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We study the complete consistency for estimator of nonparametric regression model based on
∼
ρ-

mixing sequences by using the classical Rosenthal-type inequality and the truncated method. As
an application, the complete consistency for the nearest neighbor estimator is obtained.

1. Introduction

Consider the following fixed design nonparametric regression model:

Yni = g(xni) + εni, i = 1, 2, . . . , n, (1.1)

where xni are known fixed design points from A, where A ⊂ R
p is a given compact set for

some p ≥ 1, g(·) is an unknown regression function defined on A, and εni are random errors.
Assume that for each n ≥ 1, (εn1, εn2, . . . , εnn) have the same distribution as (ε1, ε2, . . . , εn). As
an estimator of g(·), the following weighted regression estimator will be considered:

gn(x) =
n∑

i=1

Wni(x)Yni, x ∈ A ⊂ R
p, (1.2)

where Wni (x) = Wni(x;xn1, xn2, . . . , xnn), i = 1, 2, . . . , n are the weight function.
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The above estimator was first proposed by Georgiev [1] and subsequently has been
studied by many authors. For instance, when εni are assumed to be independent, consistency
and asymptotic normality have been studied by Georgiev and Greblicki [2], Georgiev [3]
and Müller [4] among others. Results for the case when εni are dependent have also been
studied by various authors in recent years. Fan [5] extended the work of Georgiev [3] and
Müller [4] in the estimation of the regression model to the case that forms an Lq-mixingale
sequence for some 1 ≤ q ≤ 2. Roussas [6] discussed strong consistency and quadratic mean
consistency for gn(x) under mixing conditions. Roussas et al. [7] established asymptotic
normality of gn(x) assuming that the errors are from a strictly stationary stochastic process
and satisfying the strong mixing condition. Tran et al. [8] discussed again asymptotic
normality of gn(x) assuming that the errors form a linear time series, more precisely, a weakly
stationary linear process based on a martingale difference sequence. Hu et al. [9] studied the
asymptotic normality for double array sum of linear time series. Hu et al. [10] gave the mean
consistency, complete consistency, and asymptotic normality of regression models with linear
process errors. Liang and Jing [11] presented some asymptotic properties for estimates of
nonparametric regression models based on negatively associated sequences, Yang et al. [12]
generalized the results of Liang and Jing [11] for negatively associated sequences to the case
of negatively orthant dependent sequences, and so forth. The main purpose of this section is
to investigate the complete consistency for estimator of the nonparametric regression model
based on ρ̃-mixing random variables.

In the following, we will give the definition of sequence of ρ̃-mixing random variables.
Let {Xn, n ≥ 1} be a random variable sequence defined on a fixed probability space

(Ω,F, P). Write FS = σ(Xi, i ∈ S ⊂ N). Given σ-algebras B,R in F, let

ρ(B,R) = sup
X∈L2(B),Y∈L2(R)

|EXY − EXEY|
(VarX VarY )1/2

. (1.3)

Define the ρ̃-mixing coefficients by

ρ̃(k) = sup
{
ρ(FS,FT): finite subsets S, T ⊂ N, such that dist(S, T) ≥ k

}
, k ≥ 0. (1.4)

Obviously, 0 ≤ ρ̃(k + 1) ≤ ρ̃(k) ≤ 1, and ρ̃(0) = 1.

Definition 1.1. A sequence of random variables {Xn, n ≥ 1} is said to be a ρ̃-mixing sequence
if there exists k ∈ N such that ρ̃(k) < 1.

ρ̃-mixing random variables were introduced by Bradley [13], and many applications
have been found. Many authors have studied this concept providing interesting results and
applications. See for example, Bradley [13] for the central limit theorem, Bryc and Smoleński
[14], Peligrad [15], and Utev and Peligrad [16] for moment inequalities, Gan [17],
Kuczmaszewska [18], Wu and Jiang [19], and Wang et al. [20] for almost sure convergence,
Peligrad and Gut [21], Gan [17], Cai [22], Kuczmaszewska [23], Zhu [24], An and Yuan [25],
Sung [26] and Wang et al. [27] for complete convergence, and Peligrad [15] for invariance
principle, Zhou et al. [28] and Sung [29] for strong law of large numbers, and so forth.
When these are compared with the corresponding results of independent random variable
sequences, there still remains much to be desired.
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This work is organized as follows: main result of the paper is provided in Section 2.
Some preliminary lemmas are presented in Section 3, and the proof of the main result is given
in Section 4.

Throughout the paper, C denotes a positive constant not depending on n, which may
be different in various places. an = O(bn) represents an ≤ Cbn for all n ≥ 1. Let �x� denote the
integer part of x and let I(A) be the indicator function of the set A. Denote x+ = xI (x ≥ 0)
and x− = −xI (x < 0).

2. Main Result

Unless otherwise specified, we assume throughout the paper that gn(x) is defined by (1.2).
For any function g(x), we use c(g) to denote all continuity points of the function g onA. The
norm ‖x‖ is the Euclidean norm. For any fixed design point x ∈ A, the following assumptions
on weight function Wni(x)will be used:

(A1)
∑n

i=1 Wni(x) → 1 as n → ∞;

(A2)
∑n

i=1 |Wni(x)| ≤ C < ∞ for all n;

(A3)
∑n

i=1 |Wni(x)| · |g(xni) − g(x)|I(‖xni − x‖ > a) → 0 as n → ∞ for all a > 0.

Based on the assumptions above, we can get the following complete consistency of the
nonparametric regression estimator gn(x).

Theorem 2.1. Let {εn, n ≥ 1} be a sequence of ρ̃-mixing random variables with mean zero, which is
stochastically dominated by a random variable X. Assume that conditions (A1) − (A3) hold true. If
there exists some s > 0 such that E|X|1+1/s < ∞ and

max
1≤i≤n

|Wni(x)| = O
(
n−s), (2.1)

then

gn(x) −→ g(x) completely, x ∈ c
(
g
)
. (2.2)

As an application of Theorem 2.1, we give the complete consistency for the nearest
neighbor estimator of g(x). Without loss of generality, put A = [0, 1], taking xni = i/n, i =
1, 2, . . . , n. For any x ∈ A, we rewrite |xn1 − x|, |xn2 − x|, . . . , |xnn − x| as follows:

∣∣∣x(n)
R1(x)

− x
∣∣∣ ≤

∣∣∣x(n)
R2(x)

− x
∣∣∣ ≤ · · · ≤

∣∣∣x(n)
Rn(x)

− x
∣∣∣, (2.3)

if |xni − x| = |xnj − x|, then |xni − x| is permuted before |xnj − x| when xni < xnj .
Let 1 ≤ kn ≤ n, the nearest neighbor weight function estimator of g(x) in model (1.1)

is defined as follows:

g̃n(x) =
n∑

i=1

W̃ni(x)Yni, (2.4)
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where

W̃ni(x) =

⎧
⎪⎨

⎪⎩

1
kn

, if |xni − x| ≤
∣∣∣x(n)

Rkn (x)
− x

∣∣∣.

0, otherwise.
(2.5)

Based on the notations above, we can get the following result by using Theorem 2.1.

Corollary 2.2. Let {εn, n ≥ 1} be a sequence of ρ̃-mixing random variables with mean zero, which is
stochastically dominated by a random variable X. Suppose that g is continuous on the compact set A.
If there exists some 0 < s < 1 such that kn = �ns� and E|X|1+1/s < ∞, then

g̃n(x) −→ g(x) completely, x ∈ c
(
g
)
. (2.6)

3. Preliminaries

In this section, we will present some important lemmas which will be used to prove the main
results of the paper. The first one is the Rosenthal-type inequality, which was proved by Utev
and Peligrad [16].

Lemma 3.1. Let {Xn, n ≥ 1} be a ρ̃-mixing sequence of random variables, EXi = 0, E|Xi|p < ∞ for
some p ≥ 2 and for every i ≥ 1. Then there exists a positive constant C depending only on p such that

E

⎛

⎝max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Xi

∣∣∣∣∣

p
⎞

⎠ ≤ C

⎧
⎨

⎩

n∑

i=1

E|Xi|p +
(

n∑

i=1

EX2
i

)p/2
⎫
⎬

⎭. (3.1)

The concept of stochastic domination will be used in this work.

Definition 3.2. A sequence {Xn, n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P(|Xn| > x) ≤ CP(|X| > x) (3.2)

for all x ≥ 0 and n ≥ 1.

Lemma 3.3. Let {Xn, n ≥ 1} be a sequence of random variables which is stochastically dominated by
a random variable X. For any α > 0 and b > 0, the following two statements hold:

E|Xn|αI(|Xn| ≤ b) ≤ C1
[
E|X|αI(|X| ≤ b) + bαP(|X| > b)

]
,

E|Xn|αI(|Xn| > b) ≤ C2E|X|αI(|X| > b),
(3.3)

where C1 and C2 are positive constants.
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4. Proofs of the Main Results

Proof of Theorem 2.1. For x ∈ c(g) and a > 0, we have by (1.1) and (1.2) that

∣∣Egn(x) − g(x)
∣∣ ≤

n∑

i=1

|Wni(x)| ·
∣∣g(xni) − g(x)

∣∣I(‖xni − x‖ ≤ a)

+
n∑

i=1

|Wni(x)| ·
∣∣g(xni) − g(x)

∣∣I(‖xni − x‖ > a)

+
∣∣g(x)

∣∣ ·
∣∣∣∣∣

n∑

i=1

Wni(x) − 1

∣∣∣∣∣.

(4.1)

Since x ∈ c(g), hence for any ε > 0, there exists a δ > 0 such that |g(x′) − g(x)| < ε when
‖x′ − x‖ < δ. Thus, by setting 0 < a < δ in (4.1), we can get that

∣∣Egn(x) − g(x)
∣∣ ≤ ε

n∑

i=1

|Wni(x)| +
∣∣g(x)

∣∣ ·
∣∣∣∣∣

n∑

i=1

Wni(x) − 1

∣∣∣∣∣

+
n∑

i=1

|Wni(x)| ·
∣∣g(xni) − g(x)

∣∣I(‖xni − x‖ > a).

(4.2)

By conditions (A1)–(A3) and the arbitrariness of ε > 0, we can get that

lim
n→∞

Egn(x) = g(x), x ∈ c
(
g
)
. (4.3)

For fixed design point x ∈ c(g), note that Wni(x) = W+
ni(x) − W−

ni(x), so without loss of
generality, we assume thatWni(x) ≥ 0 in what follows.

From the condition (2.1), we assume that

max
1≤i≤n

Wni(x) = n−s, n ≥ 1. (4.4)

By (4.3), we can see that in order to prove (2.2), we only need to show that

gn(x) − Egn(x) =
n∑

i=1

Wni(x)εni −→ 0 completely as n −→ ∞. (4.5)

That is to say, it suffices to show that for all ε > 0,

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Wni(x)εni

∣∣∣∣∣ > ε

)
< ∞. (4.6)
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For fixed n ≥ 1, denote

Xni = Wni(x)εniI(|Wni(x)εni| ≤ 1), i = 1, 2, . . . , n. (4.7)

It is easy to check that for any ε > 0,

(∣∣∣∣∣

n∑

i=1

Wni(x)εni

∣∣∣∣∣ > ε

)
⊂
(
max
1≤i≤n

|Wni(x)εni| > 1
)⋃

(∣∣∣∣∣

n∑

i=1

Xni

∣∣∣∣∣ > ε

)
, (4.8)

which implies that

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Wni(x)εni

∣∣∣∣∣ > ε

)
≤

∞∑

n=1

n∑

i=1

P(|Wni(x)εni| > 1) +
∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Xni

∣∣∣∣∣ > ε

)

.= I + J.

(4.9)

Hence, to prove (4.6), it suffices to show that I < ∞ and J < ∞.
By condition (A1) and E|X|1+1/s < ∞, we can get that

∞∑

n=1

n∑

i=1

P(|Wni(x)εni| > 1) ≤ C
∞∑

n=1

n∑

i=1

P(|Wni(x)X| > 1)

≤ C
∞∑

n=1

n∑

i=1

Wni(x)E|X|I(|Wni(x)X| > 1)

≤ C
∞∑

n=1

E|X|I(|X| > ns)

≤ C
∞∑

n=1

∞∑

k=n

E|X|I
(
ks ≤ |X| < (k + 1)s

)

= C
∞∑

k=1

k∑

n=1

E|X|I
(
ks ≤ |X| < (k + 1)s

)

= C
∞∑

k=1

kE|X|I
(
ks ≤ |X| < (k + 1)s

)

≤ C
∞∑

k=1

E|X|1+1/sI
(
ks ≤ |X| < (k + 1)s

)

≤ CE|X|1+1/s < ∞,

(4.10)

which implies that I < ∞.
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Next, we will prove that J < ∞. Firstly, we will show that

∣∣∣∣∣

n∑

i=1

EXni

∣∣∣∣∣ −→ 0, as n −→ ∞. (4.11)

Actually, by the conditions Eεi = 0, Lemma 3.3, (4.4) and E|X|1+1/s < ∞, we can see that

∣∣∣∣∣

n∑

i=1

EXni

∣∣∣∣∣ =

∣∣∣∣∣

n∑

i=1

EWni(x)εiI(|Wni(x)εi| > 1)

∣∣∣∣∣

≤ C
n∑

i=1

E|Wni(x)εi|1+1/sI(|Wni(x)εi| > 1)

≤ C
n∑

i=1

W1+1/s
ni (x)E|X|1+1/sI(|Wni(x)X| > 1)

≤ C

(
max
1≤i≤n

Wni(x)
)1/s n∑

i=1

Wni(x)E|X|1+1/sI(|X| > ns)

≤ C
(
n−s)1/sE|X|1+1/sI(|X| > ns)

= Cn−1E|X|1+1/sI(|X| > ns) −→ 0, as n −→ ∞,

(4.12)

which implies (4.11). Hence, to prove J < ∞, we only need to show that for all ε > 0,

J∗
.=

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

(Xni − EXni)

∣∣∣∣∣ >
ε

2

)
< ∞. (4.13)

ByMarkov’s inequality, Lemma 3.1,Cr ’s inequality, and Jensen’s inequality, we have for p ≥ 2
that

J∗ ≤ C
∞∑

n=1

E

(∣∣∣∣∣

n∑

i=1

(Xni − EXni)

∣∣∣∣∣

p)

≤ C
∞∑

n=1

(
n∑

i=1

E|Xni|2
)p/2

+ C
∞∑

n=1

n∑

i=1

E|Xni|p
.= J1 + J2.

(4.14)
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Take

p > max
{
2,

2
s
, 1 +

1
s

}
, (4.15)

which implies that −sp/2 < −1 and −s(p − 1) < −1. By Cr ’s inequality and Lemma 3.3, we can
get

J1 ≤ C
∞∑

n=1

[
n∑

i=1

P(|Wni(x)X| > 1) +
n∑

i=1

E|Wni(x)X|2I(|Wni(x)X| ≤ 1)

]p/2

. (4.16)

If s > 1, then we have by Markov’s inequality, E|X|1+1/s < ∞ and (4.4) that

J1 ≤ C
∞∑

n=1

(
n∑

i=1

W1+1/s
ni (x)E|X|1+1/s

)p/2

≤ C
∞∑

n=1

[(
max
1≤i≤n

Wni(x)
)1/s n∑

i=1

Wni(x)

]p/2
≤ C

∞∑

n=1

n−p/2 < ∞.

(4.17)

If 0 < s ≤ 1, then we have by Markov’s inequality, E|X|1+1/s < ∞ and (4.4) again that

J1 ≤ C
∞∑

n=1

(
n∑

i=1

W2
ni(x)E|X|2

)p/2

≤ C
∞∑

n=1

[(
max
1≤i≤n

Wni(x)
) n∑

i=1

Wni(x)

]p/2

≤ C
∞∑

n=1

n−sp/2 < ∞.

(4.18)

From (4.14)–(4.18), we have proved that J1 < ∞.
By Cr ’s inequality and Lemma 3.3, we can see that

J2 ≤ C
∞∑

n=1

n∑

i=1

P(|Wni(x)X| > 1) + C
∞∑

n=1

n∑

i=1

E|Wni(x)X|pI(|Wni(x)X| ≤ 1)

.= J3 + J4.

(4.19)
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J3 < ∞ has been proved by (4.10). In the following, we will show that J4 < ∞. Denote

Inj =
{
i :
[
n
(
j + 1

)]−s
< Wni(x) ≤

(
nj
)−s}

, n ≥ 1, j ≥ 1. (4.20)

It is easily seen that Ink
⋂
Inj = ∅ for k /= j and

⋃∞
j=1 Inj = {1, 2, . . . , n} for all n ≥ 1. Hence,

J4 ≤ C
∞∑

n=1

∞∑

j=1

∑

i∈Inj
E|Wni(x)X|pI(|Wni(x)X| ≤ 1)

≤ C
∞∑

n=1

∞∑

j=1

(
�Inj

)(
nj
)−sp

E|X|pI
(
|X| ≤

[
n
(
j + 1

)]s)

≤ C
∞∑

n=1

∞∑

j=1

(
�Inj

)(
nj
)−sp

n(j+1)∑

k=0

E|X|pI
(
k ≤ |X|1/s < k + 1

)

= C
∞∑

n=1

∞∑

j=1

(
�Inj

)(
nj
)−sp 2n∑

k=0

E|X|pI
(
k ≤ |X|1/s < k + 1

)

+ C
∞∑

n=1

∞∑

j=1

(
�Inj

)(
nj
)−sp

n(j+1)∑

k=2n+1

E|X|pI
(
k ≤ |X|1/s < k + 1

) .= J5 + J6.

(4.21)

It is easily seen that for all m ≥ 1,

C ≥
n∑

i=1

Wni(x) =
∞∑

j=1

∑

i∈Inj
Wni(x) ≥

∞∑

j=1

(
�Inj

)[
n
(
j + 1

)]−s

≥
∞∑

j=m

(
�Inj

)[
n
(
j + 1

)]−s ≥
∞∑

j=m

(
�Inj

)[
n
(
j + 1

)]−s
[
n(m + 1)
n
(
j + 1

)
]s(p−1)

=
∞∑

j=m

(
�Inj

)[
n
(
j + 1

)]−sp[n(m + 1)]s(p−1),

(4.22)

which implies that for all m ≥ 1,

∞∑

j=m

(
�Inj

)(
nj
)−sp ≤ Cn−s(p−1) ·m−s(p−1). (4.23)
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Therefore,

J5
.= C

∞∑

n=1

∞∑

j=1

(
�Inj

)(
nj
)−sp 2n∑

k=0

E|X|pI
(
k ≤ |X|1/s < k + 1

)

≤ C
∞∑

n=1

n−s(p−1)
2n∑

k=0

E|X|pI
(
k ≤ |X|1/s < k + 1

)

≤ C
2∑

k=0

∞∑

n=1

n−s(p−1)E|X|pI
(
k ≤ |X|1/s < k + 1

)

+ C
∞∑

k=2

∞∑

n=�k/2�
n−s(p−1)E|X|pI

(
k ≤ |X|1/s < k + 1

)

≤ C + C
∞∑

k=2

k1−s(p−1)E|X|pI
(
k ≤ |X|1/s < k + 1

)

≤ C + C
∞∑

k=2

E|X|p+1/s−(p−1)I
(
k ≤ |X|1/s < k + 1

)
≤ C + CE|X|1+1/s < ∞,

J6
.= C

∞∑

n=1

∞∑

j=1

(
�Inj

)(
nj
)−sp

n(j+1)∑

k=2n+1

E|X|pI
(
k ≤ |X|1/s < k + 1

)

≤ C
∞∑

n=1

∞∑

k=2n+1

∑

j≥k/n−1

(
�Inj

)(
nj
)−sp

E|X|pI
(
k ≤ |X|1/s < k + 1

)

≤ C
∞∑

n=1

∞∑

k=2n+1

n−s(p−1)
(
k

n

)−s(p−1)
E|X|pI

(
k ≤ |X|1/s < k + 1

)

≤ C
∞∑

k=2

�k/2�∑

n=1

k−s(p−1)E|X|pI
(
k ≤ |X|1/s < k + 1

)

≤ C
∞∑

k=2

k1−s(p−1)E|X|pI
(
k ≤ |X|1/s < k + 1

)

≤ C
∞∑

k=2

E|X|p+1/s−(p−1)I
(
k ≤ |X|1/s < k + 1

)
≤ CE|X|1+1/s < ∞.

(4.24)

Thus, the inequality (4.13) follows from (4.14)–(4.19), (4.21), and (4.24). This completes the
proof of the theorem.

Proof of Corollary 2.2. It suffices to show that the conditions of Theorem 2.1 are satisfied. Since
g is continuous on the compact setA, hence, g is uniformly continuous on the compact setA,
which implies that {|g(xni) − g(x)| : 1 ≤ i ≤ n, n ≥ 1} is bounded on set A.
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For any x ∈ [0, 1], if follows from the definition of Ri(x) and W̃ni(x) that

n∑

i=1

W̃ni(x) =
n∑

i=1

W̃nRi(x)(x) =
kn∑

i=1

1
kn

= 1,

max
1≤i≤n

W̃ni(x) =
1
kn

, W̃ni(x) ≥ 0,

n∑

i=1

∣∣∣W̃ni(x)
∣∣∣ ·
∣∣g(xni) − g(x)

∣∣I(|xni − x| > a) ≤ C
n∑

i=1

(xni − x)2
∣∣∣W̃ni(x)

∣∣∣

a2

= C
kn∑

i=1

(
x
(n)
Ri(x)

− x
)2

kna2
≤ C

kn∑

i=1

(i/n)2

kna2

≤ C

(
kn
na

)2

, ∀a > 0.

(4.25)

Hence, conditions (A1)–(A3) and (2.1) are satisfied. By Theorem 2.1, we can get (2.6)
immediately. This completes the proof of the corollary.
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