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The concept of g-basis in Hilbert spaces is introduced, which generalizes Schauder basis in Hilbert
spaces. Some results about g-bases are proved. In particular, we characterize the g-bases and g-
orthonormal bases. And the dual g-bases are also discussed. We also consider the equivalent
relations of g-bases and g-orthonormal bases. And the property of g-minimal of g-bases is studied
as well. Our results show that, in some cases, g-bases share many useful properties of Schauder
bases in Hilbert spaces.

1. Introduction

In 1946, Gabor [1] introduced a fundamental approach to signal decomposition in terms of
elementary signals. In 1952, Duffin and Schaeffer [2] abstracted Gabor’s method to define
frames in Hilbert spaces. Frame was reintroduced by Daubechies et al. [3] in 1986. Today,
frame theory is a central tool in many areas such as characterizing function spaces and signal
analysis. We refer to [4–10] for an introduction to frame theory and its applications. The
following are the standard definitions on frames in Hilbert spaces. A sequence {fi}i∈N of
elements of a Hilbert space H is called a frame for H if there are constants A,B > 0 so that

A
∥
∥f
∥
∥
2 ≤
∑

i∈N

∣
∣
〈

f, fi
〉∣
∣
2 ≤ B

∥
∥f
∥
∥
2
. (1.1)

The numbersA,B are called the lower (resp., upper) frame bounds. The frame is a tight frame
if A = B and a normalized tight frame if A = B = 1.

In [11], Sun raised the concept of g-frame as follows, which generalized the concept of
frame extensively. A sequence {Λi ∈ B(H,Hi) : i ∈ N} is called a g-frame for H with respect
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to {Hi : i ∈ N}, which is a sequence of closed subspaces of a Hilbert space V , if there exist
two positive constants A and B such that for any f ∈ H

A
∥
∥f
∥
∥
2 ≤
∑

i∈N

∥
∥Λif

∥
∥
2 ≤ B

∥
∥f
∥
∥
2
. (1.2)

We simply call {Λi : i ∈ N} a g-frame for H whenever the space sequence {Hi : i ∈ N} is
clear. The tight g-frame, normalized tight g-frame, g-Riesz basis are defined similarly. We call
{Λi : i ∈ N} a g-frame sequence, if it is a g-frame for span{Λ∗

i (Hi)}i∈N . We call {Λi : i ∈ N} a
g-Bessel sequence, if only the right inequality is satisfied. Recently, g-frames in Hilbert spaces
have been studied intensively; for more details see [12–17] and the references therein.

It is well known that frames are generalizations of bases in Hilbert spaces. So it is
natural to view g-frames as generalizations of the so-called g-bases in Hilbert spaces, which
will be defined in the following section. And that is the main object which will be studied in
this paper. In Section 2, we will give the definitions and lemmas. In Section 3, we characterize
the g-bases. In Section 4, we discuss the equivalent relations of g-bases and g-orthonormal
bases. In Section 5, we study the property of g-minimal of g-bases. Throughout this paper,
we useN to denote the set of all natural numbers, Z to denote the set of all integer numbers,
and C to denote the field of complex numbers. The sequence of {Hj : j ∈ N} always means a
sequence of closed subspace of some Hilbert space V .

2. Definitions and Lemmas

In this section, we introduce the definitions and lemmas which will be needed in this paper.

Definition 2.1. For each Hilbert space sequence {Hi}i∈N , we define the space l2(⊕Hi) by

l2(⊕Hi) =

{

{

fi
}

i∈N : fi ∈ Hi, i ∈ N,
+∞∑

i=1

∥
∥fi
∥
∥
2
< +∞

}

. (2.1)

With the inner product defined by 〈{fi}, {gi}〉 =
∑+∞

i=1 〈fi, gi〉, it is easy to see that l2(⊕Hi) is a
Hilbert space.

Definition 2.2. {Λj ∈ B(H,Hj)}∞j=1 is called g-complete with respect to {Hj} if {f : Λjf =
0, for all j} = {0}.

Definition 2.3. {Λj ∈ B(H,Hj)}∞j=1 is called g-linearly independent with respect to {Hj} if
∑∞

j=1 Λ
∗
j gj = 0, then gj = 0, where gj ∈ Hj (j = 1, 2, . . .).

Definition 2.4. {Λj ∈ B(H,Hj)}∞j=1 is called g-minimalwith respect to {Hj} if for any sequence
{gj : j ∈ N}with gj ∈ Hj and any m ∈ N with gm /= 0, one has Λ∗

mgm /∈ spani /=m{Λ∗
i gi}.

Definition 2.5. {Λj ∈ B(H,Hj)}∞j=1 and {Γj ∈ B(H,Hj)}∞j=1 are called g-biorthonormal with
respect to {Hj}, if

〈

Λ∗
j gj ,Γ

∗
i gi
〉

= δj,i
〈

gj , gi
〉

, ∀j, i ∈ N, gj ∈ Hj, gi ∈ Hi. (2.2)
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Definition 2.6. We say {Λj ∈ B(H,Hj)}∞j=1 is g-orthonormal basis for H with respect to {Hj}, if
it is g-biorthonormal with itself and for any f ∈ H one has

∑

j∈N

∥
∥Λjf

∥
∥
2 =
∥
∥f
∥
∥
2
. (2.3)

Definition 2.7. We call {Λj ∈ B(H,Hj)}∞j=1 a g-basis forH with respect to {Hj} if for any x ∈ H

there is a unique sequence {gj}with gj ∈ Hj such that x =
∑∞

j=1 Λ
∗
j gj .

The following result is about pesudoinverse, which plays an important role in some
proofs.

Lemma 2.8 (see [5]). Suppose that T : K → H is a bounded surjective operator. Then there exists
a bounded operator (called the pseudoinverse of T) T† : H → K for which

TT†f = f, ∀f ∈ H. (2.4)

The following lemmas characterize g-frame sequence and g-Bessel sequence in terms
of synthesis operators.

Lemma 2.9 (see [14]). A sequence {Λj : j ∈ N} is a g-frame sequence for H with respect to {Hj :
j ∈ N} if and only if

Q :
{

gj : j ∈ N
} −→

∑

j∈N
Λ∗

j gj (2.5)

is a well-defined bounded linear operator from l2(⊕Hj) into H with closed range.

Lemma 2.10 (see [12]). A sequence {Λj : j ∈ N} is a g-Bessel sequence for H with respect to
{Hj : j ∈ N} if and only if

Q :
{

gj : j ∈ N
} −→

∑

j∈N
Λ∗

j gj (2.6)

is a well-defined bounded linear operator from l2(⊕Hj) into H.

The following is a simple property about g-basis, which gives a necessary condition
for g-basis in terms of g-complete and g-linearly independent.

Lemma 2.11. If {Λj : j ∈ N} is a g-basis for H with respect to {Hj : j ∈ N}, then {Λj : j ∈ N} is
g-complete and g-linearly independent with respect to {Hj : j ∈ N}.

Proof. Suppose Λif = 0 for each i. Then for each gi ∈ Hi, we have 〈Λif, gi〉 = 〈f,Λ∗
i gi〉 = 0.

Hence f ⊥ span{Λi(Hi) : i ∈ N}. Therefore f ⊥ span{Λi(Hi) : i ∈ N} = H. So f = 0. So
{Λi : i ∈ N} is g-complete. Now suppose

∑+∞
i=1 Λ

∗
i gi = 0. Since

∑+∞
i=1 Λ

∗
i 0 = 0 and {Λi : i ∈ N}

is a g-basis, so gi = 0 for each i. Hence {Λi : i ∈ N} is g-linearly independent.
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The following remark tells us that g-basis is indeed a generalization of Schauder basis
of Hilbert space.

Remark 2.12. If {xi}i∈N is a Schauder basis of Hilbert space H, then it induces a g-basis {Λxi :
i ∈ N} of H with respect to the complex number field C, where Λxi is defined by Λxif =
〈f, xi〉. In fact, it is easy to see that Λ∗

xi
c = c · xi for any c ∈ C, so for any x ∈ H, there exists a

unique sequence of constants {an : n ∈ N} such that x =
∑

i∈N aixi =
∑

i∈N Λ∗
i ai.

Definition 2.13. Suppose {Λj : j ∈ N} is a g-Riesz basis of H with respect to {Hj : j ∈ N} and
{Γj : j ∈ N} is a g-Riesz basis of Y with respect to {Hj : j ∈ N}. If there is a homomorphism
S : H → Y such that Γj = ΛjS

∗ for each j ∈ N, then we say that {Λj : j ∈ N} and {Γj : j ∈ N}
are equivalent.

Definition 2.14. If {Λj} is a g-basis of H with respect to {Hj}, then for any x ∈ H, there exists
a unique sequence {gj : j ∈ N} such that gj ∈ Hj and x =

∑∞
j=1 Λ

∗
j gj . We define a map

Γj : H → Hj , by Λjx = gj for each j. Then {Γj} is well defined. We call it the dual sequence of
{Λj}, in case that {Γj} is also a g-basis, we call it the dual g-basis of {Λj}.

The following results link g-Riesz basis with g-basis.

Lemma 2.15 (see [11]). A g-Riesz basis {Λj : j ∈ N} is an exact g-frame. Moreover, it is g-
biorthonormal with respect to its dual {Λ̃j : j ∈ N}.

Lemma 2.16. Let Λj ∈ B(H,Hj), j ∈ N. Then the following statements are equivalent.

(1) The sequence {Λj}j∈N is a g-Riesz basis for H with respect to {Hj}j∈N .

(2) The sequence {Λj}j∈N is a g-frame for H with respect to {Hj}j∈N and {Λj}j∈N is g-linearly
independent.

(3) The sequence {Λj}j∈N is a g-basis and a g-frame with respect to {Hj}j∈N .

Proof. The equivalent between statements (1) and (2) is shown in Theorem 2.8 of [12]. By
Lemma 2.11, we know that if {Λj}j∈N is a g-basis, then it is g-linearly independent, so (3)

implies (2). If {Λj}j∈N is a g-frame for H, then for every x ∈ H, x =
∑

j∈N Λ∗
j Λ̃jx, where

{Λ̃j}j∈N is the canonical dual g-frame of {Λj}j∈N . Hence for every x ∈ H, there exists a
sequence {gj : j ∈ N}, gj ∈ Hj , such that x =

∑

j∈N Λ∗
j gj . Since {Λj}j∈N is g-linearly

independent, the sequence is unique. Hence {Λj}j∈N is a g-basis forH. So (2) implies (3).

From Lemma 2.16, it is easy to get the following well-known result, which is proved
more directly.

Corollary 2.17. Suppose {Λj}j∈N is a g-Riesz basis for H, then {Λj}j∈N has a unique dual g-frame.

Proof. It has been shown that every g-frame has a dual g-frame in [11], so it suffices to show
the uniqueness of dual g-frame for g-Riesz bases. Suppose {Γj : j ∈ N} and {ηj : j ∈ N} are
dual g-frames of {Λj}j∈N . Then for every x ∈ H, we have x =

∑

j∈N Λ∗
jΓjx =

∑

j∈N Λ∗
j ηjx.

Hence
∑

j∈N Λ∗
j (Γj − ηj)x = 0. But {Λj}j∈N is g-linearly independent by Lemma 2.16, so (Γj −

ηj)x = 0, that is, Γjx = ηjx for each j ∈ N. Thus, Γj = ηj for each j ∈ N, which implies that
the dual g-frame of {Λj}j∈N is unique.
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The following lemma generalizes the similar result in frames to g-frames.

Lemma 2.18. Suppose {Λj : j ∈ N} and {Γj : j ∈ N} are both g-Bessel sequences forH with respect
to {Hj : j ∈ N}. Then the following statements are equivalent.

(1) For any x ∈ H, x =
∑

j∈N Λ∗
jΓjx.

(2) For any x ∈ H, x =
∑

j∈N Γ∗jΛjx.

(3) For any x, y ∈ H, 〈x, y〉 =
∑

j∈N〈Λjx,Γjx〉.

Moreover, any of the above statements implies that {Λj : j ∈ N} and {Γj : j ∈ N} are dual
g-frames for each other.

Proof. (1) ⇒ (2): Since {Λj : j ∈ N} is a g-Bessel sequence, {Λjx}j∈N ∈ l2(⊕Hj) for any x ∈ H.
Since {Γj : j ∈ N} is a g-Bessel sequence, the series∑j∈N Γ∗jΛjx is convergent by Lemma 2.10.
Let x̃ =

∑

j∈N Γ∗jΛjx. Then for any y ∈ H, we have

〈

x, y
〉

=

〈

x,
∑

j∈N
Λ∗

jΓjy

〉

=
∑

j∈N

〈

x,Λ∗
jΓjy

〉

=
∑

j∈N

〈

Γ∗jΛjx, y
〉

=

〈
∑

j∈N
Γ∗jΛjx, y

〉

=
〈

x̃, y
〉

.

(2.7)

So x = x̃, that is, (2) is established.
(2) ⇒ (3): Since for any x ∈ H, we have x =

∑

j∈N Γ∗jΛjx; hence for any x, y ∈ H,

〈

x, y
〉

=

〈
∑

j∈N
Γ∗jΛjx, y

〉

=
∑

j∈N

〈

Γ∗jΛjx, y
〉

=
∑

j∈N

〈

Λjx,Γjx
〉

. (2.8)

(3) ⇒ (1): From the proof of (1) ⇒ (2), we know that for any x ∈ H,
∑

j∈N Γ∗jΛjx is
convergent. Let x̃ =

∑

j∈N Γ∗jΛjx, then for any y ∈ H, we have

〈y, x〉 =
∑

j∈N
〈Λjy,Γjx〉 = 〈y,

∑

j∈N
Γ∗jΛjx〉 = 〈y, x̃〉. (2.9)

So x = x̃, that is, (1) is true.
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If any one of the three statements is true, then for any x H, we have

‖x‖2 =
〈
∑

j∈N
Λ∗

jΓjx, x

〉

=
∑

j∈N
〈Λjx,Γjx〉

≤
∑

j∈N

∥
∥Λjx

∥
∥
∥
∥Γjx

∥
∥ ≤
⎛

⎝
∑

j∈N

∥
∥Λjx

∥
∥
2

⎞

⎠

1/2⎛

⎝
∑

j∈N

∥
∥Γjx

∥
∥
2

⎞

⎠

1/2

≤
(

B1‖x‖2
)1/2

⎛

⎝
∑

j∈N

∥
∥Γjx

∥
∥
2

⎞

⎠

1/2

,

(2.10)

where B1 is the bound for the g-Bessel sequence {Λj : j ∈ N}. So

∑

j∈N

∥
∥Γjx

∥
∥
2 ≥ 1

B1
‖x‖2, (2.11)

which implies that the g-Bessel sequence {Γj : j ∈ N} is a g-frame. Similarly, {Λj : j ∈ N} is
also a g-frame. And that they are dual g-frames for each other is obvious by the equality that
for any x ∈ H, x =

∑

j∈N Λ∗
jΓjx.

3. Characterizations of g-Bases

In this section, we characterized g-bases.

Theorem 3.1. Suppose that {Λj ∈ B(H,Hj)}∞j=1 is a g-frame sequence with respect to {Hj}
and it is g-linearly independent with respect to {Hj}. Let Y = {{gj} ∞

j=1
| gj ∈

Hj,
∑∞

j=1 Λ
∗
j gj is convergent}. If for any {gj} ∈ Y , set ‖{gj}‖Y = SupN‖∑N

j=1 gj‖, then

(1) Y is a Banach space,

(2) when {Λj} is a g-basis with respect to {Hj} as well, S : Y → H,S({gj}) =
∑∞

j=1 Λ
∗
j gj is

a linear bounded and invertible operator, that is, S is a homeomorphism betweenH and Y .

Proof. (1) Let {gj} ∈ Y , then
∑N

j=1 Λ
∗
j gj is convergent as N → ∞. Hence {∑N

j=1 Λ
∗
j gj}

∞
N=1

is a convergent sequence, so it is bounded. So ‖{gj}‖Y < ∞. It is obvious that for a ∈ C,
{gj}, {hj} ∈ Y , we have ‖{gj} + {hj}‖Y ≤ ‖{gj}‖Y + ‖{hj}‖Y and ‖a · {gj}‖Y = |a| · ‖{gj}‖Y . If
‖{gj}‖Y = 0, then for any N, ‖∑N

j=1 Λ
∗
j gj‖ = 0, which implies that

∑N
j=1 Λ

∗
j gj = 0. Since {Λj}

is g-linearly independent with respect to {Hj}, we get that gj = 0, for j = 1, 2, . . . ,N. Since
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N is arbitrary, so {gj} = {0}. Thus ‖ · ‖Y is a norm on Y . Suppose {Gk}∞k=1 ∈ Y is a Cauchy
sequence, where Gk = {gk

j }
∞
j=1

. Then

lim
k,l→∞

∥
∥
∥Gk −Gl

∥
∥
∥
Y
= lim

k,l→∞

∥
∥
∥

{

gk
j − gl

j

}∥
∥
∥
Y
, (3.1)

lim
k,l→∞

Sup
N

∥
∥
∥
∥
∥
∥

N∑

j=1

Λ∗
j

(

gk
j − gl

j

)

∥
∥
∥
∥
∥
∥

= 0. (3.2)

For any fixed j, we have

∥
∥
∥Λ∗

j

(

gk
j − gl

j

)∥
∥
∥ =

∥
∥
∥
∥
∥

j
∑

t=1

Λ∗
t

(

gk
t − gl

t

)

−
j−1
∑

t=1

Λ∗
t

(

gk
t − gl

t

)
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

j
∑

t=1

Λ∗
t

(

gk
t − gl

t

)
∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

j−1
∑

t=1

Λ∗
t

(

gk
t − gl

t

)
∥
∥
∥
∥
∥
≤ 2
∥
∥
∥Gk −Gl

∥
∥
∥
Y
.

(3.3)

Now let T : l2(⊕Hj) → H,T({gj}) =
∑∞

j=1 Λ
∗
j gj . Since {Λj} is a g-frame sequence with respect

to {Hj}, T is a well-defined linear bounded operator with closed range by Lemma 2.9. Since
{Λj} is g-linearly independent with respect to {Hj}, T is injective. Hence T ∗ : H → l2(⊕Hj)
is surjective. So by Lemma 2.8, there is a bounded operator L, the pseudoinverse of T ∗, such
that T ∗L = Il2(⊕Hj ), which implies that L∗T = Il2(⊕Hj ). Let {δj} denote the canonical basis of
l2(N), then for any gj ∈ Hj, {gjδj} ∈ l2(⊕Hj). So {gjδj} = L∗T({gjδj}) = L∗(Λ∗

j gj); hence

∥
∥gj
∥
∥ =
∥
∥
{

gjδj
}∥
∥ =
∥
∥
∥L∗
(

Λ∗
j gj
)∥
∥
∥ ≤ ‖L‖

∥
∥
∥Λ∗

j gj
∥
∥
∥. (3.4)

So by inequalities (3.3), we get

∥
∥
∥

(

gk
j − gl

j

)∥
∥
∥ ≤ ‖L‖

∥
∥
∥Λ∗

j

(

gk
j − gl

j

)∥
∥
∥ ≤ 2‖L‖

∥
∥
∥Gk −Gl

∥
∥
∥
Y
. (3.5)

So for any fixed j, {gk
j }∞j=1 is a Cauchy sequence. Suppose limk→∞gk

j = gj . From (3.2), we
know that, for any ε > 0, there exists L0 > 0, such that whenever k, l ≥ L0, we have

Sup
Q

∥
∥
∥
∥
∥
∥

Q∑

j=1

Λ∗
j

(

gk
j − gl

j

)

∥
∥
∥
∥
∥
∥

< ε. (3.6)

Fix l ≥ L0, since limk→∞gk
j = gj , so whenever l ≥ L0,

Sup
Q

∥
∥
∥
∥
∥
∥

Q∑

j=1

Λ∗
j

(

gj − gl
j

)

∥
∥
∥
∥
∥
∥

≤ ε. (3.7)
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SinceGL0 = {gL0
j }∞

j=1
∈ Y,

∑∞
j=1 Λ

∗
j g

L0
j is convergent. So there existsK0 > 0, such that whenever

M > P ≥ K0, we have ‖∑M
j=P+1 Λ

∗
j g

L0
j ‖ < ε. So when M > P > max{L0, K0}, we have

∥
∥
∥
∥
∥
∥

M∑

j=P+1

Λ∗
j gj

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

M∑

j=1

Λ∗
j

(

gj − gL0
j

)

−
P∑

j=1

Λ∗
j

(

gj − gL0
j

)

+
M∑

j=P+1

Λ∗
j g

L0
j

∥
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
∥

M∑

j=1

Λ∗
j

(

gj − gL0
j

)

∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥

P∑

j=1

Λ∗
j

(

gj − gL0
j

)

∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥

M∑

j=P+1

Λ∗
j g

L0
j

∥
∥
∥
∥
∥
∥

≤ 3ε.

(3.8)

So
∑∞

j=1 Λ
∗
j gj is convergent, thusG = {gj} ∈ Y . Let l → ∞ in (3.7), we get that ‖Gl −G‖Y → 0.

Hence Y is a complete normed space, that is, Y is a Banach space.
(2) If {Λj} is a g-basis, then it is g-complete and g-linearly independent with respect to

{Hj} by the Lemma 2.11, then the operator S : Y → H, S({gj}) =
∑∞

j=1 Λ
∗
j gj not only is well

defined but also is one to one and onto. And for any {gj} ∈ Y , we have

∥
∥S
({

gj
})∥
∥ =

∥
∥
∥
∥
∥
∥

∞∑

j=1

Λ∗
j gj

∥
∥
∥
∥
∥
∥

= lim
N→∞

∥
∥
∥
∥
∥
∥

N∑

j=1

Λ∗
j gj

∥
∥
∥
∥
∥
∥

≤ Sup
Q

∥
∥
∥
∥
∥
∥

Q∑

j=1

Λ∗
j gj

∥
∥
∥
∥
∥
∥

=
∥
∥
{

gj
}∥
∥
Y
.

(3.9)

So S is bounded operator. Since Y is a Banach space, by the Open Mapping Theorem, we get
that S is a homeomorphism.

Theorem 3.2. Suppose {Λj : j ∈ N} is a g-basis ofH with respect to {Hj : j ∈ N} and {Γj : j ∈ N}
is its dual sequence. If {Λj : j ∈ N} is also a g-frame sequence of H with respect to {Hj : j ∈ N},
then

(1) ∀x ∈ H, let SNx =
∑N

j=1 Λ
∗
jΓjx, then SupN‖SNx‖ < ∞,

(2) C = SupN‖SN‖ < ∞,

(3) |||x||| = SupN‖SNx‖ is a norm on H and ‖ · ‖ ≤ ||| · ||| ≤ C‖ · ‖.

Proof. (1) Let Y and S be as defined in Theorem 3.1. Then for any x ∈ H, S−1x = {Γjx : j ∈ N}.
So

Sup
N

‖SNx‖ = Sup
N

∥
∥
∥
∥
∥
∥

N∑

j=1

Λ∗
jΓjx

∥
∥
∥
∥
∥
∥

=
∥
∥
{

Γjx
}∥
∥
Y

=
∥
∥
∥S−1x

∥
∥
∥ ≤
∥
∥
∥S−1

∥
∥
∥‖x‖ < ∞.

(3.10)

(2) Since ‖SNx‖ ≤ SupQ‖SQx‖ ≤ ‖S−1‖‖x‖, ‖SN‖ ≤ ‖S−1‖. Thus C = SupN‖SN‖ < ∞.
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(3) It is obvious that ||| · ||| is a seminorm. It is sufficient to show that ‖ ·‖ ≤ ||| · ||| ≤ C‖ ·‖.
For any x ∈ H, we have

|||x||| = Sup
N

‖SNx‖ ≤ Sup
N

‖SN‖‖x‖ = C‖x‖. (3.11)

On the other hand,

‖x‖ =

∥
∥
∥
∥
∥
∥

∞∑

j=1

Λ∗
jΓjx

∥
∥
∥
∥
∥
∥

= lim
N→∞

∥
∥
∥
∥
∥
∥

N∑

j=1

Λ∗
jΓjx

∥
∥
∥
∥
∥
∥

≤ Sup
Q

∥
∥
∥
∥
∥
∥

Q∑

j=1

Λ∗
jΓjx

∥
∥
∥
∥
∥
∥

= Sup
Q

∥
∥SQx

∥
∥ = |||x|||.

(3.12)

Theorem 3.3. Suppose {Λj ∈ B(H,Hj) : j ∈ N} is a g-frame with respect to {Hj : j ∈ N}. Then
{Λj : j ∈ N} is a g basis with respect to {Hj : j ∈ N} if and only if there exists a constant C such
that for any gj ∈ Hj , any m,n ∈ N and m ≤ n, one has

∥
∥
∥
∥
∥
∥

m∑

j=1

Λ∗
j gj

∥
∥
∥
∥
∥
∥

≤ C ·
∥
∥
∥
∥
∥
∥

n∑

j=1

Λ∗
j gj

∥
∥
∥
∥
∥
∥

. (3.13)

Proof. ⇒: Suppose {Λj : j ∈ N} is a g-basis with respect to {Hj : j ∈ N}. Then for any
x ∈ H, there exists a unique sequence {gj : j ∈ N} with gj ∈ Hj for each j ∈ N such that
x =
∑∞

j=1 Λ
∗
j gj . Let |||x||| = Supn‖

∑n
j=1 Λ

∗
j gj‖. Then by Theorem 3.2, ||| · ||| is a norm onH and

it is equivalent to ‖ · ‖. So there exists a constant C such that, for any x ∈ H, |||x||| ≤ C · ‖x‖.
Hence for any n ∈ N, any gj ∈ Hj , j = 1, 2, . . . , n, we choose x =

∑n
j=1 Λ

∗
j gj , then for any

m ≤ n, we have

∥
∥
∥
∥
∥
∥

m∑

j=1

Λ∗
j gj

∥
∥
∥
∥
∥
∥

≤ C ·
∥
∥
∥
∥
∥
∥

n∑

j=1

Λ∗
j gj

∥
∥
∥
∥
∥
∥

. (3.14)

⇐: Let A = {∑k∈N Λ∗
kgk, gk ∈ Hk, and

∑

k∈N Λ∗
kgk is covergent}. First, we show

that A = H. Since {Λj ∈ B(H,Hj) : j ∈ N} ⊂ B(H,Hj) is a g-frame, A is dense in H. It
is sufficient to show that A is closed. Suppose {yk} ⊂ A and limk→∞yk = y. Denote yk =
∑

j∈N Λ∗
j g

(k)
j . Then for any j ∈ N and any n ≤ m ≤ j, we have, for any k, l ∈ N,
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∥
∥
∥Λ∗

j g
(k)
j −Λ∗

j g
(l)
j

∥
∥
∥ ≤ 2C ·

∥
∥
∥
∥
∥

m∑

s=1

Λ∗
s

(

g
(k)
s − g

(l)
s

)
∥
∥
∥
∥
∥

≤ 2C2 ·
∥
∥
∥
∥
∥

n∑

s=1

Λ∗
s

(

g
(k)
s − g

(l)
s

)
∥
∥
∥
∥
∥

≤ 2C2 ·
(∥
∥
∥
∥
∥

n∑

s=1

Λ∗
j g

(k)
j −yk

∥
∥
∥
∥
∥
+
∥
∥yk−y

∥
∥

)

+2C2 ·
⎛

⎝
∥
∥y−yl

∥
∥+

∥
∥
∥
∥
∥
∥

yl−
n∑

j=1

Λ∗
sg

(l)
s

∥
∥
∥
∥
∥
∥

⎞

⎠.

(3.15)

Since limk→∞yk = y, so for any ε > 0, there existsM > 0, such that whenever k ≥ M, we have
‖y − yk‖ ≤ ε/2C2. In the above inequality, let n → ∞, we get

∥
∥
∥Λ∗

j g
(k)
j −Λ∗

j g
(l)
j

∥
∥
∥ ≤ ε for any j ∈ N and k, l ≥ M,

∥
∥
∥
∥
∥

m∑

s=1

Λ∗
s

(

g
(k)
s − g

(l)
s

)
∥
∥
∥
∥
∥
≤ ε

2C
for any m ∈ N and any k, l ≥ M.

(3.16)

Since {Λj : j ∈ N} is a g-frame sequence, by inequality (3.4), we have that ‖g(k)
j − g

(l)
j ‖ ≤

‖L‖‖Λ∗
j (g

(k)
j − g

(l)
j )‖ ≤ ‖L‖ε for any j ∈ N and any k, l ≥ M. So {g(k)

j }
k∈N is convergent for

each j ∈ N. Suppose limk→∞g
(k)
j = gj . Then

∥
∥
∥Λ∗

j

(

g
(k)
j − gj

)∥
∥
∥ ≤ ε for any j ∈ N and k ≥ M,

∥
∥
∥
∥
∥

m∑

s=1

Λ∗
s

(

g
(k)
s − gs

)
∥
∥
∥
∥
∥
≤ ε

2C
for any m ∈ N and any k ≥ M.

(3.17)

Since

∥
∥
∥
∥
∥
∥

y −
m∑

j=1

Λ∗
j gj

∥
∥
∥
∥
∥
∥

≤ ∥∥y − yk

∥
∥ +

∥
∥
∥
∥
∥
∥

yk −
m∑

j=1

Λ∗
j g

(k)
j

∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥

m∑

j=1

Λ∗
j g

(k)
j −

m∑

j=1

Λ∗
j gj

∥
∥
∥
∥
∥
∥

, (3.18)

so
∑m

j=1 Λ
∗
j gj converges to y, which implies that y ∈ A. Thus A is a closed set. Now we will

show that {Λj : j ∈ N} is g-linearly independent. Suppose that
∑

j∈N Λ∗
j gj = 0, where gj ∈ Hj

for each j ∈ N. Since for any n ∈ N and any j ≤ n, we have ‖Λ∗
j gj‖ ≤ C · ‖∑n

s=1 Λ
∗
sgs‖, hence

‖Λ∗
j gj‖ = 0 for any j ≤ n. But from inequality (3.4), we have ‖gj‖ ≤ ‖L‖‖Λ∗

j gj‖. So for each
j ≤ n, gj = 0. Since n is arbitrary, gj = 0 for any j ∈ N. Thus {Λj : j ∈ N} is g-linearly
independent. So {Λj : j ∈ N} is a g-basis.

4. Equivalent Relations of g-Bases

In this section, the equivalent relations of g-bases were discussed.
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Theorem 4.1. Suppose that {Λj : j ∈ N} is a g-basis of H with respect to {Hj : j ∈ N}, and
S : H → Y is a homeomorphism. Then {ΛjS

∗ : j ∈ N} is a g-basis of Y with respect to {Hj}.

Proof. For any y ∈ Y , S−1y ∈ H. Since {Λj : j ∈ N} is a g-basis of H, there exists a unique
sequence {gj : j ∈ N} and gj ∈ Hj for each j ∈ N such that S−1y =

∑

j∈N Λ∗
j gj . So y =

∑

j∈N SΛ∗
j gj =

∑

j∈N (ΛjS
∗)∗gj . Suppose there is another sequence {hj : j ∈ N} and hj ∈ Hj

for each j ∈ N such that y =
∑

j∈N (ΛjS
∗)∗hj , then y =

∑

j∈N SΛ∗
j hj . So S−1y =

∑

j∈N Λ∗
j hj . But

the expansion for S−1y is unique, so hj = gj for each j ∈ N. Hence {ΛjS
∗} is a g-basis of Y

with respect to {Hj}.

Theorem 4.2. Suppose {Λj : j ∈ N} is a g-basis of Hilbert space H with respect to {Hj : j ∈ N},
{Γj : j ∈ N} is a g-basis of Hilbert space Y with respect to {Hj : j ∈ N}, and {Gj : j ∈ N}, and
{Lj : j ∈ N} are dual sequences of {Λj : j ∈ N} and {Γj : j ∈ N}, respectively. If {Gj : j ∈ N} or
{Lj : j ∈ N} is a g-basis, then the following statements are equivalent.

(1) {Λj : j ∈ N} and {Γj : j ∈ N} are equivalent.
(2)
∑

j∈N Λ∗
j gj is convergent if and only if

∑

j∈N Γ∗j gj is convergent, where gj ∈ Hj for each
j ∈ N.

Moreover, any one of the above statements implies that both {Gj : j ∈ N} and {Lj : j ∈ N}
are g-bases and they are also equivalent.

Proof. (1) ⇒ (2): Suppose there is an invertible bounded operator S : H → Y such that
Λj = ΓjS∗ for each j ∈ N and

∑

j∈N Λ∗
j gj is convergent. Then

∑

j∈N SΓ∗j gj is convergent.
So S−1(

∑

j∈N SΓ∗j gj) =
∑

j∈N Γ∗j gj is convergent. Conversely, if
∑

j∈N Γ∗j gj is convergent, then
∑

j∈N S−1Λ∗
j gj is convergent. So S(

∑

j∈N S−1Λ∗
j gj) =

∑

j∈N Λ∗
j gj is convergent.

(2) ⇒ (1): Without loss of generality, suppose {Gj : j ∈ N} is a g-basis of H. Then for
any x ∈ H, we have x =

∑

j∈N Λ∗
jGjx, which is convergent inH, so

∑

j∈N Γ∗jGjx is convergent
in Y . Define operator S : H → Y by Sx =

∑

j∈N Γ∗jGjx. Then S is well defined and linear. If
Sx = 0, that is,

∑

j∈N Γ∗jGjx = 0, then Gjx = 0 for each j ∈ N. So x =
∑

j∈N Λ∗
jGjx = 0. Hence

S is injective. For any y ∈ Y , y =
∑

j∈N Γ∗j Ljy, which is convergent in Y . Then
∑

j∈N Λ∗
j Ljy

is convergent in H. Suppose x =
∑

j∈N Λ∗
j Ljy, but we know that x =

∑

j∈N Λ∗
jGjx and {Λj :

j ∈ N} is a g-basis, so Gjx = Ljy for each j ∈ N. Hence Sx =
∑

j∈N Γ∗jGjx =
∑

j∈N Γ∗j Ljy = y,
which implies that S is surjective. Next, we want to verify that S is bounded.

For any k ∈ N, let Tk : H → Y be defined by Tkx =
∑k

j=1 Γ
∗
jGjx. Then it is obvious that

Tk is well defined and linear. Since

‖Tkx‖ =

∥
∥
∥
∥
∥
∥

k∑

j=1

Γ∗jGjx

∥
∥
∥
∥
∥
∥

≤
k∑

j=1

∥
∥
∥Γ∗jGjx

∥
∥
∥ ≤

k∑

j=1

∥
∥
∥Γ∗j
∥
∥
∥

∥
∥Gj

∥
∥‖x‖, (4.1)

thus Tk is a bounded operator. It is easy to see that for any x ∈ H, Tkx → Sx(k → ∞). So for
any ε > 0, there exists k0, such that whenever k ≥ k0, we have that ‖Tkx − Sx‖ < ε. Since for
any k ∈ N, we have ‖Tkx‖ ≤ ‖Sx‖ + ‖Tkx − Sx‖, so for any k ∈ N, we have

‖Tkx‖ ≤ Sup
{∥
∥Tjx

∥
∥, ‖Sx‖ + ε | j = 1, 2, . . . , k0 − 1

}

< ∞. (4.2)
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Hence, by the Banach-Steinhaus Theorem, Supk‖Tk‖ < ∞. Since for any x ∈ H, Tkx →
Sx (k → ∞), we have

‖Sx‖ ≤ Sup
k

‖Tkx‖ ≤ Sup
k

‖Tk‖‖x‖. (4.3)

So S is bounded. Hence S is a bounded invertible operator from H onto Y . Since for any x ∈
H, we have

∑

j∈N SΛ∗
jGjx =

∑

j∈N Γ∗jGjx, that is,
∑

j∈N SΛ∗
jGj =

∑

j∈N Γ∗jGj , so
∑

j∈N G∗
jΛjS

∗ =
∑

j∈N G∗
jΓj . Hence for any y ∈ Y , we have

∑

j∈N G∗
jΛjS

∗y =
∑

j∈N G∗
jΓjy. Since {Gj : j ∈ N}

is a g-basis, so ΛjS
∗ = Γj for each j ∈ N, which implies that {Λj : j ∈ N} and {Gj : j ∈ N}

are equivalent. In the case that any of the two statements is true, then there is an invertible
operator S : H → Y such that Γj = ΛjS

∗ for each j ∈ N. Hence, for any x ∈ H,

x =
∑

j∈N
Γ∗j Ljx =

∑

j∈N
SΛ∗

j Ljx

= S

⎛

⎝
∑

j∈N
Λ∗

j Ljx

⎞

⎠.

(4.4)

So S−1x =
∑

j∈N Λ∗
j Ljx. Thus x =

∑

j∈N Λ∗
j LjSx, but x =

∑

j∈N Λ∗
jGjx, and {Λj} is a g-basis of

H, it follows that LjS = Gj for each j ∈ N. By Theorem 4.1, we know that {Lj : j ∈ N} is also
a g-basis and {Gj : j ∈ N} and {Lj : j ∈ N} are equivalent.

Theorem 4.3. Suppose {Λj : j ∈ N} is a g-orthonormal basis for H with respect to {Hj : j ∈ N}.
Then {Λj : j ∈ N} is a g-basis for H with respect to {Hj : j ∈ N} and it is self-dual.

Proof. By the definition of g-orthonormal bases, we know that {Λj : j ∈ N} is a normalized
tight g-frame. So for any f ∈ H, f =

∑

j∈N Λ∗
jΛjf . Since for any i /= j and for any gj ∈ Hj, hi ∈

Hi, we have

〈

ΛiΛ∗
j gj , hi

〉

=
〈

Λ∗
j gj ,Λ

∗
i hi

〉

= 0, (4.5)

hence ΛiΛ∗
j gj = 0 for i /= j. For i = j and for any gi, hi ∈ Hi, we have

〈

ΛiΛ∗
i gi, hi

〉

=
〈

Λ∗
i gi,Λ

∗
i hi

〉

=
〈

gi, hi

〉

, (4.6)

so for any gi ∈ Hi, ΛiΛ∗
i gi = gi. Thus if f =

∑

j∈N Λ∗
j gj , then for any i ∈ N, we have Λif =

∑

j∈N ΛiΛ∗
j gj = ΛiΛ∗

i gi = gi. Thus for any f ∈ H, there is a unique sequence {gj : j ∈ N} such
that gj ∈ Hj for any j ∈ N and f =

∑

j∈N Λ∗
j gj . So {Λj : j ∈ N} is a g-basis. It is obvious that

{Λj : j ∈ N} is self-dual.

Theorem 4.4. Suppose {Λj : j ∈ N} is a g-orthonormal basis with respect to {Hj : j ∈ N}. Then
∑

j∈N Λ∗
j gj is convergent if and only if {gj : j ∈ N} ∈ l2(⊕Hj).
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Proof. Since {Λj : j ∈ N} is a g-orthonormal basis, by Theorem 4.3, {Λj : j ∈ N} is a g-basis
and a g-frame. So {Λj : j ∈ N} is a g-Riesz basis. Thus there exist constants A,B > 0, such
that for any integer n, we have

A
n∑

j=1

∥
∥gj
∥
∥
2 ≤
∥
∥
∥
∥
∥
∥

n∑

j=1

Λ∗
j gj

∥
∥
∥
∥
∥
∥

2

≤ B
n∑

j=1

∥
∥gj
∥
∥
2
. (4.7)

So
∑

j∈N Λ∗
j gj is convergent if and only if {gj : j ∈ N} ∈ l2(⊕Hj).

From Theorems 4.2, 4.3, and 4.4, the following corollary is obvious.

Corollary 4.5. Any two g-orthonormal bases are equivalent.

5. The Property of g-Minimal of g-Bases

In this section, we studied the property of g-minimal of g-bases.

Theorem 5.1. Suppose {Λj : j ∈ N} is a g-frame sequence. Then

(1) if {Λj : j ∈ N} is a g-basis, then {Λj : j ∈ N} is g-minimal;

(2) if {Λj : j ∈ N} is g-minimal, then {Λj : j ∈ N} is g-linearly independent.

Proof. (1). Since {Λj} is a g-basis and it is also a g-frame sequence, it is easy to see that {Λj :
j ∈ N} is a g-frame. Hence {Λj : j ∈ N} is a g-Riesz basis by (3) of Lemma 2.16. Suppose
{Λ̃j : j ∈ N} is the unique dual g-frame of {Λj : j ∈ N}. By Lemma 2.15, we know that
{Λj} and {Λ̃j : j ∈ N} are g-biorthonormal, that is, 〈Λ∗

j gj , Λ̃
∗
j gi〉 = δij〈gj , gi〉, where gj ∈

Hj, gi ∈ Hi. For any m ∈ N and any sequence {gj : j ∈ N} with gj ∈ Hj and gm /= 0, let
Em = spani /=m{Λ̃∗

i gi}. Then for any x ∈ Em, 〈x, Λ̃∗
mgm〉 = 0, but 〈Λ∗

mgm, Λ̃
∗
mgm〉 = 〈gm, gm〉/= 0,

so Λ∗
mgm /∈ Em. Hence {Λj : j ∈ N} is g-minimal.

(2). Suppose {Λj : j ∈ N} is g-minimal. If
∑

j∈N Λ∗
j gj = 0, where gj ∈ Hj for each

j ∈ N, then gj = 0 for any j ∈ N. In fact, if there existsm ∈ N such that gm /= 0, then ‖Λ∗
mgm‖ ≥

(1/L)‖gm‖ > 0 by inequality (3.4), which implies that Λ∗
mgm /= 0. Since Λ∗

mgm = −∑j /=m Λ∗
j gj ,

Λ∗
mgm ∈ spanj /=m{Λ∗

j gj}, which contradicts with the fact that {Λj : j ∈ N} is g-minimal.

Theorem 5.2. Given sequence {Λj ∈ B(H,Hj) : j ∈ N}.

(1) If there exists a sequence {Γj ∈ B(H,Hj) : j ∈ N}, such that {Λj : j ∈ N} and {Γj : j ∈
N} are biorthonormal, then {Λj : j ∈ N} is g-minimal.

(2) If there exists a unique sequence {Γj ∈ B(H,Hj) : j ∈ N} such that {Λj : j ∈ N} and
{Γj : j ∈ N} are biorthonormal, then {Λj : j ∈ N} is g-minimal and g-complete.

Proof. The proof of (1) is similar to the proof of (1) of Theorem 5.1, we omit the details. Now
we prove (2): By (1) we know that {Λj : j ∈ N} is g-minimal. So it only needs to show that
{Λj : j ∈ N} is g-complete. Suppose that x ∈ H and 〈x,Λ∗

j gj〉 = 0 for any j ∈ N and any
gj ∈ Hj . Since 〈Λ∗

j gj ,Γ
∗
j gi〉 = δij〈gj , gi〉, so 〈Λ∗

j gj , x + Γjgi〉 = δij〈gj , gi〉, which implies that
{δx + Γj : j ∈ N} and {Λj : j ∈ N} are biorthonormal, where δ∗

x ∈ B(V,Hj) for each j ∈ N
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defined by δ∗
x(f) = x for any f ∈ V . But it is assumed that there exists a unique sequence

{Γj ∈ B(H,Hj) : j ∈ N} such that {Λj : j ∈ N} and {Γj : j ∈ N} are biorthonormal, so δx = 0,
hence x = δ∗

x(f) = 0, which implies that span{Λ∗
j gj} = H. So {Λj : j ∈ N} is g-complete.
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