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This paper deals with the following Dirichlet problem: d∗A(x, g + du) = d∗h in Ω, uT = 0 on
∂Ω. Based on its solvability, we derive some properties of its solutions. In this paper, we mainly
get three results. Firstly, we establish an integral estimate for the solutions of the above Dirichlet
boundary value problem. Secondly, a stability result of solutions for varying differential forms g
and h is obtained. Lastly, we present a weak reverse Hölder inequality for solutions.

1. Introduction

Let Ω be a bounded domain in R
n with smooth boundary ∂Ω. Throughout this paper we

assume that 1 < p, q < ∞, is a Hölder conjugate pair, p + q = pq. First, we consider the
nonhomogeneous A-harmonic equation:

d∗A
(
x, g + du

)
= d∗h, (1.1)

where (g, h) ∈ Lp(Ω,∧l) × W1,q(Ω,∧l) and A : Ω × ∧l(Rn) → ∧l(Rn) is a Carathéodory
mapping satisfying the following assumptions for fixed 0 < α ≤ β < ∞:

(1) Lipschitz continuity

|A(x, ξ) −A(x, ζ)| ≤ β|ξ − ζ|(|ξ| + |ζ|)p−2; (1.2)
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(2) uniform monotonicity

〈A(x, ξ) −A(x, ζ), ξ − ζ〉 ≥ α|ξ − ζ|2(|ξ| + |ζ|)p−2; (1.3)

(3) homogeneity

A(x, λξ) = λ|λ|p−2A(x, ξ), (1.4)

for almost every x ∈ Ω and all ξ, ζ ∈ ∧l(Rn), λ ∈ R.

In particular, for A(x, ξ) = |ξ|p−2ξ, then (1.1) is simplified to the nonhomogeneous p-
harmonic equation:

d∗
(∣∣g + du

∣∣p−2(g + du
))

= d∗h. (1.5)

By Browder-Minty theory, see [1], the existence and uniqueness of a solution to the
Dirichlet problem

d∗A
(
x, g + du

)
= d∗h in Ω,

uT = 0 on ∂Ω,
(1.6)

inW1,p(Ω,∧l−1) has been obtained by Iwaniec et al., see [2]. For the solution u ∈ W1,p(Ω,∧l−1)
with vanishing tangential component on ∂Ω, we write it as u ∈ W

1,p
T (Ω,∧l−1).

Definition 1.1. Given that (g, h) ∈ Lp(Ω,∧l)×W1,q(Ω,∧l), a differential form u is called a solu-
tion to the Dirichlet problem (1.6) if u ∈ W

1,p
T (Ω,∧l−1) and it holds

∫

Ω

〈
A
(
x, g + du

)
, dφ
〉
dx =

∫

Ω

〈
h, dφ

〉
dx, (1.7)

for all φ ∈ W
1,p
T (Ω,∧l−1).

A-harmonic equations for differential forms have been a very active field in recent
years because they are an invaluable tool to describe various systems of partial differential
equations and to express different geometrical structures on manifolds. Moreover, they can
be used in many fields, such as physics, nonlinear elasticity theory, and the theory of quasi-
conformal mappings, see [3–10]. The purpose of this paper is to study properties of solutions
of the Dirichlet boundary value problem (1.6) based on the existence of its solutions.

2. Notation and Preliminary Results

This section is devoted to the notation of the exterior calculus and a few necessary prelimi-
naries. For more details the reader can refer to [2, 3].
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We denote by ∧l = ∧l(Rn) the space of l-covectors in R
n and the direct sum

∧(Rn) =
n⊕

l=0

∧l(Rn) (2.1)

is a graded algebra with respect to the wedge product ∧. We will make use of the exterior
derivative:

d : C∞
(
Ω,∧l

)
−→ C∞

(
Ω,∧l+1

)
(2.2)

and its formal adjoint operator

d∗ = (−1)nl+1 ∗ d∗ : C∞
(
Ω,∧l+1

)
−→ C∞

(
Ω,∧l

)
, (2.3)

known as the Hodge codifferential, where the symbol ∗ denotes the Hodge star duality oper-
ator. Note that each of the operators d and d∗ applied twice gives zero.

Let C∞(Ω,∧l) be the class of infinitely differentiable l-forms on Ω ⊂ R
n. Since Ω is

a smooth domain, near each boundary point one can introduce a local coordinate system
(x1, x2, . . . , xn) such that xn = 0 on ∂Ω and such that the xn-curve is orthogonal to ∂Ω. Near
this boundary point, every differential form ω ∈ C∞(Ω,∧l) can be decomposed as ω(x) =
ωT (x) +ωN(x), where

ωT (x) =
∑

1≤i1<···<il<n
ωi1,...,il(x)dxi1 ∧ · · · ∧ dxil ,

ωN(x) =
∑

1≤i1<···<il=n
ωi1,...,il(x)dxi1 ∧ · · · ∧ dxil

(2.4)

are called the tangential and the normal parts of ω, respectively. Now, the duality between d
and d∗ is expressed by the integration by parts formula

∫

Ω
〈du, v〉 =

∫

Ω
〈u, d∗v〉, (2.5)

for all u ∈ C∞(Ω,∧l) and v ∈ C∞(Ω,∧l+1), provided uT = 0 or vN = 0. The symbol 〈·, ·〉
denotes the inner product, that is, let α =

∑
I αI(x)dxI and β =

∑
I βI(x)dxI , then 〈α, β〉 =∑

I αI(x)βI(x).
Due to (2.5), extended definitions for d and d∗ can be introduced as the introduction

of weak derivatives.
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Definition 2.1 (see [2]). Suppose that ω ∈ L1
loc(Ω,∧l) and v ∈ L1

loc(Ω,∧l+1). If

∫

Ω

〈
ω, d∗η

〉
=
∫

Ω

〈
v, η
〉

(2.6)

for every test form η ∈ C∞
0 (Ω,∧l+1), one says that ω has generalized exterior derivative v and

write v = d̃ω.

The notion of the generalized exterior coderivative d̃∗ can be defined analogously.

Definition 2.2 (see [2]). Suppose that ω ∈ L1
loc(Ω,∧l) and v ∈ L1

loc(Ω,∧l−1). If

∫

Ω

〈
ω, dη

〉
=
∫

Ω

〈
v, η
〉

(2.7)

for every test form η ∈ C∞
0 (Ω,∧l−1), one says that ω has generalized exterior coderivative v

and write v = d̃∗ω.

Remark 2.3. (i) Observe that generalized exterior derivatives have many properties similar to
those of weak derivatives. For example, (i1) if it exists, it is unique; (i2) ifω is differentiable in
the conventional sense, then its generalized exterior derivative d̃ω is identical to its the clas-
sical exterior differential dω. Analogous results hold for generalized exterior coderivative.

(ii) If the generalized exterior derivative of ω, d̃ω, exists, then d̃ω also has its
generalized exterior derivative d̃(d̃ω). Moreover, d̃(d̃ω) = 0.

In fact, according to Definition 2.1, it holds

∫

Ω

〈
ω, d∗φ

〉
=
∫

Ω

〈
d̃ω, φ

〉
(2.8)

for every test form φ ∈ C∞
0 (Ω,∧l+1). Thus, for every η ∈ C∞

0 (Ω,∧l+2), we have d∗η ∈
C∞

0 (Ω,∧l+1) and by taking φ = d∗η in the above integral equality implies

∫

Ω

〈
d̃ω, d∗η

〉
=
∫

Ω

〈
ω, d∗d∗φ

〉

=
∫

Ω
〈ω, 0〉

= 0.

(2.9)

Therefore, Definition 2.1 yields that d̃(d̃ω) exists and d̃(d̃ω) = 0. Similarly, we have d̃∗(d̃∗ω) =
0.
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(iii) Together with the expression of differential forms, the definition of weak deriva-
tive and its uniqueness, we can prove that d and d̃ have analogous expressions, that is, for
ω(x) =

∑
I ωI(x)dxI , we have

dω(x) =
∑

I

n∑

k=1

∂ωI

∂xk
dxk ∧ dxI,

d̃ω(x) =
∑

I

n∑

k=1

∂̃ωI

∂xk
dxk ∧ dxI,

(2.10)

where ∂ denotes the ordinary derivative and ∂̃ the weak derivative. So in the next we use d

to represent the action instead of d̃, similar for d∗ and d̃∗.
(iv) Lastly, we refer to

kerd =
{
ω ∈ L1

loc

(
Ω,∧l

)
: dω = 0

}
(2.11)

as the closed l-forms and to

kerd∗ =
{
ω ∈ L1

loc

(
Ω,∧l

)
: d∗ω = 0

}
(2.12)

as the coclosed l-forms.

Definition 2.4 (see [2]). A l-form ω is said to have vanishing tangential component at ∂Ω in a
generalized sense, if both ω and dω belong to L1(Ω,∧l) and

∫

Ω

〈
ω, d∗η

〉
=
∫

Ω

〈
dω, η

〉
(2.13)

holds for any η ∈ C∞(Ω,∧l+1). One writes ωT = 0.

The notion of vanishing normal part ωN = 0 can be defined analogously. Now, the fol-
lowing extension of the identity (2.5) can be introduced, by an approximation argument
proved by Iwaniec and Lutoborski [3].

Proposition 2.5 (see [3]). For (p, q) a Hölder conjugate pair and u ∈ W1,p(Ω,∧l), v ∈
W1,q(Ω,∧l+1) one has

∫

Ω
〈du, v〉 =

∫

Ω
〈u, d∗v〉 (2.14)

provided uT = 0 or vN = 0.
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Finally, we present briefly some spaces of differential forms:

Lp(Ω,∧l)—the space of l-forms ω with coefficients in Lp(Ω);

L
p

1(Ω,∧l)—the space of l-formsω such that∇ω is a regular distribution of Lp(Ω,∧l);

W1,p(Ω,∧l)—the Sobolev space of l-forms ω defined by Lp(Ω,∧l) ∩ L
p

1(Ω,∧l);

W
1,p
T (Ω,∧l)—the space of l-formsω inW1,p(Ω,∧l)with vanishing tangential compo-

nent on ∂Ω.

which are used throughout this paper.

3. Main Results

We study the properties of solutions of the Dirichlet boundary value problem (1.6) whose
existence can be deduced by the following.

Lemma 3.1 (see [2]). For each data (g, h) ∈ Lp(Ω,∧l) × W1,q(Ω,∧l), there exists a solution u ∈
W

1,p
T (Ω,∧l−1) to the Dirichlet problem (1.6).

3.1. An Integral Estimate

We start with a proposition which gives an important estimate for solutions of (1.6).

Proposition 3.2. Given (g, h) ∈ Lp(Ω,∧l) × W1,q(Ω,∧l), suppose that u is a solution of (1.6) in
W

1,p
T (Ω,∧l−1). Then one has

∫

Ω
|du|pdx ≤ c

(
p, α, β

)
(∫

Ω

∣∣g
∣∣pdx +

∫

Ω
|h|qdx

)
. (3.1)

Proof. Taking the solution u as the test function in (1.7) yields

∫

Ω

〈
A
(
x, g + du

)
, du
〉
=
∫

Ω
〈h, du〉, (3.2)

thus we have

∫

Ω

〈
A
(
x, g + du

)
, g + du

〉
=
∫

Ω

〈
A
(
x, g + du

)
, g
〉
+
∫

Ω
〈h, du〉. (3.3)

Next we apply Young’s inequality as follows:

ab ≤ εar + ε−1/(r−1)br/(r−1), ε > 0, r > 1. (3.4)
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It follows from the structural assumptions (1) and (2) that

α

∫

Ω

∣
∣g + du

∣
∣p ≤

∫

Ω

〈
A
(
x, g + du

)
, g + du

〉

=
∫

Ω
〈h, du〉 +

∫

Ω

〈
A
(
x, g + du

)
, g
〉

≤
∫

Ω
|h||du| + β

∫

Ω

∣
∣g + du

∣
∣p−1∣∣g

∣
∣

≤
∫

Ω
|h||du| + β

∫

Ω

(
ε
∣
∣g + du

∣
∣p + c

(
ε, p
)∣∣g
∣
∣p)

= εβ

∫

Ω

∣
∣g + du

∣
∣p +

∫

Ω
|h||du| + c

(
ε, p
)
β

∫

Ω

∣
∣g
∣
∣p.

(3.5)

By choosing ε = α/(2β) and using again Young’s inequality, we have

∫

Ω

∣∣g + du
∣∣p ≤ 2

α

∫

Ω
|h| |du| + c

(
p, α, β

)
∫

Ω

∣∣g
∣∣p

≤ 2
α

∫

Ω

(
ε|du|p + c

(
ε, p
)|h|q) + c

(
p, α, β

)
∫

Ω

∣∣g
∣∣p.

(3.6)

Therefore, we get that

∫

Ω
|du|p ≤

∫

Ω

(∣∣g + du
∣∣ +
∣∣g
∣∣)p

≤ 2p
∫

Ω

∣∣g + du
∣∣p + 2p

∫

Ω

∣∣g
∣∣p

≤ 2p+1

α
ε

∫

Ω
|du|p + 2p+1

α
c
(
ε, p
)
∫

Ω
|h|q + c

(
p, α, β

)
∫

Ω

∣∣g
∣∣p.

(3.7)

Finally, we obtain by choosing ε = α/2p+2 that

∫

Ω
|du|pdx ≤ c

(
p, α, β

)
(∫

Ω

∣∣g
∣∣pdx +

∫

Ω
|h|qdx

)
. (3.8)

The theorem follows.
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3.2. Stability of Solutions

In this section, we establish the weak convergence of solutions of (1.6)with varying differen-
tial forms g and h. Particularly, given a sequence (gj , hj) ∈ Lp(Ω,∧l)×W1,q(Ω,∧l), Lemma 3.1
implies that there exists solution uj ∈ W

1,p
T (Ω,∧l−1) to

d∗A
(
x, gj + duj

)
= d∗hj . (3.9)

Suppose that (gj , hj) → (g, h) in Lp(Ω,∧l) × W1,q(Ω,∧l+1), and uj ⇀ u in W1,p(Ω,∧l−1), we
will show that u ∈ W

1,p
T (Ω,∧l−1) is a solution of (1.6).

Theorem 3.3. Under the hypotheses above, u ∈ W
1,p
T (Ω,∧l−1) is a solution of (1.6).

To prove Theorem 3.3, we need firstly to give the definition of the weak convergence
for sequences in spaces of differential forms.

Definition 3.4. One says that ϕj is weakly convergent to ϕ in Lp(Ω,∧l) if

∫

Ω

〈
ϕj, h

〉 −→
∫

Ω

〈
ϕ, h
〉
, (3.10)

whenever h ∈ Lq(Ω,∧l) and write ϕj ⇀ ϕ in Lp(Ω,∧l).
It is easy to verify that it has the following equivalent definition.

Definition 3.5. One says that ϕj weakly convergent to ϕ in Lp(Ω,∧l) if

∫

Ω
ϕj ∧ h −→

∫

Ω
ϕ ∧ h (3.11)

whenever h ∈ Lq(Ω,∧n−l) and write ϕj ⇀ ϕ in Lp(Ω,∧l).

According to the well-known results in Sobolev space in terms of functions, and
together with the expression of differential forms and the diagonal rule we can easily obtain
that

Proposition 3.6. For 1 < p < ∞, Lp(Ω,∧l) is reflexive.

Proposition 3.7. ϕj ⇀ ϕ in W1,p(Ω,∧l) if and only if ϕj ⇀ ϕ in Lp(Ω,∧l) and ∇ϕj ⇀ ∇ϕ in
Lp(Ω,∧l), where ∇ϕ = ((∂ϕ/∂x1), . . . , (∂ϕ/∂xn)) and the partial differentiation is applied to the
coefficients of ϕ.

Lemma 3.8. Suppose that a sequence of differential forms {ϕj} converges to ϕ weakly in Lp(Ω,∧l)
while the generalized exterior derivatives of ϕj , dϕj , exist and stay bounded in Lp(Ω,∧l+1). Then the
generalized exterior derivative of ϕ, dϕ, exists and dϕj ⇀ dϕ in Lp(Ω,∧l+1).
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Proof. On the one hand, since ϕj has generalized exterior derivative dϕj , then according to
Definition 2.1 we have

∫

Ω

〈
dϕj, η

〉
=
∫

Ω

〈
ϕj, d

∗η
〉
, (3.12)

for every η ∈ C∞
0 (Ω,∧l+1). Notice that ϕj ⇀ ϕ in Lp(Ω,∧l) and d∗η ∈ C∞

0 (Ω,∧l) ⊂ Lq(Ω,∧l), it
follows from Definition 3.4 that

∫

Ω

〈
ϕj, d

∗η
〉 −→

∫

Ω

〈
ϕ, d∗η

〉
. (3.13)

Thus, we obtain

∫

Ω

〈
dϕj, η

〉 −→
∫

Ω

〈
ϕ, d∗η

〉
, (3.14)

for every η ∈ C∞
0 (Ω,∧l+1).

On the other hand, since dϕj stays bounded in Lp(Ω,∧l+1), then it follows from
Proposition 3.6 that there exists weakly convergence subsequence of dϕj , we may assume
that

dϕj ⇀ g (3.15)

in Lp(Ω,∧l+1). Hence, for η ∈ C∞
0 (Ω,∧l+1) ⊂ Lq(Ω,∧l+1)we have

∫

Ω

〈
dϕj, η

〉 −→
∫

Ω

〈
g, η
〉
. (3.16)

Combining (3.14) and (3.16), the uniqueness of the limit yields

∫

Ω

〈
ϕ, d∗η

〉
=
∫

Ω

〈
g, η
〉
, (3.17)

for every η ∈ C∞
0 (Ω,∧l+1). Thus, Definition 2.1 implies that the generalized exterior derivative

of ϕ exists and g = dϕ. Furthermore, we have from (3.15) that dϕj ⇀ dϕ in Lp(Ω,∧l+1). The
lemma follows.

Proof of Theorem 3.3. Taking (uj − uk) as test differential form in (1.7) for both

d∗A
(
x, gj + duj

)
= d∗hj ,

d∗A
(
x, gk + duk

)
= d∗hk,

(3.18)
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then we obtain

∫

Ω

〈
A
(
x, gj + duj

) −A
(
x, gk + duk

)
, duj − duk

〉
=
∫

Ω

〈
hj − hk, duj − duk

〉
, (3.19)

or, equivalently, we have

∫

Ω

〈
A
(
x, gj + duj

) −A
(
x, gk + duk

)
,
(
gj + duj

) − (gk + duk

)〉

=
∫

Ω

〈
A
(
x, gj + duj

) −A
(
x, gk + duk

)
, gj − gk

〉
+
∫

Ω

〈
hj − hk, duj − duk

〉
.

(3.20)

Write ξ = gj + duj and ζ = gk + duk, then the above identity can be simplified to

∫

Ω
〈A(x, ξ) −A(x, ζ), ξ − ζ〉

=
∫

Ω

〈
A(x, ξ) −A(x, ζ), gj − gk

〉
+
∫

Ω

〈
hj − hk, duj − duk

〉
.

(3.21)

Then it follows from the Lipschitz condition (1), the monotonicity condition (2), and Hölder
inequality that:

α

∫

Ω
|ξ − ζ|p ≤ β

∫

Ω
(|ξ| + |ζ|)p−1∣∣gj − gk

∣∣

+
∫

Ω

∣∣hj − hk

∣∣∣∣duj − duk

∣∣

≤ β

(∫

Ω
(|ξ| + |ζ|)p

)1/q(∫

Ω

∣∣gj − gk
∣∣p
)1/p

+
(∫

Ω

∣∣duj − duk

∣∣p
)1/p(∫

Ω

∣∣hj − hk

∣∣q
)1/q

≤ c
(
p, β
)(‖ξ‖p−1p + ‖ζ‖p−1p

)∥∥gj − gk
∥∥
p
+
∥∥duj − duk

∥∥
p

∥∥hj − hk

∥∥
q
.

(3.22)

Therefore, we obtain

‖ξ − ζ‖p ≤ c
(
p, α, β

)(‖ξ‖1/qp + ‖ζ‖1/qp

)∥∥gj − gk
∥∥1/p
p

+ c
(
p, α
)∥∥duj − duk

∥∥1/p
p

∥∥hj − hk

∥∥1/p
q

.

(3.23)
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Since gj and hj are Cauchy sequences in Lp(Ω,∧l) and Lq(Ω,∧l), respectively, we have ‖gj‖p <
∞ and ‖hj‖q < ∞ for all j ∈ N, and further we get by applying Proposition 3.2 that

‖ξ‖1/qp + ‖ζ‖1/qp ≤ c
(
p
)(∥∥gj

∥
∥1/q
p

+
∥
∥duj

∥
∥1/q
p

+
∥
∥gk
∥
∥1/q
p + ‖duk‖1/qp

)

≤ c
(
p
)(∥∥gj

∥
∥1/q
p

+ c
(
p, α, β

)(∥∥gj
∥
∥1/q
p

+
∥
∥hj

∥
∥1/p
q

)

+
∥
∥gk
∥
∥1/q
p + c

(
p, α, β

)(∥∥gk
∥
∥1/q
p + ‖hk‖1/pq

))

≤ c
(
p, α, β

)(∥∥gj
∥
∥1/q
p

+
∥
∥gk
∥
∥1/q
p +

∥
∥hj

∥
∥1/p
q

+ ‖hk‖1/pq

)

< ∞,

∥
∥duj − duk

∥
∥1/p
p

≤ c
(
p
)(∥∥duj

∥
∥1/p
p

+ ‖duk‖1/pp

)

≤ c
(
p, α, β

)(∥∥gj
∥∥1/p
p

+
∥∥gk
∥∥1/p
p +

∥∥hj

∥∥(q−1)/p
q

+ ‖hk‖(q−1)/pq

)

< ∞.

(3.24)

Combining (3.23)-(3.24), we obtain

‖ξ − ζ‖p −→ 0, (3.25)

as j, k → ∞. Thus, the Minkowski inequality implies

∥∥duj − duk

∥∥
p
=
∥∥(ξ − ζ) − (gj − gk

)∥∥
p

≤ ‖ξ − ζ‖p +
∥∥gj − gk

∥∥
p
−→ 0,

(3.26)

as j, k → ∞, that is, {duj} is a Cauchy sequence in Lp(Ω,∧l). Thus, we have duj is bounded
in Lp(Ω,∧l). Then, it follows from Lemma 3.8 that du exists and duj ⇀ du in Lp(Ω,∧l). Note
that {duj} is a Cauchy sequence in Lp(Ω,∧l), then we have by the uniqueness of weak limit
that

duj −→ du (3.27)

in Lp(Ω,∧l). According to Definition 2.4, we know that

∫

Ω

〈
uj, d

∗η
〉
=
∫

Ω

〈
duj, η

〉
, (3.28)

for any η ∈ C∞(Ω,∧l). And it follows easily that

∫

Ω

〈
u, d∗η

〉
=
∫

Ω

〈
du, η

〉
, (3.29)
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since uj ⇀ u in W1,p(Ω,∧l−1) and Ω is bounded. Hence, we have u ∈ W
1,p
T (Ω,∧l−1). The final

step in our proof is to show that u satisfies (1.7). Recall that

∫

Ω

〈
A
(
x, gj + duj

)
, dφ
〉
=
∫

Ω

〈
hj , dφ

〉
, (3.30)

for all φ ∈ W
1,p
T (Ω,∧l−1). It is rather easy to obtain the following:

∫

Ω

〈
A
(
x, gj + duj

) −A
(
x, g + du

)
, dφ
〉

≤ β

∫

Ω

∣
∣(gj + duj

) − (g + du
)∣∣p−1∣∣dφ

∣
∣

≤ β
∥∥(gj + duj

) − (g + du
)∥∥p−1

p

∥∥dφ
∥∥
p

≤ β
∥∥dφ

∥∥
p

(∥∥gj − g
∥∥p−1
p

+
∥∥duj − du

∥∥p−1
p

)
−→ 0,

(3.31)

as j → ∞, that is, it holds

∫

Ω

〈
A
(
x, gj + duj

)
, dφ
〉 −→

∫

Ω

〈
A
(
x, g + du

)
, dφ
〉
, (3.32)

as j → ∞. On the other hand, an easy computation gives that

∫

Ω

〈
hj , dφ

〉 −→
∫

Ω

〈
h, dφ

〉
, (3.33)

as j → ∞. Therefore, we obtain

∫

Ω

〈
A
(
x, g + du

)
, dφ
〉
=
∫

Ω

〈
h, dφ

〉
, (3.34)

for all φ ∈ W
1,p
T (Ω,∧l−1), which implies the desired result.

3.3. Weak Reverse Hölder Inequality

In virtue of the fact that d∗(d∗) = 0, we can write (1.1) as the following:

A
(
x, g + du

)
= h + d∗v, (3.35)

for some v ∈ W1,q(Ω,∧l+1). For v in (3.35)we have

|d∗v| = ∣∣A(x, g + du
) − h

∣∣ ≤ β
∣∣g + du

∣∣p−1 + |h|, (3.36)
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thus, by using the Minkowski inequality and Proposition 3.2, we have the estimate

‖d∗v‖q ≤ c
(
p, α, β

)∥∥g
∥
∥p/q
p + ‖h‖q. (3.37)

For an arbitrary nonnegative test function η ∈ C∞
0 (Ω), we multiply (3.35) for ηp and

by the homogeneity assumption (3), and we obtain that

A
(
x, ηqg + ηqdu

)
= ηph + ηpd∗v. (3.38)

Since

ηqdu = d
(
ηqu
) − d

(
ηq) ∧ u,

ηpd∗v = d∗(ηpv
) − (−1)nl+1 � d(ηp) ∧ �v,

(3.39)

we have

A
(
x, ηqg − d

(
ηq) ∧ u + d

(
ηqu
))

= ηph − (−1)nl+1 � d(ηp) ∧ �v + d∗(ηpv
)
. (3.40)

Applying the operator d∗ to the above equation leads to a new nonhomogeneous A-harmonic
equation as follows:

d∗A
(
x, ηqg − d

(
ηq) ∧ u + d

(
ηqu
))

= d∗
(
ηph − (−1)nl+1 � d(ηp) ∧ �v

)
, (3.41)

where

ηqu ∈ W
1,p
0

(
Ω,∧l−1

)
,

ηqg − d
(
ηq) ∧ u ∈ Lp

(
Ω,∧l

)
,

ηph − (−1)nl+1 � d(ηp) ∧ �v ∈ W1,q
(
Ω,∧l+1

)
.

(3.42)

Then by applying Proposition 3.2 to (3.41)we have

∫

Ω

∣∣d
(
ηqu
)∣∣p ≤ c

(
p, α, β

)
(∫

Ω

∣∣ηqg − d
(
ηq) ∧ u

∣∣p

+
∫

Ω

∣∣∣ηph − (−1)nl+1 � d(ηp) ∧ �v
∣∣∣
q
)
,

(3.43)



14 Abstract and Applied Analysis

which implies

∫

Ω

∣
∣ηqdu

∣
∣p =

∫

Ω

∣
∣d
(
ηqu
) − d

(
ηq) ∧ u

∣
∣p

≤ 2p
∫

Ω

∣
∣d
(
ηq) ∧ u

∣
∣p + 2p

∫

Ω

∣
∣d
(
ηqu
)∣∣p

≤ 2p
∫

Ω

∣
∣d
(
ηq) ∧ u

∣
∣p + c

(
p, α, β

)
(∫

Ω

∣
∣ηqg

∣
∣p

+
∫

Ω

∣
∣d
(
ηq) ∧ u

∣
∣p +

∫

Ω

∣
∣ηph

∣
∣q

+
∫

Ω

∣
∣d
(
ηp)∣∣q|v|q

)
.

(3.44)

Therefore, we obtain

∫

Ω
ηp+q|du|p ≤ c

(
p, α, β

)
(∫

Ω
|u|p∣∣d(ηq)∣∣p +

∫

Ω
ηp+q(∣∣g

∣∣p + |h|q)

+
∫

Ω
|v|q∣∣d(ηp)∣∣q

)
.

(3.45)

For an arbitrary cube Q ⊂ R
n, we can choose a cut-off function η ∈ C∞

0 (2Q) such that 0 ≤ η ≤
1, |∇η| ≤ c(n)|Q|−1/n and η ≡ 1 on Q, where |Q| denotes the Lebesgue measure of Q. Now
inequality (3.45) yields

∫

Q

|du|p ≤ c
(
n, p, α, β

)
(

1

|Q|p/n
∫

2Q
|u|p + 1

|Q|q/n
∫

2Q
|v|q +

∫

2Q

(∣∣g
∣∣p + |h|q)

)

(3.46)

Note that (3.35) is not affected if a closed form u0 is subtracted from u and a coclosed
form v0 is subtracted from v. Therefore, the above calculation shows

∫

Q

|du|p ≤ c
(
n, p, α, β

)
(

1

|Q|p/n
∫

2Q
|u − u0|p+ 1

|Q|q/n
∫

2Q
|v − v0|q +

∫

2Q

(∣∣g
∣∣p + |h|q)

)

. (3.47)

Now, a Poincaré-Sobolev inequality for differential forms is needed.
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Lemma 3.9 (see [2]). Let Q be a cube in R
n. Suppose that ξ ∈ W1,r(Q,∧l) and ζ ∈ W1,s(Ω,∧l),

where 1 < r, s < n. Then there exist a closed form ξ0 ∈ Lr(Q,∧l) and a coclosed form ζ∗0 ∈ Ls(Q,∧l)
such that

‖ξ − ξ0‖nr/(n−r) ≤ c(n, r)‖dξ‖r ,
∥
∥ζ − ζ∗0

∥
∥
ns/(n−s) ≤ c(n, s)‖d∗ζ‖s.

(3.48)

As a consequence of Lemma 3.9, we obtain the following by proceeding as in the proof
of Corollary 3 in [5].

Corollary 3.10. Let Q be a cube in R
n. Suppose that ξ ∈ W1,r(Q,∧l) and ζ ∈ W1,s(Ω,∧l), where

1 < r, s < ∞. Then there exist a closed form ξ0 ∈ Lr(Q,∧l) and a coclosed form ζ∗0 ∈ Ls(Q,∧l) such
that

1
diam(Q)

(

−
∫

Q

|ξ − ξ0|r
)1/r

≤ c(n, r)

(

−
∫

Q

|dξ|nr/(n+r−1)
)(n+r−1)/nr

, (3.49)

1
diam(Q)

(

−
∫

Q

∣∣ζ − ζ∗0
∣∣s
)1/s

≤ c(n, s)

(

−
∫

Q

|d∗ζ|ns/(n+s−1)
)(n+s−1)/ns

, (3.50)

where −
∫
Q denotes the integral mean over Q, that is,

−
∫

Q

=
1
|Q|
∫

Q

. (3.51)

It follows from (3.49) that

∫

2Q
|u − u0|pdx ≤ c

(
n, p
)|Q|1/n

(∫

2Q
|du|np/(n+p−1)dx

)(n+p−1)/n
, (3.52)

and we have by (3.50), Hölder inequality, and (3.37) that

‖v − v0‖q;2Q ≤ c
(
n, p
)|Q|1/nq‖d∗v‖nq/(n+q−1) ;2Q

≤ c
(
n, p
)|Q|1/nq|2Q|(n+q−1)/nq−1/q‖d∗v‖q;2Q

≤ c
(
n, p, α, β

)|Q|1/n
(∥∥g
∥∥p/q
p;2Q + ‖h‖q;2Q

)
.

(3.53)

Combining (3.52) and (3.53)with (3.47), we obtain that

∫

Q

|du|p ≤ c
(
n, p, α, β

)
⎛

⎝|Q|(1−p)/n
(∫

2Q
|du|np/(n+p−1)

)(n+p−1)/n
+
∫

2Q

(∣∣g
∣∣p + |h|q)

⎞

⎠. (3.54)
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Therefore, we obtain that

−
∫

Q

|du|p ≤ c
(
n, p, α, β

)
⎛

⎝
(

−
∫

2Q
|du|np/(n+p−1)

)(n+p−1)/n
+ −
∫

2Q

(∣∣g
∣
∣p + |h|q)

⎞

⎠. (3.55)

This is the desired estimate.
In conclusion, we summarize the above results in the following theorem.

Theorem 3.11. For (p, q) a Hölder conjugate pair. Given (g, h) ∈ Lp(Ω,∧l) ×W1,q(Ω,∧l), suppose
that u ∈ W

1,p
T (Ω,∧l−1) is a solution of (1.6). Then one has

−
∫

Q

|du|p ≤ c
(
n, p, α, β

)
⎛

⎝
(

−
∫

2Q
|du|np/(n+p−1)

)(n+p−1)/n
+ −
∫

2Q

(∣∣g
∣
∣p + |h|q)

⎞

⎠, (3.56)

where −
∫
Q denotes the integral mean over Q, that is,

−
∫

Q

=
1
|Q|
∫

Q

. (3.57)
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