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We introduce a set of mathematical constants which is involved naturally in the theory of multiple
Gamma functions. Then we present general asymptotic inequalities for these constants whose
special cases are seen to contain all results very recently given in Chen 2011.

1. Introduction and Preliminaries

The double Gamma function Γ2 = 1/G and the multiple Gamma functions Γn were defined
and studied systematically by Barnes [1–4] in about 1900. Before their investigation by
Barnes, these functions had been introduced in a different form by, for example, Hölder [5],
Alexeiewsky [6] and Kinkelin [7]. In about the middle of the 1980s, these functions were
revived in the study of the determinants of the Laplacians on the n-dimensional unit sphere
Sn (see [8–13]). Since then the multiple Gamma functions have attracted many authors’
concern and have been used in various ways. It is seen that a set of constants {Aq | q ∈ N :=
{1, 2, 3, . . .}} given in (1.11) involves naturally in the theory of the multiple Gamma functions
Γn (see [14–20] and references therein). For example, for sufficiently large real x and a ∈ C,
we have the Stirling formula for theG-function (see [1]; see also [21, page 26, equation (7)]):

logG(x + a + 1) =
x + a

2
log(2π) − logA +

1
12

− 3x2

4
− ax

+

(
x2

2
− 1
12

+
a2

2
+ ax

)
logx +O

(
x−1
)

(x −→ ∞),

(1.1)
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whereA is the Glaisher-Kinkelin constant (see [7, 22–24]) given in (1.16) below. The Glaisher-
Kinkelin constant A, the constants B and C below introduced by Choi and Srivastava have
been used, among other things, in the closed-form evaluation of certain series involving zeta
functions and in calculation of some integrals of multiple Gamma functions. So trying to give
asymptotic formulas for these constants A, B, and C are significant. Very recently Chen [25]
presented nice asymptotic inequalities for these constants A, B, and C by mainly using the
Euler-Maclaurin summation formulas. Here, we aim at presenting asymptotic inequalities for
a set of the mathematical constants Aq (q ∈ N) given in (1.11) some of whose special cases
are seen to yield all results in [25].

For this purpose, we begin by summarizing some differential and integral formulas of
the function f(x) in (1.2).

Lemma 1.1. Differentiating the function

f(x) := xq logx
(
q ∈ N;x > 0

)
(1.2)

� times, we obtain

f (�)(x) = xq−�

⎧⎨
⎩

�∏
j=1

(
q − j + 1

)
logx + P�

(
q
)⎫⎬⎭ (

� ∈ N; 1 � � � q
)
, (1.3)

where P�(q) is a polynomial of degree � − 1 in q satisfying the following recurrence relation:

P�

(
q
)
=

⎧⎪⎨
⎪⎩
(
q − � + 1

)
P�−1
(
q
)
+

�−1∏
j=1

(
q − j + 1

) (
� ∈ N \ {1}; 2 � � � q

)
,

1 (� = 1).
(1.4)

In fact, by mathematical induction on � ∈ N, we can give an explicit expression for P�(q) as follows:

P�

(
q
)
=

�∏
j=1

(
q − j + 1

) · �∑
j=1

1
q − j + 1

(
� ∈ N; 1 � � � q

)
. (1.5)

Setting � = q in (1.3) and (1.5), respectively, we get

f (q)(x) = q!
(
logx +Hq

) (
q ∈ N

)
, (1.6)

whereHn are the harmonic numbers defined by

Hn :=
n∑
j=1

1
j

(n ∈ N). (1.7)
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Differentiating f (q)(x) in (1.6) r times, we obtain

f (q+r)(x) = (−1)r+1q!(r − 1)!
1
xr

(r ∈ N). (1.8)

Integrating the function f(x) in (1.2) from 1 to n, we get

∫n

1
f(x)dx =

nq+1

q + 1
logn +

1 − nq+1(
q + 1

)2 (
q, n ∈ N

)
. (1.9)

For each q ∈ N, define a sequence {Aq(n)}∞n=1 by

logAq(n) :=
n∑

k=1

kq log k

−
⎛
⎝ nq+1

q + 1
+
nq

2
+

[(q+1)/2]∑
r=1

B2r

(2r)!
·
2r−1∏
j=1

(
q − j + 1

) · nq+1−2r

⎞
⎠ logn

+
nq+1(
q + 1

)2 −
[(q+1)/2]+((−1)q−1)/2∑

r=1

B2r

(2r)!
P2r−1

(
q
)
nq+1−2r (

n, q ∈ N
)
,

(1.10)

where Br are Bernoulli numbers given in (1.12), Pr(q) are given in (1.5), and [x] denotes (as
usual) the greatest integer � x. Define a set of mathematical constants Aq(q ∈ N) by

logAq := lim
n→∞

logAq(n)
(
q ∈ N

)
. (1.11)

The Bernoulli numbers Br are defined by the generating function (see [21, Section 1.6]; see
also, [26, Section 1.7]):

z

ez − 1
=

∞∑
r=0

Br
zr

r!
(|z| < 2π). (1.12)

We introduce a well-known formula (see [21, Section 2.3]):

B2p = (−1)p+1 2
(
2p
)
!

(2π)2p
ζ
(
2p
) (

p ∈ N0 := N ∪ {0}), (1.13)

where ζ(s) is the Riemann Zeta function defined by

ζ(s) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
n=1

1
ns

=
1

1 − 2−s

∞∑
n=1

1
(2n − 1)s

(�(s) > 1)

1
1 − 21−s

∞∑
n=1

(−1)n−1
ns

(�(s) > 0; s /= 1).

(1.14)
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It is easy to observe from (1.13) that

B4p < 0, B4p+2 > 0
(
p ∈ N0

)
. (1.15)

Remark 1.2. We find that the constants A1, A2 and A3 correspond with the Glaisher-Kinkelin
constant A, the constants B and C introduced by Choi and Srivastava, respectively:

logA1 = lim
n→∞

{
n∑

k=1

k log k −
(

n2

2
+
n

2
+

1
12

)
log n +

n2

4

}
= logA, (1.16)

where A denotes the Glaisher-Kinkelin constant whose numerical value is

A ∼= 1.282427130 · · · ,

logA2 = lim
n→∞

{
n∑

k=1

k2 log k −
(

n3

3
+
n2

2
+
n

6

)
logn +

n3

9
− n

12

}
= logB,

logA3 = lim
n→∞

{
n∑

k=1

k3 log k −
(

n4

4
+
n3

2
+
n2

4
− 1
120

)
logn +

n4

16
− n2

12

}
= logC.

(1.17)

Here B and C are constants whose approximate numerical values are given by

B ∼= 1.03091 675 · · · , C ∼= 0.97955 746 · · · . (1.18)

The constants B and C were considered recently by Choi and Srivastava [16, 18]. See also
Adamchik [27, page 199]. Bendersky [28] presented a set of constants including B and C.

2. Euler-Maclaurin Summation Formula

We begin by recalling the Euler-Maclaurin summation formula (cf. Hardy ([29, 30], page
318)):

n∑
k=1

f(k) ∼ C0 +
∫n

a

f(x)dx +
1
2
f(n) +

∞∑
r=1

B2r

(2r)!
f (2r−1)(n), (2.1)

where C0 is an arbitrary constant to be determined in each special case and Br are the
Bernoulli numbers given in (1.12). For another useful summation formula, see Edwards [31,
page 117].
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Let f be a function of class C2p+2([a, b]), and let the interval [a, b] be partitioned into
m subintervals of the same length h = (b − a)/m. Then we have another useful form of the
Euler-Maclaurin summation formula (see, e.g., [32]): There exists 0 < θ < 1 such that

m∑
k=0

f(a + kh) =
1
h

∫b

a

f(x)dx +
f(a) + f(b)

2

+
p∑

k=1

h2k−1

(2k)!
B2k

(
f (2k−1)(b) − f (2k−1)(a)

)

+
h2p+2(
2p + 2

)
!
B2p+2

m−1∑
k=0

f (2p+2)(a + kh + θh),

(2.2)

where m, p ∈ N. Under the same conditions in (2.2), setting m = n − 1, a = 1, b = n, and h = 1
in (2.2), we obtain a simple summation formula (see [25]):

m∑
k=1

f(k) =
∫n

1
f(x) dx +

f(1) + f(n)
2

+
p∑

k=1

B2k

(2k)!

(
f (2k−1)(n) − f (2k−1)(1)

)
+ Rn

(
f, p
)
, (2.3)

where, for convenience, the remainder term Rn(f, p) is given by

Rn

(
f, p
)
:=

B2p+2(
2p + 2

)
!

n−1∑
k=1

f (2p+2)(k + θ) (2.4)

which is seen to be bounded by

∣∣Rn

(
f, p
)∣∣ � 2

(2π)2p

∫n

1

∣∣∣f (2p+1)(x)
∣∣∣dx. (2.5)

Zhu and Yang [33] established some useful formulas originated from the Euler-
Maclaurin summation formula (2.1) (see also [25]) asserted by the following lemma.

Lemma 2.1. Let � ∈ N and let f have its first 2p + 2 derivatives on an interval [�,∞) such that
f (2p)(x) > 0 and f (2p+2)(x) > 0 (or f (2p)(x) < 0 and f (2p+2)(x) < 0) and f (2p−1)(∞) = 0. Then the
following results hold true:

(i) The sequence

an :=
n∑

k=�

f(k) −
∫n

�

f(x)dx − 1
2
f(n) −

p−1∑
k=1

B2k

(2k)!
f (2k−1)(n) (n � �) (2.6)

converges. Let a := limn→∞ an.
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(ii) For f (2p)(x) > 0 and f (2p+2)(x) > 0, we have

0 < (−1)p−1 (a − an) < (−1)p B2p(
2p
)
!
f (2p−1)(n) (n � �). (2.7)

For f (2p)(x) < 0 and f (2p+2)(x) < 0, we have

0 > (−1)p−1(a − an) > (−1)p B2p(
2p
)
!
f (2p−1)(n) (n � �). (2.8)

(iii) There exists θ ∈ (0, 1) such that

n∑
k=�

f(k) = a +
∫n

�

f(x)dx +
1
2
f(n) +

p−1∑
k=1

B2k

(2k)!
f (2k−1)(n) + θ · B2p(

2p
)
!
f (2p−1)(n). (2.9)

3. Asymptotic Formulas and Inequalities for Aq

Applying the function f(x) in (1.2) to the Euler-Maclaurin summation formula (2.1) with
a = 1 and using the results presented in Lemma 1.1, we obtain an asymptotic formula for the
sequence Aq(n) as in the following theorem.

Theorem 3.1. The following asymptotic formulas for the constants Aq(n) and Aq hold true:

logAq(n) ∼ Cq +
1(

q + 1
)2 +

1 − (−1)q
2

Bq+1Hq

q + 1

+ (−1)qq!
∞∑

r=[(q+1)/2]+1

B2r

(2r)!

(
2r − q − 2

)
!

n2r−q−1 ,

(3.1)

where Cq’s are constants dependent on each q and an empty sum is understood (as usual) to be nil.
And

logAq = lim
n→∞

logAq(n) = Cq +
1(

q + 1
)2 +

1 − (−1)q
2

Bq+1 Hq

q + 1
. (3.2)

Proof. We only note that

(i) 1 � r � [(q + 1)/2]

f (2r−1)(n) = nq+1−2r ·
2r−1∏
j=1

(
q − j + 1

) · logn + nq+1−2rP2r−1
(
q
)
. (3.3)
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(ii) r � [(q + 1)/2] + 1

f (2r−1)(n) = (−1)qq!
(
2r − q − 2

)
!

n2r−q−1 . (3.4)

Applying the function f(x) in (1.2) to the formula (2.9) with � = 1, and using the
results presented in Lemma 1.1, we get two sided inequalities for the difference of logAq(n)
and logAq asserted by Theorem 3.2.

Theorem 3.2. The following inequalities hold true:

q!
2p∑

r=[(q+1)/2]+1

(
2r − q − 2

)
!

(2r)!
B2r

n2r−q−1

< (−1)q(logAq(n) − logAq

)

< q!
2p+1∑

r=[(q+1)/2]+1

(
2r − q − 2

)
!

(2r)!
B2r

n2r−q−1
(
p, q, n ∈ N

)
.

(3.5)

Proof. Setting the function f(x) in (1.2) in the formula (2.9) with � = 1, and using the results
presented in Lemma 1.1, we get

logAq(n) = logAq + (−1)qq!
p−1∑

r=[(q+1)/2]+1

(
2r − q − 2

)
!

(2r)!
B2r

n2r−q−1

+ (−1)qq!
(
2p − q − 2

)
!(

2p
)
!

B2p

n2p−q−1 θ,

(3.6)

for some θ ∈ (0, 1).
Replacing p by 2p + 1 and 2p + 2 in (3.6), respectively, we obtain

logAq(n) − logAq = (−1)qq!
2p∑

r=[(q+1)/2]+1

(
2r − q − 2

)
!

(2r)!
B2r

n2r−q−1

+ (−1)qq!
(
4p − q

)
!(

4p + 2
)
!

B4p+2

n4p+1−q θ.

logAq(n) − logAq = (−1)qq!
2p+1∑

r=[(q+1)/2]+1

(
2r − q − 2

)
!

(2r)!
B2r

n2r−q−1

+ (−1)qq!
(
4p + 2 − q

)
!(

4p + 4
)
!

B4p+4

n4p+3−q θ.

(3.7)
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In view of (1.15), we find the following inequalities:

q!
2p∑

r=[(q+1)/2]+1

(
2r − q − 2

)
!

(2r)!
B2r

n2r−q−1

< logAq(n) − logAq

< q!
2p+1∑

r=[(q+1)/2]+1

(
2r − q − 2

)
!

(2r)!
B2r

n2r−q−1
(
q is even

)
,

q!
2p∑

r=[(q+1)/2]+1

(
2r − q − 2

)
!

(2r)!
B2r

n2r−q−1

< logAq − logAq(n)

< q!
2p+1∑

r=[(q+1)/2]+1

(
2r − q − 2

)
!

(2r)!
B2r

n2r−q−1
(
q is odd

)
.

(3.8)

Finally it is easily seen that the two-sided inequalities (3.8) can be expressed in a single form
(3.5).

Remark 3.3. The special cases of (3.5)when q = 1, q = 2, and q = 3 are easily seen to correspond
with Equations (8), (31), and (32) in Chen’s work [25], respectively.

Applying the function f(x) in (1.2) to the formula (2.3) and using the results presented
in Lemma 1.1, we get two-sided inequalities for the logAq asserted by Theorem 3.4.

Theorem 3.4. The following inequalities hold true:

αq + q!
2p∑

k=[(q+1)/2]+1

(
2k − q − 2

)
!

(2k)!
B2k

< logAq

< αq + q!
2p+1∑

k=[(q+1)/2]+1

(
2k − q − 2

)
!

(2k)!
B2k

(
q is odd

)
,

(3.9)

αq − q!
2p+1∑

k=[(q+1)/2]+1

(
2k − q − 2

)
!

(2k)!
B2k

< logAq

< αq − q!
2p∑

k=[(q+1)/2]+1

(
2k − q − 2

)
!

(2k)!
B2k

(
q is even

)
,

(3.10)
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where, for convenience,

αq :=
1(

q + 1
)2 +

1 − (−1)q
2

Bq+1Hq

q + 1
−

[(q+1)/2]∑
k=1

B2k

(2k)!
P2k−1

(
q
) (

q ∈ N
)
. (3.11)

Proof. Setting the function f(x) in (1.2) in the formula (2.3), and using the results presented
in Lemma 1.1, we have, for some θ ∈ (0, 1),

logAq(n) = αq + (−1)qq!
p∑

k=[(q+1)/2]+1

(
2k − 2 − q

)
!

(2k)!
B2k

(
1

n2k−1−q − 1
)

+ (−1)q+1q!
(
2p + 1 − q

)
!(

2p + 2
)
!

B2p+2

n−1∑
k=1

1

(k + θ)2p+2−q
.

(3.12)

Replacing p by 2p and 2p + 1 in (3.12), respectively, we obtain

logAq(n) = αq + (−1)qq!
2p∑

k=[(q+1)/2]+1

(
2k − 2 − q

)
!

(2k)!
B2k

(
1

n2k−1−q − 1
)

+ (−1)q+1q!
(
4p + 1 − q

)
!(

4p + 2
)
!

B4p+2

n−1∑
k=1

1

(k + θ)4p+2−q
,

logAq(n) = αq + (−1)qq!
2p+1∑

k=[(q+1)/2]+1

(
2k − 2 − q

)
!

(2k)!
B2k

(
1

n2k−1−q − 1
)

+ (−1)q+1q!
(
4p + 3 − q

)
!(

4p + 4
)
!

B4p+4

n−1∑
k=1

1

(k + θ)4p+4−q
.

(3.13)

In view of (1.15), we find from (3.13) that

αq − q!
2p∑

k=[(q+1)/2]+1

(
2k − 2 − q

)
!

(2k)!
B2k

(
1

n2k−1−q − 1
)

< logAq(n)

< αq − q!
2p+1∑

k=[(q+1)/2]+1

(
2k − 2 − q

)
!

(2k)!
B2k

(
1

n2k−1−q − 1
) (

q is odd
)
,
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αq + q!
2p+1∑

k=[(q+1)/2]+1

(
2k − 2 − q

)
!

(2k)!
B2k

(
1

n2k−1−q − 1
)

< logAq(n)

< αq + q!
2p∑

k=[(q+1)/2]+1

(
2k − 2 − q

)
!

(2k)!
B2k

(
1

n2k−1−q − 1
) (

q is even
)
.

(3.14)

Now, taking the limit on each side of the inequalities in (3.14) as n → ∞, we obtain the results
in Theorem 3.4.

Remark 3.5. It is easily seen that the specialized inequalities of (3.9) when q = 1 and q = 3
and (3.10) when q = 2 correspond with those inequalities of Equations (9), (34), and (33) in
Chen’s work [25], respectively.
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