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We introduce an integrodifferential operator Js,b(f)which plays an important role in the Geometric
Function Theory. Some theorems in differential subordination for Js,b(f) are used. Applications in
Analytic Number Theory are also obtained which give new results for Hurwitz-Lerch Zeta function
and Polylogarithmic function.

1. Introduction

Let A denote the class of functions f(z) normalized by

f(z) = z +
∞∑

k=2

akz
k (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}.
Also, let μ denote the class of analytic functions in the form

r(z) = 1 +
∞∑

k=1

akz
k. (1.2)
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We begin by recalling that a general Hurwitz-Lerch Zeta functionΦ(z, s, b) defined by
(cf., e.g., [1, P. 121 et seq.])

Φ(z, s, b) =
∞∑

k=0

zk

(k + b)s
, (1.3)

(b ∈ C \ Z
−
0 , Z

−
0 = Z

− ∪ {0} = {0,−1,−2, . . .}, s ∈ C when z ∈ U, Re(s) > 1 when |z| = 1)
which contains important functions of Analytic Number Theory, as the Polylogarithmic

function:

Lis(z) =
∞∑

k=1

zk

ks
= zΦ(z, s, 1),

(s ∈ C when z ∈ U, Re(s) > 1 when |z| = 1).

(1.4)

Several properties of Φ(z, s, b) can be found in the recent papers, for example
Choi et al. [2], Ferreira and López [3], Gupta et al. [4], and Luo and Srivastava [5]. See, also
[6–16].

Recently, Srivastava and Attiya [8] introduced the operator Js,b(f)which makes a con-
nection between Geometric Function Theory and Analytic Number Theory, defined by

Js,b
(
f
)
(z) = Gs,b(z) ∗ f(z),

(
z ∈ U; f ∈ A; b ∈ C \ Z

−
0 ; s ∈ C

)
,

(1.5)

where

Gs,b(z) = (1 + b)s
[
Φ(z, s, b) − b−s

]
(1.6)

and ∗ denotes the Hadamard product (or convolution).
Furthermore, Srivastava and Attiya [8] showed that

Js,b
(
f
)
(z) = z +

∞∑

k=2

(
1 + b

k + b

)s

akz
k. (1.7)
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As special cases of Js,b(f), Srivastava and Attiya [8] introduced the following identities:

J0,b
(
f
)
(z) = f(z),

J1,0
(
f
)
(z) =

∫z

0

f(t)
t

dt = A
(
f
)
(z),

J1,1
(
f
)
(z) =

2
z

∫z

0
f(t)dt = L(

f
)
(z),

J1,γ
(
f
)
(z) =

1 + γ

zγ

∫z

0
f(t)tγ−1dt = Lγ

(
f
)
(z)

(
γ real; γ > −1),

Jσ,1
(
f
)
(z) =

2σ

zΓ(σ)

∫z

0

(
log

(z
t

))σ−1
f(t)dt = Iσ

(
f
)
(z) (σ real;σ > 0),

(1.8)

where, the operators A(f) and L(f) are the integral operators introduced earlier by
Alexander [17] and Libera [18], respectively, Lγ(f) is the generalized Bernardi operator,
Lγ(f)(γ ∈ N = {1, 2, . . .}) introduced by Bernardi [19], and Iσ(f) is the Jung-Kim-Srivastava
integral operator introduced by Jung et al. [20].

Moreover, in [8], Srivastava and Attiya defined the operator Js,b(f) for b ∈ C \ Z
−, by

using the following relationship:

Js,0
(
f
)
(z) = lim

b→ 0
Js,b

(
f
)
(z). (1.9)

Some applications of the operator Js,b(f) to certain classes in Geometric Function Theory
can be found in [21, 22].

In our investigations we need the following definitions and lemma.

Definition 1.1. Let f(z) and F(z) be analytic functions. The function f(z) is said to be
subordinate to F(z), written f(z) ≺ F(z), if there exists a function w(z) analytic in U, with
w(0) = 0 and |w(z)| ≤ 1, and such that f(z) = F(w(z)). If F(z) is univalent, then f(z) ≺ F(z)
if and only if f(0) = F(0) and f(U) ⊂ F(U).

Definition 1.2. Let Ψ : C
2 × U → C be analytic in domain D, and let h(z) be univalent in U. If

p(z) is analytic in U with (p(z), zp′(z)) ∈ D when z ∈ U, then we say that p(z) satisfies a first
order differential subordination if

Ψ
(
p(z), zp′(z); z

) ≺ h(z) (z ∈ U). (1.10)

The univalent function q(z) is called dominant of the differential subordination (1.10), if
p(z) ≺ q(z) for all p(z) satisfying (1.10), if q̃(z) ≺ q(z) for all dominant of (1.10), then we
say that q̃(z) is the best dominant of (1.10).

Lemma 1.3 (see [8]). If z ∈ U, f ∈ A, b ∈ C \ Z
− and s ∈ C, then

zJ ′s+1,b
(
f
)
(z) = (1 + b)Js,b

(
f
)
(z) − bJs+1,b

(
f
)
(z). (1.11)
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The purpose of the present paper is to extend the use of Js,b(f) as integrodifferential
operator, and some theorems in differential subordination for Js,b(f) are used. Applications
in Analytic Number Theory are also obtained which give new results for Hurwitz-Lerch Zeta
function and Polylogarithmic function.

2. Making Use of Js,b(f) as a Differential Operator

From the definition of Js,b(f) in (1.5) and using (1.7), we obtain the following identities.
For z ∈ U, f ∈ A, n ∈ N0 = N ∪ {0} and b ∈ C \ Z

−, we have

J−1,0
(
f
)
(z) = zf ′(z),

J−1,1
(
f
)
(z) =

1
2
{
f(z) + zf ′(z)

}
,

J−1,1/(1−λ)
(
f
)
(z) = λf(z) + (1 − λ)zf ′(z) (λ/= 1),

J−n,0
(
f
)
(z) = Dn(f

)
(z),

J−n,(1/λ)−1
(
f
)
(z) = Dn

λ

(
f
)
(z) (λ/= 0),

J−n,λ
(
f
)
(z) = Inλ

(
f
)
(z) (λ > −1),

J−n,1
(
f
)
(z) = In

(
f
)
(z),

(2.1)

where Dn(f) is the Sălăgean differential operator which introduced by Sălăgean [23], Dn
λ
(f)

is the generalized of operator, Dn
λ(f) (λ > 0; real) introduced by Al-Oboudi [24], Inλ (f) was

studied by Cho and Srivastava [25] and by Cho and Kim [26], and the operator In(f) was
studied by Uralegaddi and Somanatha [27].

Also, we note that

J−n,0
(
f
)
(z) = Li−n(z) ∗ f(z)

(
n ∈ N0; f ∈ A

)
,

J−n,1
(
f
)
(z) =

Li−n(z)
z

∗ f(z) (
n ∈ N0; f ∈ A

)
,

(2.2)

where Lis(z) is the Polylogarithmic function defined by (1.4).
Now, we prove the following lemma.

Lemma 2.1. If z ∈ U, f ∈ A, n ∈ N0 and b ∈ C \ Z
−, then

J−n,b
(
f
)
(z) =

1
(1 + b)n

(zD + b)nf(z)
(
D :=

d

dz

)
, (2.3)
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where (zD + b)n = (zD + b) ◦ (zD + b) ◦ · · · ◦ (zD + b) to n-times, and ◦ denotes the composition
(I ◦ J)(f)(z) = I(J(f(z))).

Proof. Putting s = −n (n ∈ N0) in (1.11), we have

(1 + b)(J−n,b)
(
f
)
(z) =

[
z
d

dz
J−n+1,b

(
f
)
(z) + bJ−n+1,b

(
f
)
(z)

]

= (zD + b)J−n+1,b
(
f
)
(z)

(
D :=

d

dz

)
,

(2.4)

therefore,

J−n,b
(
f
)
(z) =

1
(1 + b)

(zD + b)J−n+1,b
(
f
)
(z). (2.5)

Noting that the relation (2.5) is a recurrence relation, by using mathematical induction, we
get (2.3), which completes the proof of the lemma.

Putting f(z) = f0(z) = z/(1 − z) in Lemma 2.1, we obtain the following properties for
both Hurwitz-Lerch Zeta function Φ(z, s, b) and Polylogarithmic function Lis(z).

Corollary 2.2. Let Φ(z, s, b) and Lis(z) be the Hurwitz-Lerch Zeta function and Polylogarithmic
function defined by (1.3) and (1.4), respectively, then we have

Φ(z,−n, b) = bn +
(
z
d

dz
+ b

)n( z

1 − z

)
(|z| < 1),

Li−n(z) = z

{
1 +

(
z
d

dz
+ 1

)n( z

1 − z

)}
(|z| < 1),

(2.6)

where b ∈ C \ Z
−
0 and n ∈ N0.

Example 2.3. Using Corollary 2.2, we have the following well known results for z(z ∈ C; |z| <
1).

(i) Φ(z, 0, b) = 1/(1 − z).

(ii) Φ(z,−1, b) = b + ((1 + b)z − bz2)/(1 − z)2.

(iii) Φ(z,−2, b) = b2 + ((1 + b)2z + (1 − 2b − 2b2)z2 + b2z3)/(1 − z)3.

(iv) Li0(z) = z/(1 − z).

(v) Li−1(z) = z/(1 − z)2.

(vi) Li−2(z) = z(1 + z)/(1 − z)3.

3. Applications of Differential Subordination for Js,b(f)

To prove our results, we need the following lemmas due to Hallenbeck and Ruscheweyh [28]
and Miller and Mocanu [29], respectively, see also Miller and Mocanu [30].
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Lemma 3.1. Let h(z) be convex univalent in U, with h(0) = 1, γ /= 0 and Re(γ) ≥ 0. If q(z) ∈ μ
and

q(z) +
zq′(z)

γ
≺ h(z), (3.1)

then

q(z) ≺ S(z) ≺ h(z), (3.2)

where

S(z) =
γ

zγ

∫z

0
h(t)tγ−1dt. (3.3)

The function S(z) is convex univalent and is the best dominant.

Lemma 3.2. Let λ > 0, and let β0 = β0(λ) be the root of the equation as follows:

βπ =
3π
2

− tan−1(λβ
)
. (3.4)

In addition, let α = α(β, λ) = β + (2/π)tan−1(λπ), for 0 < β ≤ β0.
If p(z) ∈ μ and

p(z) + λzp′(z) ≺
[
1 + z

1 − z

]α
(3.5)

then

p(z) ≺
[
1 + z

1 − z

]β
. (3.6)

Now, we define the function L(f)(z) := L(s,b,λ)(f)(z) as the following:

L
(
f
)
(z) = (1 − λ − λb)Js,b

(
f
)
(z) + λ(1 + b)Js−1,b

(
f
)
(z) (z ∈ U),

(
z ∈ U; f ∈ A; b ∈ C \ Z

−; {s, λ ∈ C;λ/= 0; Reλ ≥ 0}).
(3.7)

Theorem 3.3. Let the function L(f)(z) defined by (3.7) and for some α(0 ≤ α < 1). If

Re

{
L
(
f
)
(z)

z

}
> α, (3.8)
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then

Re

{
Js,b

(
f
)
(z)

z

}
> (2α − 1) + 2(1 − α) 2F1

(
1,

1
λ
;
1
λ
+ 1,−1

)
. (3.9)

The constant (2α − 1) + 2(1 − α) 2F1(1, 1/λ; (1/λ) + 1,−1) is the best estimate.

Proof. Defining the function q(z) = Js,b(f)(z)/z, then we have q(z) ∈ μ.
If we take γ = 1/λ, and the convex univalent function h(z) defined by

h(z) =
1 + (2α − 1)z

1 + z
, 0 ≤ α < 1, (3.10)

then, we have

q(z) +
zq′(z)

γ
= (1 − λ)

Js,b
(
f
)
(z)

z
+ λJ ′s,b

(
f
)
(z). (3.11)

Using Lemma 1.3 and (3.7), therefore (3.11) can be written as

q(z) +
zq′(z)

γ
=

L
(
f
)
(z)

z
, (3.12)

then,

q(z) +
zq′(z)

γ
≺ h(z), (3.13)

where h(z) is defined by (3.10) satisfying h(0) = 1.
Applying Lemma 3.1, we obtain that Js,b(f)(z)/z ≺ S(z), where the convex univalent

function S(z) defined by

S(z) =
1

λz1/λ

∫z

0

1 + (2α − 1)t
1 + t

t((1/λ)−1)dt. (3.14)

Since Re{h(z)} > 0 and S(z) ≺ h(z), we have Re{S(z)} > 0.
This implies that

inf
z∈U

Re{S(z)} = S(1) = (2α − 1) +
2
λ

(1 − α)
∫1

0

u((1/λ )−1)

1 + u
du

= (2α − 1) + 2(1 − α)
∫1

0

dt

1 + tλ

= (2α − 1) + 2(1 − α) 2F1

(
1,

1
λ
;
1
λ
+ 1,−1

)
.

(3.15)
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Hence, the constant (2α − 1) + 2(1 − α) 2F1(1, 1/λ; (1/λ) + 1,−1) cannot be replace by any
larger one.

This completes the proof of Theorem 3.3.

Theorem 3.4. Let the function L(f)(z) with λ > 0; real, defined by (3.7), and let β0 satisfy the
following equation:

β0π + tan−1
(
β0
2

)
=

3π
2
. (3.16)

If

L
(
f
)
(z)

z
≺
[
1 + z

1 − z

]β+(2/π)tan−1(λβ)

, (3.17)

then

Js,b
(
f
)
(z)

z
≺
[
1 + z

1 − z

]β (
0 < β ≤ β0

)
. (3.18)

Proof. Defining the function p(z) = Js,b(f)(z)/z ∈ μ, then we have

p(z) + λzp′(z) = (1 − λ)
Js,b

(
f
)
(z)

z
+ λJ ′s,b

(
f
)
(z). (3.19)

Using Lemma 1.3 and (3.7), therefore (3.11) can be written as

p(z) + λzp′(z) =
L
(
f
)
(z)

z
. (3.20)

This completes the proof of Theorem 3.4 after applying Lemma 3.2

4. Applications in Analytic Number Theory

Putting f(z) = f0(z) = z/(1 − z) in Theorem 3.3, then we have the following property of
Hurwitz-Lerch Zeta function.

Corollary 4.1. Let the function Gs,b(z) defined by (1.6). If

Re
{
(1 − λ − λb)Gs,b(z) + λ(1 + b)Gs−1,b(z)

z

}
> α, (4.1)

then

Re
{
Gs,b(z)

z

}
> (2α − 1) + 2(1 − α) 2F1

(
1,

1
λ
;
1
λ
+ 1,−1

)
, (4.2)

where z ∈ U, 0 ≤ α < 1, b ∈ C \ Z
− and {s, λ ∈ C;λ/= 0; Re λ ≥ 0}.
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The constant (2α − 1) + 2(1 − α) 2F1(1, 1/λ; (1/λ) + 1,−1) is the best estimate.
Putting f(z) = f0(z) = z/(1 − z) in Theorem 3.4, then we have another property of

Hurwitz-Lerch Zeta function.

Corollary 4.2. Let the function Gs,b(z) defined by (1.6), and let β0 satisfy the following equation:

β0π + tan−1(λ β0
)
=

3π
2
. (4.3)

If

(1 − λ − λb)Gs,b(z) + λ(1 + b)Gs−1,b(z)
z

≺
[
1 + z

1 − z

]β+(2/π)tan−1(λβ)

, (4.4)

then

Gs,b(z)
z

≺
[
1 + z

1 − z

]β (
0 < β ≤ β0

)
, (4.5)

where z ∈ U, b ∈ C \ Z
−, s ∈ C and λ > 0; real.

Putting f(z) = f0(z) = z/(1 − z) and b = 1 in Theorem 3.3, then we have the following
property of Polylogarithmic function.

Corollary 4.3. Let the function Hs(z) defined by

Hs(z) = 2s
[
Lis(z)

z
− 1

]
. (4.6)

If

Re
{
(1 − 2λ)Hs(z) + 2λHs−1(z)

z

}
> α, (4.7)

then

Re
{
Hs(z)

z

}
> (2α − 1) + 2(1 − α) 2F1

(
1,

1
λ
;
1
λ
+ 1,−1

)
, (4.8)

where z ∈ U, 0 ≤ α < 1 and {s, λ ∈ C; λ/= 0; Reλ ≥ 0}.
The constant (2α − 1) + 2(1 − α) 2F1(1, 1/λ; (1/λ) + 1,−1) is the best estimate.

Putting f(z) = f0(z) = z/(1 − z) and b = 1 in Theorem 3.4, then we have the following
property of Polylogarithmic function.
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Corollary 4.4. Let the functions Gs,b(z) and Hs(z) defined by (1.6) and (4.6), respectively, and let
β0 satisfy the following:

β0π + tan−1(λβ0
)
=

3π
2
. (4.9)

If

(1 − 2λ)Hs(z) + 2λHs−1(z)
z

≺
[
1 + z

1 − z

]β+(2/π)tan−1(λ β)

, (4.10)

then

Gs,b(z)
z

≺
[
1 + z

1 − z

]β (
0 < β ≤ β0

)
, (4.11)

where z ∈ U, s ∈ C and λ > 0; real.

Setting f(z) = f0(z) = z/(1 − z), b = 1 and λ = 1/2 in Theorem 3.3, then we have the
following property of Polylogarithmic function.

Corollary 4.5. Let the function Hs(z) defined by (4.6).
If

Re
{
Hs−1(z)

z

}
> α, (4.12)

then

Re
{
Hs(z)

z

}
> 2(2 ln 2 − 1)α + (3 − 4 ln 2), (4.13)

where z ∈ U, 0 ≤ α < 1 and s ∈ C.
The constant 2(2 ln 2 − 1)α + (3 − 4 ln 2) is the best estimate.

Taking f(z) = f0(z) = z/(1 − z), b = 1 and λ = 1/2 in Theorem 3.4, then we have the
following property of polylogarithmic function.

Corollary 4.6. Let the function Hs(z) defined by (4.6).
If

Hs−1(z)
z

≺
[
1 + z

1 − z

]β+(2/π)tan−1(β)

, (4.14)

then

Hs(z)
z

≺
[
1 + z

1 − z

]β (
0 < β ≤ 1.3148754023 . . .

)
, (4.15)

where z ∈ U and s ∈ C.
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Corollary 4.7. Let the function Hs(z) defined by (4.6) as follows:
If

Hs−1(z)
z

≺
[
1 + z

1 − z

]3/2
, (4.16)

then

Re
{
Hs+n(z)

z

}
> 1 − (4 ln 2 − 2)n (n ∈ N0), (4.17)

where z ∈ U and s ∈ C.

Proof. Let Hs−1(z) satisfy the condition (4.16). Also, putting f(z) = f0(z) = z/(1 − z), b = 1,
λ = 1/2 and β = 1 in Theorem 3.4.

Using (4.16), then we have

Hs(z)
z

≺
[
1 + z

1 − z

]
, (4.18)

therefore

Re
{
Hs(z)

z

}
> 0. (4.19)

Corollary 4.5, gives

Re
{
Hs+1(z)

z

}
> 3 − 4 ln 2. (4.20)

Applied (4.11) again and to n-times, which gives (4.17). This completes the proof of
Corollary 4.7.

Finally, we can put Corollary 4.7 in the following form.

Corollary 4.8. Let the function Hs(z) defined by (4.6).
If

∣∣∣∣ Arg
(
Hs−1(z)

z

)∣∣∣∣ <
3π
4
, (4.21)

then

Re
{
Hs+n(z)

z

}
> 1 − (4 ln 2 − 2)n (n ∈ N0), (4.22)

where z ∈ U and s ∈ C.
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