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Fan et al. studied the bifurcations of traveling wave solutions for a two-component Fornberg-
Whitham equation. They gave a part of possible phase portraits and obtained some uncertain
parametric conditions for solitons and kink (antikink) solutions. However, the exact explicit
parametric conditions have not been given for the existence of solitons and kink (antikink)
solutions. In this paper, we study the bifurcations for the two-component Fornberg-Whitham
equation in detalis, present all possible phase portraits, and give the exact explicit parametric
conditions for various solutions. In addition, not only solitons and kink (antikink) solutions, but
also peakons and periodic cusp waves are obtained. Our results extend the previous study.

1. Introduction

In 2011, Fan et al. [1] introduced the following two-component Fornberg-Whitham equation

ut = uxxt − ux − uux + 3uxuxx + uuxxx + ρx,

ρt = −(ρu)x,
(1.1)

where u = u(x, t) denotes the height of the water surface above a horizontal bottom, and
ρ = ρ(x, t) indicts the horizontal velocity field. They studied the bifurcations of traveling
wave solutions for (1.1) through obtaining some uncertain parametric conditions for solitons,
kink (antikink) solutions, and further gave some expressions of those solutions. However,
they did not give the explicit parametric conditions for the existence of solitons and kink
(antikink) solutions. In this paper, we further analyze the bifurcations for (1.1) systematically
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by exploiting the bifurcation method and qualitative theory of dynamical systems [2–7]. We
present all possible phase portraits determinately and give all the exact explicit parametric
conditions for various solutions. Additionally, we obtain explicit peakons and periodic cusp
waves for (1.1), which were not included in [1].

2. Bifurcations of Phase Portraits

In this section, we will present the process of obtaining the bifurcations of phase portraits for
(1.1).

For given constant c, substituting u(x, t) = ϕ(ξ), ρ = ψ(ξ) with ξ = x − ct into (1.1), it
follows,

−cϕ′ + cϕ′′′ + ϕ′ + ϕϕ′ − 3ϕ′ϕ′′ − ϕϕ′′′ − ψ ′ = 0,

−cψ ′ + ϕ′ψ + ϕψ ′ = 0,
(2.1)

where the prime stands for derivative with respect to the variable ξ.
Integrating (2.1) once leads to

(1 − c)ϕ +
1
2
ϕ2 − (

ϕ′)2 +
(
c − ϕ)ϕ′′ − ψ = g,

(
ϕ − c)ψ = G,

(2.2)

where both g and G are integral constants.
From the second equation of system (2.2), we obtain

ψ =
G

ϕ − c . (2.3)

Substituting (2.3) into the first equation of system (2.2), it follows:

(1 − c)ϕ +
1
2
ϕ2 − (

ϕ′)2 +
(
c − ϕ)ϕ′′ − G

ϕ − c = g. (2.4)

By setting ϕ = φ + c − 2/3, (2.4) becomes

(
2
3
− φ

)2

φ′′ =
(
2
3
− φ

)
(
φ′)2 +

1
2
φ3 − 1

6

(
3c2 − 6c + 4 + 6g

)
φ +

1
27

(
9c2 − 18c + 8 + 18g

)
−G.
(2.5)
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Letting y = φ′, we obtain a planar system

dφ

dξ
= y,

dy

dξ
=

(
2/3 − φ)y2 + (1/2)φ3 − (1/6)

(
3c2 − 6c + 4 + 6g

)
φ + (1/27)

(
9c2 − 18c + 8 + 18g

) −G
(
2/3 − φ)2

,

(2.6)

with first integral

H
(
φ, y

)
=
(
2
3
− φ

)2

y2 − 1
4
φ4 +

1
6

(
3c2 − 6c + 4 + 6g

)
φ2 − 2

27

(
9c2 − 18c + 8 + 18g

)
φ + 2Gφ.

(2.7)

Note that when G = 0, system (2.6) and (2.7) become

dφ

dξ
= y,

dy

dξ
=
y2 − (1/2)φ2 − (1/3)φ + (1/6)

(
3c2 − 6c + 4 + 6g

) − 2/9
2/3 − φ ,

(2.8)

H
(
φ, y

)
=
(
2
3
− φ

)2

y2 − 1
4
φ4 +

1
6

(
3c2 − 6c + 4 + 6g

)
φ2 − 2

27

(
9c2 − 18c + 8 + 18g

)
φ, (2.9)

respectively.
Transformed by dξ = (2/3 − φ)2dτ , system (2.6) becomes a Hamiltonian system

dφ

dξ
=
(
2
3
− φ

)2

y,

dy

dξ
=
(
2
3
− φ

)
y2 +

1
2
φ3 − 1

6

(
3c2 − 6c + 4 + 6g

)
φ +

1
27

(
9c2 − 18c + 8 + 18g

)
−G.

(2.10)

Since the first integral of system (2.6) is the same as that of the Hamiltonian system
(2.10), system (2.6) should have the same topological phase portraits as system (2.10) except
the straight line l : φ = 2/3. Therefore, we should be able to obtain the topological phase
portraits of system (2.6) from those of system (2.10).

Let

f
(
φ
)
=

1
2
φ3 − 1

6

(
3c2 − 6c + 4 + 6g

)
φ +

1
27

(
9c2 − 18c + 8 + 18g

)
−G. (2.11)

It is easy to obtain the two extreme points of f(φ) as follows:

φ∗
± = ±1

3

√
3c2 − 6c + 4 + 6g, for g > −1

2

(
c2 − 2c +

4
3

)
, (2.12)
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from which we can obtain a critical curve for g as follows:

g0(c) = −1
2

(
c2 − 2c +

4
3

)
. (2.13)

Further, we obtain two bifurcation curves:

G1 =
1
27

[(
3c2 − 6c + 4 + 6g

)√
3c2 − 6c + 4 + 6g + 9c2 − 18c + 8 + 18g

]
,

G2 =
1
27

[
−
(
3c2 − 6c + 4 + 6g

)√
3c2 − 6c + 4 + 6g + 9c2 − 18c + 8 + 18g

]
,

(2.14)

from f(φ∗
−) = 0 and f(φ∗

+) = 0, respectively. Note that when g > g0(c), obviously G1 > G2.
Additionally, we can obtain another two critical curves for g, that is,

g1(c) = −1
2

(
c2 − 2c + 1

)
, (2.15)

g2(c) = −1
2

(
c2 − 2c

)
, (2.16)

from G1 = 0 and G2 = 0, respectively.
Note that (2.16) can also be obtained by letting φ∗

+ = 2/3.
Let (φ∗, 0) be one of the singular points of system (2.10), then the characteristic values

of the linearized system of system (2.10) at the singular point (φ∗, 0) are

λ± = ±
√(

2
3
− φ∗

)2

f ′(φ∗). (2.17)

From the qualitative theory of dynamical systems, we can determine the property of
singular point (φ∗, 0) by the sign of f ′(φ∗).

Based on the above analysis, we give the information of the singular points for system
(2.10) and their relationship with φ∗

−, φ
∗
+ and 2/3 when g > g2(c), as an illustration, in the

following lemma.

Lemma 2.1. For g > g2(c), one has G1 < 0 < G2 and the singular points of system (2.10) can be
described as follows.

(a) If G < G2, then there is only one singular point denoted as S1(φ1, 0) (φ1 < φ∗
− < 2/3 <

φ∗
+). S1 is a saddle point.

(b) If G = G2, then there are two singular points denoted as S1(φ1, 0) and S2(φ2, 0) (φ1 <
φ∗
− < 2/3 < φ∗

+ = φ2), respectively. S1 is a saddle point and S2 is a degenerate saddle point.

(c) If G2 < G < 0, then there are three singular points denoted as S1(φ1, 0), S2(φ2, 0), and
S3(φ3, 0) (φ1 < φ

∗
− < 2/3 < φ2 < φ

∗
+ < φ3), respectively. S1 and S3 are saddle points and

S2 is a center.
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Figure 1: The graphics of f(φ) when g > g2(c).

(d) If 0 < G < G1, then there are three singular points denoted as S1(φ1, 0), S2(φ2, 0), and
S3(φ3, 0) (φ1 < φ

∗
− < φ2 < 2/3 < φ∗

+ < φ3), respectively. S1 and S3 are saddle points and
S2 is a center.

(e) If G = G1, then there are two singular points denoted as S1(φ1, 0) and S2(φ2, 0) (φ1 =
φ∗
− < 2/3 < φ∗

+ < φ2), respectively. S1 is a degenerate saddle point and S2 is a saddle point.

(f) If G > G1, then there is only one singular point denoted as S1(φ1, 0) (φ∗
− < 2/3 < φ∗

+ <
φ1). S1 is a saddle point.

Proof. Lemma 2.1 follows easily from the graphics of the function f(φ), which can be obtained
directly and shown in Figure 1 (note that f(2/3) = G).

Remark 2.2. The case when G = 0 follows easily from the similar analysis of system (2.8), and
we just omit it here for simplicity.

For the other cases, the similar analysis can be taken to make the conclusions. We just
omit these processes for simplicity. However, it is worth mentioning that, when g0(c) < g <
g2(c) andG2 < G < min(0, G1), there exist two saddle points and one center lying on the same
side of the singular line l : φ = 2/3. Hence, there may exist heteroclinic orbits for system (2.6).
We will show the existence of heteroclinic orbits for system (2.6) under certain conditions in
the following analysis.

When G1 < G < G2, we set the three solutions of f(φ) = 0 to be φs, φm, and φb (φs <
φm < φb), respectively. Through simple calculation, we can express φs and φb as the function
of φm, that is,

φs =
−φm −

√
(4/3)

(
3c2 − 6c + 4 + 6g

) − 3φ2
m

2
,

φb =
−φm +

√
(4/3)

(
3c2 − 6c + 4 + 6g

) − 3φ2
m

2
.

(2.18)
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It follows from φs < φm < φb that φm must satisfy condition

φ2
m <

3c2 − 6c + 4 + 6g
9

. (2.19)

FromH(φs, 0) = H(φb, 0), we obtain the expression of G as the function of φm,

G =
1
8
φ3
m +

1
27

(
9c2 − 18c + 8 + 18g

)
. (2.20)

Substituting (2.20) into f(φm) = 0, we obtain the expression of φm from f(φm) = 0 as
follows:

φm1 = 0, (2.21)

φm2 = −2
3

√
3c2 − 6c + 4 + 6g,

φm3 =
2
3

√
3c2 − 6c + 4 + 6g.

(2.22)

We can easily know that (2.22) does not satisfy (2.19), while (2.21) satisfies (2.19), if
g > g0(c).

By substituting (2.21) into (2.20), we obtain the bifurcation curve (denoted by G∗) for
G as follows:

G∗ =
1
27

(
9c2 − 18c + 8 + 18g

)
. (2.23)

Note that if g > g0(c), then obviously we have G2 < G∗ < G1. Additionally, we have
indicated that when g0(c) < g < g2(c) and G2 < G < min(0, G1), there exist two saddle points
and one center lying on the same side of the singular line φ = 2/3. Therefore, we obtain the
fourth critical curve for g from G∗ = 0,

g3(c) = −1
2

(
c2 − 2c +

8
9

)
. (2.24)

Hence, we can express the existence of the heteroclinic orbits as follows.

Lemma 2.3. (1) For g ∈ (g0(c), g3(c)) and G = G∗, there exist heteroclinic orbits for system (2.6).
(2) For g /∈ (g0(c), g3(c)) or G/=G∗, there exists no heteroclinic orbit for system (2.6).

Proof. Note that when g3(c) < g < g2(c) (or g = g3(c)), one saddle point and one center point
lie on the left side of the singular line l : φ = 2/3 and the other saddle point on the right side
of (or on) the singular line l : φ = 2/3. Therefore, Lemma 2.3 follows easily from the above
analysis.

Thereby, based on the above analysis, we obtain the bifurcations of phase portraits for
system (2.6) in Figures 2, 3, 4, 5, 6, 7, and 8 under the corresponding conditions.
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Figure 2: The phase portraits of system (2.6) when g > g2(c).
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Figure 3: The phase portraits of system (2.6) when g = g2(c).
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Figure 4: The phase portraits of system (2.6) when g3(c) < g < g2(c).
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Figure 5: The phase portraits of system (2.6) when g = g3(c).
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Figure 6: The phase portraits of system (2.6) when g1(c) < g < g3(c).

3. Main Results and the Theoretic Derivations of Main Results

In this section, we state our results about solitons, kink (antikink) solutions, peakons, and
periodic cusp waves for the first component of system (1.1). To relate conveniently, we omit
ϕ = φ + c − 2/3 and the expression of the second component of system (1.1) in the following
theorems.

Theorem 3.1. For constant wave speed c, integral constants g and G, one has the following.

(1) If c, g, and G satisfy one of the following conditions:

(i) g ≥ g2(c) and 0 < G < G1;

(ii) g3(c) ≤ g < g2(c) and G∗ < G < G1;

(iii) g1(c) < g < g3(c) and 0 ≤ G < G1;

(iv) g0(c) < g < g3(c) and G∗ < G < 0,
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Figure 7: The phase portraits of system (2.6) when g = g1(c).
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Figure 8: The phase portraits of system (2.6) when g0(c) < g < g1(c).

then there exist soliton solutions for (1.1), which can be implicitly expressed as

(
2
√(

φ12 − φ1
)(
φ13 − φ1

)(
φ12 − φ

)(
φ13 − φ

)
+ 4φ1φ + 2φ12φ13 + 2φ2

1

)α1

×
(
2
√(

φ12 − φ
)(
φ13 − φ

)
+ 2φ + 2φ1

)

×
(
(φ − φ1)

α1
(
φ13 − φ12

)α1+1
)−1

= e|ξ|/2,

(3.1)

where

φ12 = −φ1 −
√

2
3
(
3c2 − 6c + 4 + 6g

) − 2φ2
1,

φ13 = −φ1 +

√
2
3
(
3c2 − 6c + 4 + 6g

) − 2φ2
1,

α1 =
2/3 − φ1

√(
φ12 − φ1

)(
φ13 − φ1

) .

(3.2)
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Figure 9: The different kinds of homoclinic orbits for system (2.6).

(2) If c, g, and G satisfy condition:

(v) g > g2(c) and G2 < G < 0,

then there exist soliton solutions for (1.1), which can be implicitly expressed as

(
2
√(

φ3 − φ31
)(
φ3 − φ32

)(
φ − φ31

)(
φ − φ32

)
+ 4φ3φ + 2φ31φ32 + 2φ2

3

)α3

×
(
2
√(

φ − φ31
)(
φ − φ32

)
+ 2φ + 2φ3

)

×
((
φ3 − φ

)α3(φ31 − φ32
)α3+1

)−1
= e−|ξ|/2,

(3.3)

where

φ31 = −φ3 −
√

2
3
(
3c2 − 6c + 4 + 6g

) − 2φ2
3,

(3.4)

φ32 = −φ3 +

√
2
3
(
3c2 − 6c + 4 + 6g

) − 2φ2
3,

(3.5)

α3 =
(2/3) − φ3

√(
φ3 − φ31

)(
φ3 − φ32

) . (3.6)

If c, g, and G satisfy one of the following conditions:

(vi) g3(c) ≤ g < g2(c) and G2 < G < 0;
(vii) g0(c) < g < g3(c) and G2 < G < G∗,

then there exist solitons solution for (1.1), which can be implicitly expressed as

(
2
√(

φ3 − φ31
)(
φ3 − φ32

)(
φ − φ31

)(
φ − φ32

)
+ 4φ3φ + 2φ31φ32 + 2φ2

3

)α3

×
(
2
√(

φ − φ31
)(
φ − φ32

)
+ 2φ + 2φ3

)

×
((
φ3 − φ

)α3(φ31 − φ32
)α3+1

)−1
= e|ξ|/2,

(3.7)

where φ31, φ32, and α3 are given in (3.4), (3.5), and (3.6) respectively.
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Remark 3.2. (3.1) and (3.7) are the same as those given in [1]; however, (3.3) is not shown in
[1].

Remark 3.3. We give all possible homoclinic orbits in Figure 9, while it seems that Figures
9(b), 9(d), and 9(e) are not given in [1].

Proof. (1) From the phase portraits in Figures 2, 3, 4, 5, 6, 7, and 8, we see that when c, g, and
G satisfy one of the conditions, that is, (i), (ii), (iii), or (iv), there exist homoclinic orbits as
showed individually in Figures 9(a), 9(b), or 9(d). The expressions of the homoclinic orbits
can be given as follows:

y = ±
(
φ − φ1

)√(
φ12 − φ

)(
φ13 − φ

)

2
(
2/3 − φ) , φ1 ≤ φ ≤ φ12 <

2
3
< φ13. (3.8)

Substituting (3.8) into the first equation of system (2.6) and integrating along the
homoclinic orbits, it follows that

∫φ12

φ

(2/3 − s)ds
(
s − φ1

)√(
φ12 − s

)(
φ13 − s

) =
1
2
|ξ|. (3.9)

From (3.9), we obtain the soliton solutions (3.1).
(2) When c, g, and G satisfy one of the conditions, that is, (v), (vi), or (vii), there

exist homoclinic orbits as showed individually in Figures 9(c) or 9(e). The expressions of the
homoclinic orbits can be given as follows:

y = ±
(
φ3 − φ

)√(
φ − φ31

)(
φ − φ32

)

2
(
φ − 2/3

) , φ32 <
2
3
< φ31 ≤ φ ≤ φ3, (3.10)

or

y = ±
(
φ3 − φ

)√(
φ − φ31

)(
φ − φ32

)

2
(
2/3 − φ) , φ32 < φ31 ≤ φ ≤ φ3 <

2
3
. (3.11)

Substituting (3.10) and (3.11) into the first equation of system (2.6), and integrating
along the homoclinic orbits, it follows that

∫φ

φ31

(s − 2/3)ds
(
φ3 − s

)√(
s − φ31

)(
s − φ32

) =
1
2
|ξ|,

∫φ

φ31

(2/3 − s)ds
(
φ3 − s

)√(
s − φ31

)(
s − φ32

) =
1
2
|ξ|.

(3.12)

From (3.12), we obtain the soliton solutions (3.3) and (3.7).
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Theorem 3.4. If integral constants g and G satisfy g0(c) < g < g3(c) and G = G∗, then there exist
kink and antikink solutions.

Proof. We have showed that when g0(c) < g < g3(c) andG = G∗, there exist heteroclinic orbits
for system (2.6). The heteroclinic can be expressed as

y = ±
(
φ − φs

)(
φb − φ

)

2/3 − φ , φs ≤ φ ≤ φb, (3.13)

where

φs = −
√

1
3
(
3c2 − 6c + 4 + 6g

)
,

φb =

√
1
3
(
3c2 − 6c + 4 + 6g

)
,

(3.14)

which can be obtained by substituting (2.23) into (2.11).
Substituting (3.13) into the first equation of system (2.6) and integrating along the

heteroclinic orbits, it follows that

∫φ

φ0

(2/3 − t)dt
(
t − φs

)(
φb − t

) = ±1
2
ξ, (3.15)

where φ0 ∈ (φs, φb) is the initial value.
From (3.15), we have

(
φ − φs

)(2/3−φs)/(φb−φs) · (φb − φ
)(2/3−φb)/(φb−φs)

=
(
φ0 − φs

)(2/3−φs)/(φb−φs) · (φb − φ0
)(2/3−φb)/(φb−φs)e±ξ/2.

(3.16)

If we take φ0 = (φs + φb)/2, (3.16) becomes

(
φ − φs

)(2/3−φs)/(φb−φs) · (φb − φ
)(2/3−φb)/(φb−φs) =

(
φb − φs

2

)4/3/(φb−φs)
e±ξ/2. (3.17)

(3.16) or (3.17) are kink (antikink) solutions.

Theorem 3.5. (1) If g = g3(c) and G = 0, then there exist peakons for (1.1), which can be explicitly
expressed as

φ =
2
3

(
2e−(1/2)|x−ct| − 1

)
. (3.18)
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(2) If g3(c) < g < g2(c) and G = 0, then (1.1) has periodic cusp waves

u(x, t) = φ(ξ − 2iT) + c − 2
3
, (3.19)

where i = 0,±1,±2, . . ., ξ = x − ct ∈ [(2i − 1)T, (2i + 1)T], and

φ(ξ) =
1
2

(
4
3
− 1
3

√
6
(
6c − 3c2 − 6g

)
)
e(1/2)|x−ct|

+
1
2

(
4
3
+
1
3

√
6
(
6c − 3c2 − 6g

)
)
e−(1/2)|x−ct| − 2

3
,

(3.20)

with

T = 2 ln

⎛

⎜
⎝

4 +
√
6
(
6c − 3c2 − 6g

)

√
2
(
9c2 − 18c + 8 + 18g

)

⎞

⎟
⎠. (3.21)

Remark 3.6. When G = 0, system (2.8) is the exact planar system of the Fornberg-Whitham
equation [8, 9], and peakons (3.18) and periodic cusp waves (3.19) are the same as those in
[9].

Proof. (1)When g = g3(c) andG = 0, from Figure 5, we see that there is a triangle orbit, which
can be expressed as

y = ±1
2

(
φ +

2
3

)
, for − 2

3
≤ φ ≤ 2

3
, (3.22)

φ =
2
3
, for − 2

3
≤ y ≤ 2

3
. (3.23)

Substituting (3.22) into the first equation of system (2.6) and integrating along the
triangle orbits, it follows that

∫2/3

φ

dt

s + 2/3
=

1
2
|ξ|. (3.24)

From (3.24), we obtain peakons (3.18).
(2)When g3(c) < g < g2(c) andG = 0, from Figure 4, we see that there is an semiellipse

orbit, which can be expressed as

y = ±1
2

√

φ2 +
4
3
φ +

4
3
− 2
3
(
3c2 − 6c + 4 + 6g

)
, for

1
3

(√
2
(
9c2 − 18c + 8 + 18g

) − 2
)

≤ φ ≤ 2
3
,

(3.25)

φ =
2
3
, for − 1

6

√
6
(
6c − 3c2 − 6g

) ≤ y ≤ 1
6

√
6
(
6c − 3c2 − 6g

)
. (3.26)
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Substituting (3.25) into the first equation of system (2.6) and integrating along the sem-
iellipse orbit, it follows that

∫2/3

φ

dt
√
φ2 + (4/3)φ + (4/3) − (2/3)

(
3c2 − 6c + 4 + 6g

) =
1
2
|ξ|. (3.27)

From (3.27), we obtain periodic cusp waves (3.19) along with (3.20) and (3.21).

Remark 3.7. Our results are more general than those in [10] from the perspective of param-
eters, because the results in [10] are obtained by setting integral constant to a special value
(h = (3c/32)(c2 − 8g) in [10]), while our results are obtained under all possible parametric
conditions.

Remark 3.8. The system investigated in this paper is relatively complicated for all parameters.
That is why Fan et al. [1] did not show the exact parametric conditions for kink (antikink)
solutions. However, we figure out a new way to obtain the exact explicit parametric
conditions for kink (antikink) solutions and obtain solitons under more general conditions.

4. Conclusions

Based on a previous paper [1], we further study the bifurcations of traveling wave solutions
for the two-component Fornberg-Whitham equation, present all possible phase portraits
determinately, and show all the exact explicit parametric conditions under which there exist
solitons and kink (or antikink) solutions for (1.1). In addition, we obtain peakons and
periodic cusp waves with explicit expressions for (1.1). Our results extend the previous
study [1], which only gives some possible phase portraits, some undetermined parametric
conditions, and some implicit expressions of solitons and kink (or antikink) solutions.
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