(t)f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0,

u(1) = λ

∫η

0
u(s)ds,

(1.1)

where 3 < α ≤ 4, 0 < η ≤ 1, 0 ≤ ληα/α < 1, Dα
0+ is the standard Riemann-Liouville derivative.

In this paper, it is not required that nonlinearity f(t, u) ≥ 0, for all u ≥ 0. To the author’s
knowledge, few papers are available in the literature to study the existence of solutions for
fractional differential equations with integral boundary conditions under the lattice structure.
The method used in this paper is different from those in previous works.

This paper is organized as follows. In Section 2 corresponding Green’s function for
BVP (1.1) is derived and its properties are also discussed. The main results and their proof
are presented in Section 3.

2. Background Materials and Green’s Function

Let E be a Banach space with a cone P . Then E becomes an ordered Banach space under the
partial ordering ≤ which is induced by P . P is said to be normal if there exists a positive
constant N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. P is called solid if it contains interior
points, that is, int P /= ∅. P is called total if E = P − P . If P is solid, then P is total. For the
concepts and the properties about the cone we refer to [31, 32].

We call E a lattice under the partial ordering ≤ if sup{x, y} and inf{x, y} exist for
arbitrary x, y ∈ E. For x ∈ E, let x+ = sup{x, θ}, x− = sup{−x, θ}, x+ and x− are called
the positive part and the negative part of x, respectively, and obviously x = x+ − x−. Take
|x| = x+ + x−, then |x| ∈ P . One can refer to [33] for the definition and the properties of the
lattice. Let x+ = x+, x− = −x− as denoted in [29, 30]. Then x+ ∈ P , x− ∈ −P and x = x+ + x−.

Let B : E → E be a bounded linear operator. B is said to be positive if B(P) → P . In
this case, B is an increase operator, namely, for x, y ∈ E, x ≤ y implies Bx ≤ By. Let B : E → E
be a positively completely continuous operator, r(B) a spectral radius of B, B∗ the conjugated
operator of B, P ∗ the conjugated cone of P . Since P ⊂ E is a total cone, according to the famous
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Krein-Rutman theorem (see [34]), we infer that if r(B)/= 0, then there exist ϕ ∈ P \ {θ} and
g∗ ∈ P ∗ \ {θ} such that

Bϕ = r(B)ϕ, B∗g∗ = r(B)g∗. (2.1)

For a given constant δ > 0, set

P
(
g∗, δ

)
=
{
x ∈ P, g∗(x) ≥ δ‖x‖}, (2.2)

then P(g∗, δ) is also a cone in E.

Definition 2.1 (see [30]). Let D ⊂ E and F : D → E a nonlinear operator. F is said to be
quasiadditive on lattice, if there exists y0 ∈ E such that

Fx = Fx+ + Fx− + y0, ∀x ∈ D. (2.3)

Definition 2.2 (see [30]). Let B be a positive linear operator. The operator B is said to satisfy
H condition, if there exist ϕ ∈ P \ {θ}, g∗ ∈ P ∗ \ {θ} such that (2.1) holds, and B maps P into
P(g∗, δ).

Definition 2.3 (see [4]). The Riemann-Liouville fractional integral of order α > 0 of a function
y : (0,∞) → R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds (2.4)

provided the right-hand side is pointwise defined on (0,∞).

Definition 2.4 (see [4]). The Riemann-Liouville fractional derivative of order α > 0 of a
continuous function y : (0,∞) → R is given by

Dα
0+y(t) =

1
Γ(n − α)

(
d
dt

)n ∫ t

0

y(s)

(t − s)α−n+1
ds, (2.5)

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-hand
side is pointwise defined on (0,∞).

Lemma 2.5 (see [29]). Let P be a normal solid cone in E and A : E → E completely continuous
and quasiadditive on lattice. Suppose that the following conditions are satisfied:

(i) there exist a positive bounded linear operator B1, u∗ ∈ P and u1 ∈ P , such that

−u∗ ≤ Ax ≤ B1x + u1, ∀x ∈ P ; (2.6)

(ii) there exist a positive bounded linear operator B2 and u2 ∈ P , such that

Ax ≥ B2x − u2, ∀x ∈ (−P); (2.7)
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(iii) r(B1) < 1, r(B2) < 1, where r(Bi) is the spectral radius of Bi (i = 1, 2). Then there exists
R0 > 0 such that for R > R0, the topological degree deg(I −A,BR, θ) = 1.

Lemma 2.6 (see [29]). Let P be a normal cone of E, and A : E → E a completely continuous
operator. Suppose that there exist positive bounded linear operator B0 and u0 ∈ P , such that

|Ax| ≤ B0|x| + u0, ∀x ∈ E. (2.8)

If r(B0) < 1, then there existsR0 > 0 such that forR > R0 the topological degree deg(I−A,BR, θ) = 1.

Lemma 2.7 (see [30]). Let P be a solid cone in E and A : E → E a completely continuous operator
withA = BF, where F is quasiadditive on lattice, and B is a positive bounded linear operator satisfying
H condition. Suppose that

(i) there exist a1 > r−1(B) and y1 ∈ P such that

Fx ≥ a1x − y1, ∀x ∈ P ; (2.9)

(ii) there exist 0 < a2 < r−1(B) and y2 ∈ P such that

Fx ≥ a2x − y2, ∀x ∈ (−P). (2.10)

Then there exists R0 > 0 such that for R > R0 the topological degree deg(I −A,BR, θ) = 0.

Lemma 2.8 (see [30]). LetΩ ⊂ E be a bounded open set which contains θ. Suppose thatA : Ω → E
is a completely continuous operator which has no fixed point on ∂Ω. If

(i) there exists a positive bounded linear operator B such that

|Ax| ≤ B0|x|, ∀x ∈ ∂Ω; (2.11)

(ii) r(B0) ≤ 1, then the topological degree deg(I −A,Ω, θ) = 1.

Lemma 2.9 (see [4]). Let α > 0. If one assumes u ∈ C(0, 1)∩L(0, 1), then the fractional differential
equation

Dα
0+u(t) = 0, (2.12)

has u(t) = C1t
α−1 + C2t

α−2 + · · · + CNtα−N , Ci ∈ R, i = 1, 2, . . . ,N, as unique solution, where N is
the smallest integer greater than or equal to α.

Lemma 2.10 (see [4]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0
that belongs to C(0, 1) ∩ L(0, 1).

Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CNtα−N, (2.13)

for some Ci ∈ R, i = 1, 2, . . . ,N, where N is the smallest integer greater than or equal to α.
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In the following, we present Green’s function of the fractional differential equation
boundary value problem.

Lemma 2.11. Given y ∈ C[0, 1], the problem

Dα
0+u(t) + y(t) = 0,

u(0) = u′(0) = u′′(0) = 0,

u(1) = λ

∫η

0
u(s)ds,

(2.14)

where 0 < t < 1, 3 < α ≤ 4, 0 < η ≤ 1, 0 ≤ ληα/α < 1 is equivalent to

u(t) =
∫1

0
G(t, s)y(s)ds, (2.15)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tα−1(1 − s)α−1 − (λ/α)
(
η − s

)α
tα−1 − (1 − (λ/α)ηα

)
(t − s)α−1

p(0)Γ(α)
, 0 ≤ s ≤ t ≤ 1, s ≤ η;

tα−1(1 − s)α−1 − (1 − (λ/α)ηα
)
(t − s)α−1

p(0)Γ(α)
, 0 < η ≤ s ≤ t ≤ 1;

tα−1(1 − s)α−1 − (λ/α)
(
η − s

)α
tα−1

p(0)Γ(α)
, 0 ≤ t ≤ s ≤ η ≤ 1;

tα−1(1 − s)α−1

p(0)Γ(α)
, 0 ≤ t ≤ s ≤ 1, η ≤ s.

(2.16)

Here, p(s) := 1 − (ληα/α)(1 − s), G(t, s) is called the Green function of BVP (2.14). Obviously,
G(t, s) is continuous on [0, 1] × [0, 1].

Proof. We may apply Lemma 2.10 to reduce (2.14) to an equivalent integral equation

u(t) = −Iα0+y(t) + C1t
α−1 + C2t

α−2 + C3t
α−3 + C4t

α−4, (2.17)

for some C1, C2, C3, C4 ∈ R. Consequently, the general solution of (2.14) is

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds + C1t

α−1 + C2t
α−2 + C3t

α−3 + C4t
α−4. (2.18)
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By u(0)= u′(0) = u′′(0) = 0, we get that C2 = C3 = C4 = 0. On the other hand, boundary
condition u(1) = λ

∫η
0 u(s)ds combining with

u(1) = −
∫1

0

(1 − s)α−1

Γ(α)
y(s)ds + C1

∫η

0
u(t)dt = − 1

Γ(α)

∫η

0

∫ t

0
(t − s)α−1y(s)dsdt + C1

∫η

0
sα−1ds

= − 1
Γ(α)

∫η

0

∫η

s

(t − s)α−1y(s)dtds + C1

∫η

0
sα−1ds

= − 1
Γ(α)

∫η

0

(
η − s

)α

α
y(s)ds +

C1η
α

α

(2.19)

yields

C1 =
∫1

0

(1 − s)α−1

Γ(α)
(
1 − (ληα/α

))y(s)ds − λ

∫η

0

(
η − s

)α

αΓ(α)
(
1 − (ληα/α

))y(s)ds. (2.20)

Therefore, the unique solution of the problem (2.14) is

u(t) = −
∫ t

0

(t − s)α−1

Γ(α)
y(s)ds +

1
(
1 − (ληα/α

))
∫1

0

(1 − s)α−1tα−1

Γ(α)
y(s)ds

− 1
(
1 − (ληα/α

))
∫η

0

(λ/α)
(
η − s

)α
tα−1

Γ(α)
y(s)ds.

(2.21)

For t ≤ η, one has

u(t) = −
∫ t

0

(t − s)α−1

Γ(α)
y(s)ds +

1
(
1 − (λ/α)ηα

)

[(∫ t

0
+
∫η

t

+
∫1

η

)
(1 − s)α−1tα−1

Γ(α)
y(s)ds

]

− λ
(
1 − (λ/α)ηα

)

[(∫ t

0
+
∫η

t

)
(1/α)

(
η − s

)α
tα−1

Γ(α)
y(s)ds

]

=
∫ t

0

tα−1(1 − s)α−1 − (λ/α)
(
η − s

)α
tα−1 − (1 − (λ/α)ηα

)
(t − s)α−1

(
1 − (λ/α)ηα

)
Γ(α)

y(s)ds

+
∫η

t

tα−1(1 − s)α−1 − (λ/α)
(
η − s

)α
tα−1

(
1 − (λ/α)ηα

)
Γ(α)

y(s)ds +
∫1

η

tα−1(1 − s)α−1
(
1 − (λ/α)ηα

)
Γ(α)

y(s)ds

=
∫1

0
G(t, s)y(s)ds.

(2.22)
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For t ≥ η, one has

u(t) = −
(∫η

0
+
∫ t

η

)
(t − s)α−1

Γ(α)
y(s)ds +

1
(
1 − (λ/α)ηα

)

[(∫η

0
+
∫ t

η

+
∫1

t

)
(1 − s)α−1tα−1

Γ(α)
y(s)ds

]

− λ
(
1 − (λ/α)ηα

)
∫η

0

(1/α)
(
η − s

)α
tα−1

Γ(α)
y(s)ds

=
∫η

0

tα−1(1 − s)α−1 − (λ/α)
(
η − s

)α
tα−1 − (1 − (λ/α)ηα

)
(t − s)α−1

(
1 − (λ/α)ηα

)
Γ(α)

y(s)ds

+
∫ t

η

tα−1(1 − s)α−1 − (1 − (λ/α)ηα
)
(t − s)α−1

(
1 − (λ/α)ηα

)
Γ(α)

y(s)ds +
∫1

t

tα−1(1 − s)α−1
(
1 − (λ/α)ηα

)
Γ(α)

y(s)ds

=
∫1

0
G(t, s)y(s)ds.

(2.23)

The proof is complete.

Lemma 2.12. The function G(t, s) defined by (2.16) satisfies

(a1) G(t, s) ≥ m1t
α−1s(1 − s)α−1, for all t, s ∈ [0, 1];

(a2) G(t, s) ≤ M1t
α−1(1 − s)α−1, for all t, s ∈ [0, 1];

(a3) G(t, s) ≤ M1s(1 − s)α−1, for all t, s ∈ [0, 1];

(a4) p(s) > 0, and p(s) is not decreasing on [0, 1];

(a5) G(t, s) > 0, for all t, s ∈ (0, 1),

wherem1 = (1 − p(0))/Γ(α)p(0), M1 = (α − 1)/Γ(α) + 4(λ/α)ηα−1/p(0)Γ(α).

Proof. For s ≤ t, s ≤ η,

G(t, s) =
1

p(0)Γ(α)

{
[t(1 − s)]α−1 − λ

α

(
η − s

)α
tα−1 − p(0)(t − s)α−1

}

=
1

p(0)Γ(α)

{
[t(1 − s)]α−1 − λ

α
ηα

(
1 − s

η

)α

tα−1 − p(0)(t − s)α−1
}

≥ 1
p(0)Γ(α)

{
[t(1 − s)]α−1 − λ

α
ηα(1 − s)αtα−1 − p(0)(t − s)α−1

}

=
1

p(0)Γ(α)

{
[t(1 − s)]α−1

[
1 − λ

α
ηα(1 − s)

]
− p(0)(t − s)α−1

}
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=
1

p(0)Γ(α)

{
[t(1 − s)]α−1p(s) − p(0)(t − s)α−1

}

=
1

Γ(α)

{
[t(1 − s)]α−1 − (t − s)α−1

}
+
p(s) − p(0)
p(0)Γ(α)

[t(1 − s)]α−1

=
1

Γ(α)

{
[t(1 − s)]α−2t(1 − s) − (t − s)α−2(t − s)

}
+
p(s) − p(0)
p(0)Γ(α)

[t(1 − s)]α−1

≥ 1
Γ(α)

{
[t(1 − s)]α−2[t(1 − s) − (t − s)]

}
+
p(s) − p(0)
p(0)Γ(α)

[t(1 − s)]α−1

≥ 1
Γ(α)

[t(1 − s)]α−1s(1 − t) +
1 − p(0)
p(0)Γ(α)

s[t(1 − s)]α−1

≥ 1 − p(0)
p(0)Γ(α)

tα−1s(1 − s)α−1,

G(t, s) =
1

p(0)Γ(α)

{
[t(1 − s)]α−1 − λ

α

(
η − s

)α
tα−1 − p(0)(t − s)α−1

}

=
1

p(0)Γ(α)

{(
1 − λ

α
ηα +

λ

α
ηα

)
[t(1 − s)]α−1 − λ

α

(
η − s

)α
tα−1 − p(0)(t − s)α−1

}

=
1

p(0)Γ(α)

{
p(0)

[
tα−1(1 − s)α−1 − (t − s)α−1

]

+
λ

α
ηα

[
tα−1(1 − s)α−1 −

(
1 − s

η

)α

tα−1
]}

=
1

p(0)Γ(α)

{

p(0)(α − 1)
∫ t(1−s)

t−s
xα−2dx

+
λ

α
ηα

[
tα−1(1 − s)α−1 −

(
1 − s

η

)α

tα−1(1 − s)α−1
]}

≤ 1
p(0)Γ(α)

{
p(0)(α − 1)tα−2(1 − s)α−2s(1 − t) +

λ

α
ηαtα−1(1 − s)α−1

[
1 −
(
1 − s

η

)α]}

≤ 1
p(0)Γ(α)

{

p(0)(α − 1)tα−2(1 − s)α−2s(1 − t) +
λ

α
ηαtα−1(1 − s)α−1

[

1 −
(
1 − s

η

)4
]}

≤ 1
p(0)Γ(α)

{

p(0)(α − 1)tα−1(1 − s)α−1 +
λ

α
ηαtα−1(1 − s)α−1

×
[
1 −
(
1 − s

η

)][
1 +
(
1 − s

η

)][

1 +
(
1 − s

η

)2
]}

≤ 1
p(0)Γ(α)

{
p(0)(α − 1)tα−1(1 − s)α−1 + 4

λ

α
ηα−1tα−1(1 − s)α−1

}

=

[
α − 1
Γ(α)

+
4(λ/α)ηα−1

p(0)Γ(α)

]

tα−1(1 − s)α−1,
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G(t, s) =
1

p(0)Γ(α)

{
[t(1 − s)]α−1 − λ

α

(
η − s

)α
tα−1 − p(0)(t − s)α−1

}

=
1

p(0)Γ(α)

{(
1 − λ

α
ηα +

λ

α
ηα

)
[t(1 − s)]α−1 − λ

α

(
η − s

)α
tα−1 − p(0)(t − s)α−1

}

=
1

p(0)Γ(α)

{
p(0)

[
tα−1(1 − s)α−1 − (t − s)α−1

]
+
λ

α
ηα

[
tα−1(1 − s)α−1 −

(
1 − s

η

)α

tα−1
]}

≤ 1
p(0)Γ(α)

{

p(0)(α − 1)
∫ t(1−s)

t−s
xα−2dx +

λ

α
ηα

[
tα−1(1 − s)α−1 −

(
1 − s

η

)α

tα−1(1 − s)α−1
]}

≤ 1
p(0)Γ(α)

{
p(0)(α − 1)tα−2(1 − s)α−2s(1 − t) +

λ

α
ηαtα−1(1 − s)α−1

[
1 −
(
1 − s

η

)α]}

≤ 1
p(0)Γ(α)

{

p(0)(α − 1)tα−2(1 − s)α−2s(1 − t) +
λ

α
ηαtα−1(1 − s)α−1

[

1 −
(
1 − s

η

)4
]}

≤ 1
p(0)Γ(α)

{

p(0)(α − 1)tα−2(1 − s)α−2s(1 − t) +
λ

α
ηαtα−1(1 − s)α−1

×
[
1 −
(
1 − s

η

)][
1 +
(
1 − s

η

)][

1 +
(
1 − s

η

)2
]}

≤ 1
p(0)Γ(α)

{
p(0)(α − 1)(1 − s)α−1s + 4

λ

α
ηα−1s(1 − s)α−1

}

=

[
α − 1
Γ(α)

+
4(λ/α)ηα−1

p(0)Γ(α)

]

s(1 − s)α−1.

(2.24)

For η ≤ s ≤ t,

G(t, s) =
1

p(0)Γ(α)

{
[t(1 − s)]α−1 − p(0)(t − s)α−1

}

≥ p(s)
p(0)Γ(α)

[t(1 − s)]α−1 − 1
Γ(α)

(t − s)α−1

=
1

Γ(α)

{
[t(1 − s)]α−2t(1 − s) − (t − s)α−2(t − s)

}
+
p(s) − p(0)
p(0)Γ(α)

[t(1 − s)]α−1

≥ 1
Γ(α)

[t(1 − s)]α−1s(1 − t) +
1 − p(0)
p(0)Γ(α)

s[t(1 − s)]α−1

≥ 1 − p(0)
p(0)Γ(α)

tα−1s(1 − s)α−1,
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G(t, s) =
1

p(0)Γ(α)

{
[t(1 − s)]α−1 − p(0)(t − s)α−1

}

=
1

p(0)Γ(α)

{(
1 − λ

α
ηα +

λ

α
ηα

)
[t(1 − s)]α−1 − p(0)(t − s)α−1

}

=
1

p(0)Γ(α)

{
p(0)

[
tα−1(1 − s)α−1 − (t − s)α−1

]
+
λ

α
ηα[t(1 − s)]α−1

}

≤ 1
p(0)Γ(α)

{

p(0)(α − 1)
∫ t(1−s)

t−s
xα−2dx +

λ

α
ηα−1stα−1(1 − s)α−1

}

≤ 1
p(0)Γ(α)

{
p(0)(α − 1)tα−2(1 − s)α−2s(1 − t) +

λ

α
ηα−1stα−1(1 − s)α−1

}

≤ 1
p(0)Γ(α)

{
p(0)(α − 1)tα−1(1 − s)α−1 +

λ

α
ηα−1tα−1(1 − s)α−1

}

≤
[
α − 1
Γ(α)

+
4(λ/α)ηα−1

p(0)Γ(α)

]

tα−1(1 − s)α−1,

G(t, s) =
1

p(0)Γ(α)

{
[t(1 − s)]α−1 − p(0)(t − s)α−1

}

=
1

p(0)Γ(α)

{(
1 − λ

α
ηα +

λ

α
ηα

)
[t(1 − s)]α−1 − p(0)(t − s)α−1

}

=
1

p(0)Γ(α)

{
p(0)

[
tα−1(1 − s)α−1 − (t − s)α−1

]
+
λ

α
ηα[t(1 − s)]α−1

}

≤ 1
p(0)Γ(α)

{

p(0)(α − 1)
∫ t(1−s)

t−s
xα−2dx +

λ

α
ηα−1stα−1(1 − s)α−1

}

≤ 1
p(0)Γ(α)

{
p(0)(α − 1)tα−2(1 − s)α−2s(1 − t) +

λ

α
ηα−1stα−1(1 − s)α−1

}

≤ 1
p(0)Γ(α)

{
p(0)(α − 1)(1 − s)α−1s +

λ

α
ηα−1s(1 − s)α−1

}

≤
[
α − 1
Γ(α)

+
4(λ/α)ηα−1

p(0)Γ(α)

]

s(1 − s)α−1.

(2.25)

For t ≤ s ≤ η,

G(t, s) =
1

p(0)Γ(α)

{
[t(1 − s)]α−1 − λ

α

(
η − s

)α
tα−1
}

=
1

p(0)Γ(α)

{
[t(1 − s)]α−1 − λ

α
ηα

(
1 − s

η

)α

tα−1
}
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≥ 1
p(0)Γ(α)

{
[t(1 − s)]α−1 − λ

α
ηα(1 − s)αtα−1

}

=
1

p(0)Γ(α)
[t(1 − s)]α−1

[
1 − λ

α
ηα(1 − s)

]

=
p(0) + p(s) − p(0)

p(0)Γ(α)
[t(1 − s)]α−1

=
1

Γ(α)
[t(1 − s)]α−1 +

p(s) − p(0)
p(0)Γ(α)

[t(1 − s)]α−1

≥ 1 − p(0)
p(0)Γ(α)

tα−1s(1 − s)α−1,

G(t, s) =
1

p(0)Γ(α)

{
[t(1 − s)]α−1 − λ

α

(
η − s

)α
tα−1
}

≤ 1
p(0)Γ(α)

[t(1 − s)]α−1

≤
[
α − 1
Γ(α)

+
4(λ/α)ηα−1

p(0)Γ(α)

]

tα−1(1 − s)α−1,

G(t, s) =
1

p(0)Γ(α)

{
[t(1 − s)]α−1 − λ

α

(
η − s

)α
tα−1
}

≤ 1
p(0)Γ(α)

[t(1 − s)]α−1

≤
[
α − 1
Γ(α)

+
4(λ/α)ηα−1

p(0)Γ(α)

]

s(1 − s)α−1.

(2.26)

For η ≤ s, t ≤ s,

G(t, s) =
1

p(0)Γ(α)
[t(1 − s)]α−1

≥ 1 − p(0)
p(0)Γ(α)

tα−1s(1 − s)α−1,

G(t, s) =
1

p(0)Γ(α)
[t(1 − s)]α−1

≤
[
α − 1
Γ(α)

+
4(λ/α)ηα−1

p(0)Γ(α)

]

tα−1(1 − s)α−1,
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G(t, s) =
1

p(0)Γ(α)
[t(1 − s)]α−1

≤
[
α − 1
Γ(α)

+
4(λ/α)ηα−1

p(0)Γ(α)

]

s(1 − s)α−1.

(2.27)

From above, (a1), (a2), (a3), (a5) are complete. Clearly, (a4) is true. The proof is complete.

3. Main Results and Proof

Let E = C[0, 1], ‖u‖ = maxt∈[0,1]|u(t)| , P = {u ∈ C[0, 1] | u(t) ≥ 0, t ∈ [0, 1]}. Obviously, P is
a normal solid cone with normal constant 1 in Banach space E, and E is a lattice under the
partial ordering ≤ which is deduced by P .

Throughout this paper, we always assume that

(H1) f : [0, 1] × R → R is continuous;

(H2) h : (0, 1) → [0,+∞) is continuous and not identical zero on any closed subinterval
of [0,+∞) with 0 <

∫1
0 h(t)t(1 − t)α−1dt < +∞.

Remark 3.1. In the assumption (H1), it is not required that f(t, u) ≥ 0, ∀u ≥ 0.

Define operators A and B as follows:

(Au)(t) =
∫1

0
G(t, s)h(s)f(s, u(s))ds, (Bu)(t) =

∫1

0
G(t, s)h(s)u(s)ds, t ∈ [0, 1]; (3.1)

(Fu)(t) = f(t, u(t)). (3.2)

Remark 3.2. By Lemma 2.12, (H1) and (H2), it is easy to see that operators A and B defined
by (3.1) are well defined.

Lemma 3.3. Suppose that (H2) holds, then the spectral radius r(B)/= 0 and B has a positive eigen-
function corresponding to the first eigenvalue λ1 = (r(B))−1.

Proof. By Lemma 2.11, (H2), similar to the proof of Lemma 4.4 in [28], the proof can be easily
given. We omit the details.

By standard argument, we have the following.

Lemma 3.4. Suppose that (H1) and (H2) hold, then A : E → E is completely continuous.
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Theorem 3.5. Suppose that conditions (H1) and (H2) are satisfied. If there exists a constant b such
that

f(t, u) ≥ −b, ∀t ∈ [0, 1], u ≥ 0; (3.3)

lim
|u|→+∞

sup
f(t, u)

u
< λ1 uniformly for t ∈ [0, 1], (3.4)

where λ1 is the first eigenvalue of B defined by (3.1), then BVP (1.1) has at least one solution.

Proof. From Lemma 3.4, we know that A : E → E is completely continuous. By (3.4), there
exist R0 > 0, λ1 > ε > 0 such that

f(t, u) ≤ (λ1 − ε)u, t ∈ [0, 1], u ≥ R0,

f(t, u) ≥ (λ1 − ε)u, t ∈ [0, 1], u ≤ −R0.
(3.5)

This implies

f(t, u) ≤ (λ1 − ε)u +M2, t ∈ [0, 1], u ≥ 0,

f(t, u) ≥ (λ1 − ε)u −M2, t ∈ [0, 1], u ≤ 0,
(3.6)

where M2 = max0≤t≤1,|u|≤R0 |f(t, u)|. Set

u∗(t) = b

∫1

0
G(t, s)h(s)ds, u1(t) = M2

∫1

0
G(t, s)h(s)ds. (3.7)

Obviously, u∗, u1 ∈ P . Let B0 = (λ1−ε)B, where B is defined as (3.1). It is clear that B0 : P → P
is a positive bounded linear operator and

r(B0) = r((λ1 − ε)B) < λ1r(B) = 1. (3.8)

It follows from (3.3), (3.6) that

−u∗ ≤ Au ≤ B0u + u1, ∀u ∈ P,

Au ≥ B0u − u1, ∀u ∈ −P.
(3.9)

It follows from Lemma 2.5 that there exists R > 0 big enough such that

deg(I −A,BR, θ) = 1, (3.10)

which means that A has at least one solution.
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Theorem 3.6. Suppose that (H1) and (H2) hold. In addition,

lim
|u|→+∞

sup

∣
∣f(t, u)

∣
∣

|u| < λ1 uniformly for t ∈ [0, 1]. (3.11)

Then BVP (1.1) has at least one solution.

Proof. Similar to the proof of (3.9), we arrive at

|Au| ≤ B|u| + u1, ∀u ∈ C[0, 1]. (3.12)

By Lemma 2.6, there exists R > 0 big enough such that

deg(I −A,BR, θ) = 1, (3.13)

which shows that A has at least one solution.

Theorem 3.7. Suppose that conditions (H1) and (H2) are satisfied. If

lim inf
u→+∞

f(t, u)
u

> λ1, uniformly on t ∈ [0, 1]; (3.14)

lim sup
u→−∞

f(t, u)
u

< λ1, uniformly on t ∈ [0, 1]; (3.15)

lim sup
u→ 0

∣∣∣∣
f(t, u)

u

∣∣∣∣ < λ1, uniformly on t ∈ [0, 1], (3.16)

where λ1 is the first eigenvalue of B defined by (3.1), then the singular BVP (1.1) has at least one
nontrivial solution.

Proof. Let E = C[0, 1], and let A, B and F be defined by (3.1) and (3.2), respectively.
Obviously, by remark 3.1 in [27, 28], F : E → E is continuous and quasiadditive on lattice,
and A = BF. By Lemma 3.4, we know that A : E → E is completely continuous.

It follows from (3.14) and (3.15) that there exist constants ε > 0 and R0 > such that

f(t, u) ≥ (λ1 + ε)u, t ∈ [0, 1], u ≥ R0;

f(t, u) ≥ (λ1 − ε)u, t ∈ [0, 1], u ≤ −R0.
(3.17)

Therefore, there exists a constant M3 > 0 such that

f(t, u) ≥ (λ1 + ε)u −M3, t ∈ [0, 1], u ≥ 0;

f(t, u) ≥ (λ1 − ε)u −M3, t ∈ [0, 1], u ≤ 0.
(3.18)

From (3.18), one can see that (2.9) and (2.10) hold for a1 = λ1 + ε > λ1 = r−1(B) and a2 =
λ1 − ε < λ1 = r−1(B).
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Next, we are in position to show that B satisfies H condition. Let

(B∗u)(t) =
∫1

0
G(s, t)h(t)u(s)ds. (3.19)

By Lemma 3.3, we know that r(B∗) = r(B)/= 0, and there exits g∗ ∈ P ∗ \ {θ}, such that

g∗ = r−1(B)B∗g∗. (3.20)

By Lemma 2.12, we have

g∗(s) = r−1(B)B∗g∗

= r−1(B)
∫1

0
G(t, s)h(s)g∗(t)dt

≥ m1r
−1(B)

∫1

0
tα−1s(1 − s)α−1g∗(t)dt

=

[

m1r
−1(B)

∫1

0
tα−1g∗(t)dt

]

s(1 − s)α−1, ∀s ∈ [0, 1].

(3.21)

Therefore, for u ∈ P , we get by Lemma 2.12, (3.20) and (3.21) that

∫1

0
g∗(t)(Bu)(t)dt =

∫∫1

0
g∗(t)G(t, s)h(s)u(s)dsdt

=
∫1

0

[∫1

0
g∗(t)G(t, s)h(s)dt

]

u(s)ds

= r(B)
∫1

0
g∗(s)u(s)ds

≥ r(B)m1r
−1(B)

∫1

0
tα−1g∗(t)dt ·

∫1

0
s(1 − s)α−1u(s)ds

≥ m1

M1

∫1

0
tα−1g∗(t)dt ·M1

∫1

0
s(1 − s)α−1u(s)ds

≥ m1

M1

∫1

0
tα−1g∗(t)dt · ‖Bu‖.

(3.22)

This means that g∗(Bu) ≥ δ‖Bu‖, where δ = (m1/M1)
∫1
0 t

α−1g∗(t)dt. So, B(P) ⊂ P(g∗, δ).
Thus, we have shown that B satisfies H condition. By Lemma 2.7, we know that there exists
R > R0 such that

deg(I −A, TR, θ) = 0. (3.23)
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On the other hand, by (3.16), we know that there exists 0 < r < R0 such that

∣
∣f(t, u)

∣
∣ ≤ (λ1 − ε)|u|, ∀t ∈ [0, 1], |u| ≤ r, (3.24)

which implies that

|Au| ≤ B0|u|, ∀u ∈ ∂Tr, (3.25)

where B0 = (λ1 − ε)B, and r(B0) = (λ1 − ε)r(B) < 1. By virtue of Lemma 2.8, we get that

deg(I −A, Tr, θ) = 1. (3.26)

It follows from the additivity of the topology degree and Lemma 2.11 that A has at least one
nontrivial fixed point in TR \ Tr . That is, BVP (1.1) has at least one nontrivial solution.

4. An Example

Consider the following fractional differential equations with integral boundary conditions:

D7/2
0+ u(t) + λ0t

p−1(1 − t)q−1
[(√

u2 + 1 − 1
)
− sin

(
u +

π

2

)]
= 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0,

u(1) =
∫1/2

0
u(s)ds,

(4.1)

where 0 < p, q < 1, λ0 < λ1, λ1 is the first eigenvalue of operator B. It is easy to see that (H1)
and (H2) hold for h(t) = tp−1(1− t)q−1, f(t, u) = λ0(

√
u2 + 1− 1)− sin(u+π/2). By Lemma 3.3,

we get that λ1 > 0. Obviously, f(u) ≥ −1 is bounded below and sign-changing for u ≥ 0.
By direct computation, we have limu→+∞(f(u)/u) = λ0 < λ1, limu→−∞(f(u)/u) = −λ0 < λ1.
Thus (3.3) and (3.4) in Theorem 3.5 hold. It follows from Theorem 3.5 that BVP (4.1) has one
solution.
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