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We introduce new iterative algorithms with perturbations for finding a common element of the
set of solutions of the system of generalized equilibrium problems and the set of common fixed
points of two quasi-nonexpansive mappings in a Hilbert space. Under suitable conditions, strong
convergence theorems are obtained. Furthermore, we also consider the iterative algorithms with
perturbations for finding a common element of the solution set of the systems of generalized
equilibrium problems and the common fixed point set of the super hybrid mappings in Hilbert
spaces.

1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖ and C a nonempty closed
convex subset ofH and let T be a mapping of C intoH. Then, T : C → H is said to be nonex-
pansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. A mapping T : C → H is said to be quasi-
nonexpansive if ‖Tx − y‖ ≤ ‖x − y‖ for all x ∈ C and y ∈ F(T) := {x ∈ C : Tx = x}. It is well
known that the set F(T) of fixed points of a quasi-nonexpansive mapping T is closed and con-
vex; see Itoh and Takahashi [1]. A mapping T : C → H is called nonspreading [2] if

2
∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥Tx − y
∥
∥
2 +

∥
∥Ty − x

∥
∥
2
, (1.1)

for all x, y ∈ C. We remark that nonlinear every nonspreading mappings are quasi-nonexpan-
sive mappings if the set of fixed points is nonempty.
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Recall that a mapping Ψ : C → H is said to be μ-inverse strongly monotone if there
exists a positive real number μ such that

〈

Ψx −Ψy, x − y
〉 ≥ μ

∥
∥Ψx −Ψy

∥
∥
2
, ∀x, y ∈ C. (1.2)

If Ψ is a μ-inverse strongly monotone mapping of C into H, then it is obvious that Ψ is 1/μ-
Lipschitz continuous.

Let G : C × C → R be a bifuction and Ψ : C → H be μ-inverse strongly monotone
mapping. The generalized equilibrium problem (for short, GEP) for F and Ψ is to find z ∈ C
such that

G
(

z, y
)

+
〈

Ψz, y − z
〉 ≥ 0, ∀y ∈ C. (1.3)

The problem (1.3) was studied by Moudafi [3]. The set of solutions for problem (1.3) is
denoted by GEP(F,Ψ), that is,

GEP(F,Ψ) =
{

z ∈ C : G
(

z, y
)

+
〈

Ψz, y − z
〉 ≥ 0, ∀y ∈ C

}

. (1.4)

If Ψ ≡ 0 in (1.3), then GEP reduces to the classical equilibrium problem and GEP(G, 0) is
denoted by EP(G), that is,

EP(G) =
{

z ∈ C : G
(

z, y
) ≥ 0, ∀y ∈ C

}

. (1.5)

If G ≡ 0 in (1.3), then GEP reduces to the classical variational inequality and GEP(0,Ψ) is
denoted by VI(Ψ, C), that is,

VI(Ψ, C) =
{

z ∈ C :
〈

Ψz, y − z
〉 ≥ 0, ∀y ∈ C

}

. (1.6)

The problem (1.3) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities, Min–Max problems, the Nash equilibrium problems in
noncooperative games, and others; see, for example, Blum and Oettli [4] and Moudafi [3].

In 2005, Combettes and Hirstoaga [5] introduced an iterative algorithm of finding the
best approximation to the initial data and proved a strong convergence theorem. In 2007,
by using the viscosity approximation method, S. Takahashi and W. Takahashi [6] introduced
another iterative scheme for finding a common element of the set of solutions of the equili-
brium problem and the set of fixed points of a nonexpansive mapping. Subsequently, algo-
rithms constructed for solving the equilibrium problems and fixed point problems have fur-
ther developed by some authors. In particular, Ceng and Yao [7] introduced an iterative
scheme for finding a common element of the set of solutions of the mixed equilibrium prob-
lem and the set of common fixed points of finitely many nonexpansive mappings. Mainge
and Moudafi [8] introduced an iterative algorithm for equilibrium problems and fixed point
problems. Wangkeeree [9] introduced a new iterative scheme for finding the common ele-
ment of the set of common fixed points of nonexpansive mappings, the set of solutions of an
equilibrium problem, and the set of solutions of the variational inequality. Wangkeeree and
Kamraksa [10] introduced an iterative algorithm for finding a common element of the set
of solutions of a mixed equilibrium problem, the set of fixed points of an infinite family of
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nonexpansive mappings and the set of solutions of a general system of variational inequal-
ities for a cocoercive mapping in a real Hilbert space. Their results extend and improve many
results in the literature.

In 1967, Wittmann [11] (see also [12]) proved the strong convergence theorem of
Halpern’s type [13] {xn} defined by, for any x1 = x ∈ C,

xn+1 = αnx + (1 − αn)Txn, ∀n ∈ N, (1.7)

where {αn} ⊂ (0, 1) satisfies limn→∞αn = 0,
∑∞

n=1 αn = ∞, and
∑∞

n=1 |αn − αn+1| < ∞. In [14],
Kurokawa and Takahashi also studied the following Halpern’s type for nonspreading
mappings in a Hilbert space; see also Hojo and Takahashi [15]. Let T be a nonspreading map-
ping of C into itself. Let u ∈ C and define two sequences {xn} and {zn} in C as follows: x1 =
x ∈ C and

xn+1 = αnu + (1 − αn)zn, where zn =
1
n

n−1∑

k=0

Tkxn (1.8)

for all n = 1, 2, . . ., where {αn} ⊂ (0, 1), limn→∞αn = 0 and
∑∞

n=1 αn = ∞. If F(T) is non-
empty, they proved that {xn} and {zn} converge strongly to PF(T)u, where PF(T) is the metric
projection of H onto F(T). Recently, Yao and Shahzad [16] gave the following iteration pro-
cess for nonexpansive mappings with perturbation: x1 ∈ C and

xn+1 =
(

1 − βn
)

xn + βnPC(αnun + (1 − αn)Txn), ∀n ∈ N, (1.9)

where {αn} and {βn} are sequences in [0, 1], and the sequence {un} ⊆ H is a small pertur-
bation for the n-step iteration satisfying ‖un‖ → 0 as n → ∞. In fact, there are perturbations
always occurring in the iterative processes because the manipulations are inaccurate.

On the other hand, very recently, Chuang et al. [17] considered the following iteration
process for finding a common element of the set of solutions of the equilibrium problem and
the set of common fixed points for a quasi-nonexpansive mapping T : C → H with perturba-
tion

q1 ∈ H,

xn ∈ C, such that G
(

xn, y
)

+
1
rn

〈

y − xn, xn − qn
〉 ≥ 0, ∀y ∈ C,

yn = βnxn +
(

1 − βn
)

Txn,

qn+1 = αnun + (1 − αn)yn, ∀n ∈ N,

(1.10)

where C is a nonempty closed convex subset ofH,G : C×C → R is a function, {αn} and {βn}
are real sequences in (0, 1), and {un} ⊂ H is a convergent sequence and {rn} ⊂ [a,∞) for some
a > 0. They obtained a strong convergence theorem for such iterations.

In this paper, inspired and motivated by Yao and Shahzad [16], S. Takahashi and
W. Takahashi [18] and Chuang et al. [17], we introduce a new iterative algorithms with
perturbations for finding a common element of the set of solutions of the system of gener-
alized equilibrium problems and the set of common fixed points of two quasi-nonexpansive
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mappings in a Hilbert space. Under suitable conditions, strong convergence theorems are
obtained. Furthermore, we also consider the iterative algorithms with perturbations for find-
ing a common element of the solution set of the system of generalized equilibrium problems
and the common fixed point set of the super hybrid mappings in a Hilbert space.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We denote the strongly
convergence and the weak convergence of {xn} to x ∈ H by xn → x and xn ⇀ x, respectively.
In a Hilbert space, it is known that

∥
∥λx + (1 − λ)y

∥
∥
2 = λ‖x‖2 + (1 − λ)

∥
∥y

∥
∥
2 − λ(1 − λ)

∥
∥x − y

∥
∥
2
, (2.1)

for all x, y ∈ H and λ ∈ R; see [19]. Furthermore, we have that for any x, y, u, v ∈ H

2
〈

x − y, u − v
〉

= ‖x − v‖2 + ∥
∥y − u

∥
∥
2 − ‖x − u‖2 − ∥

∥y − v
∥
∥
2
. (2.2)

Let C be a nonempty closed convex subset of H and x ∈ H. We know that there exists a
unique nearest point z ∈ C such that ‖x−z‖ = infy∈C‖x−y‖. We denote such a correspondence
by z = PCx. The mapping PC is called the metric projection of H onto C. It is known that PC

is nonexpansive and

〈x − PCx, PCx − u〉 ≥ 0; (2.3)

for all x ∈ H and u ∈ C; see [19, 20] for more details.
Let C be a nonempty, closed and convex subset of H and let G : C × C → R be a

bifunction. For solving the generalized equilibrium problem, let us assume that the bifunction
G : C × C → R satisfies the following conditions:

(A1) G(x, x) = 0 for a ll x ∈ C;

(A2) G is monotone, that is, G(x, y) +G(y, x) ≤ 0 for any x, y ∈ C;

(A3) for each x, y, z ∈ C

lim
t↓0

G
(

tz + (1 − t)x, y
) ≤ G

(

x, y
)

; (2.4)

(A4) for each x ∈ C, G(x, ·) is convex and lower semicontinuous.

We know the following lemma which appears implicitly in Blum and Oettli [4].

Lemma 2.1 (see [4]). Let C be a nonempty closed convex subset of H and let G be a bifunction of
C×C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists a unique z ∈ C such that

G
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C. (2.5)

The following lemma was also given in Combettes and Hirstoaga [5].
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Lemma 2.2 (see [5]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
G : C × C → R be a bifunction which satisfies conditions (A1)–(A4). For r > 0 and x ∈ H, define a
mapping Tr : H → C as follows:

Tr(x) =
{

z ∈ C : G
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C

}

(2.6)

for all x ∈ H. Then the following hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, that is, for any x, y ∈ C,

∥
∥Trx − Try

∥
∥
2 ≤ 〈

Trx − Try, x − y
〉

; (2.7)

(iii) (EP) is a closed convex subset of C;

(iv) F(Tr) = EP(G).

Remark 2.3. For any x ∈ H and r > 0, by Lemma 2.2 (i), there exists u ∈ H such that

G
(

u, y
)

+
1
r

〈

y − u, u − x
〉 ≥ 0, ∀y ∈ H. (2.8)

Replacing x with x − rΨx ∈ H in (2.8), we have

G
(

u, y
)

+
〈

Ψx, y − u
〉

+
1
r

〈

y − u, u − x
〉 ≥ 0, ∀y ∈ H, (2.9)

where Ψ : H → H is an inverse strongly monotone mapping.

Lemma 2.4 (see [21]). Let {Γn} be a sequence of real numbers that does not decrease at infinity in
the sense that there exists a subsequence {Γni} of {Γn} which satisfies Γni < Γni+1 for all i ∈ N. Define
the sequence {τ(n)}n≥n0

of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1}, (2.10)

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1}/= ∅. Then, the following hold:

(i) τ(1) ≤ τ(2) ≤ · · · and τ(n) → ∞;

(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ∈ N.

Lemma 2.5 (see [22]). Let {an}n∈N
be a sequence of nonnegative real numbers, {αn} a sequence

of real numbers in [0, 1] with
∑∞

n=1 αn = ∞, {un} a sequence of nonnegative real numbers with
∑∞

n=1 un < ∞, {tn} a sequence of real numbers with lim sup tn ≤ 0. Suppose that

an+1 ≤ (1 − αn)an + αntn + un, ∀n ∈ N. (2.11)

Then limn→∞an = 0.
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3. Main Results

Let C be a nonempty closed convex subset of a Hilbert space H. For each i = 1, 2, . . . , k, let
Gi : C × C → R be a bifunction satisfying (A1)–(A4) and Ψi a μi-inverse strongly monotone
mapping. For each j = 1, 2, let Tj : C → H be two mappings. Let {xn} be a sequence
generated in the following manner:

x1 ∈ H,

G1
(

un,1, y
)

+
〈

Ψ1xn, y − un,1
〉

+
1
rn

〈

y − un,1, un,1 − xn

〉 ≥ 0, ∀y ∈ C,

G2
(

un,2, y
)

+
〈

Ψ2xn, y − un,2
〉

+
1
rn

〈

y − un,2, un,2 − xn

〉 ≥ 0, ∀y ∈ C,

...

Gk

(

un,k, y
)

+
〈

Ψkxn, y − un,k

〉

+
1
rn

〈

y − un,k, un,k − xn

〉 ≥ 0, ∀y ∈ C,

ωn =
1
k

k∑

i=1

un,i,

yn = γnωn +
(

1 − γn
)

T1ωn,

zn = βnyn +
(

1 − βn
)

T2ωn,

xn+1 = αnun + (1 − αn)zn, ∀n ∈ N,

(3.1)

where {αn}, {βn}, {γn} are sequences in (0, 1) and {un} ⊂ H is a sequence and {rn} ⊂ [a, 2μi)
for some a > 0 and for all i ∈ {1, 2, . . . , k}. Under certain appropriate assumptions imposed
on the sequences {αn}, {βn}, {γn}, the strong convergence theorem of {xn} defined by (3.1) is
studied in the following theorem.

Theorem 3.1. LetC be a nonempty closed convex subset of a Hilbert spaceH. For each i = 1, 2, . . . , k,
let Gi : C × C → R be a bifunction satisfying (A1)–(A4) and Ψi a μi-inverse strongly monotone
mapping. For each j = 1, 2, let Tj : C → H be two quasi-nonexpansive mappings such that I − Tj are
demiclosed at zero withΩ := F(T1)∩F(T2)∩(∩k

i=1 GEP(Gi,Ψi))/= ∅. Let the sequences {xn},{yn}, and
{zn} be defined by (3.1), where {αn}, {βn}, {γn}, and {un} satisfy the following conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) lim infn→∞βn(1 − βn) > 0;

(C3) lim infn→∞γn(1 − γn) > 0;

(C4) limn→∞un = u for some u ∈ H.

Then {xn} converges strongly to x∗, where x∗ = PΩu.



Abstract and Applied Analysis 7

Proof. We first have that for all i = 1, 2, . . . , k, I − rnΨi is a nonexpansive mapping. Indeed, for
all x, y ∈ C, we obtain

∥
∥(I − rnΨi)x − (I − rnΨi)y

∥
∥
2 =

∥
∥
(

x − y
) − rn

(

Ψix −Ψiy
)∥
∥
2

=
∥
∥x − y

∥
∥
2 − 2rn

〈

Ψix −Ψiy, x − y
〉

+ r2n
∥
∥Ψix −Ψiy

∥
∥
2

≤ ∥
∥x − y

∥
∥
2 − rn

(

2μi − rn
)∥
∥Ψix −Ψiy

∥
∥
2

≤ ∥
∥x − y

∥
∥
2
.

(3.2)

Thus I − rnΨi is nonexpansive for each i ∈ {1, 2, . . . , k}. Now, let w ∈ Ω be arbitrary. By (C4),
{un} is a bounded sequence, there exists M ≤ 0 such that

sup
n∈N

‖un −w‖ ≤ M. (3.3)

For each i = 1, 2, . . . , k and n ∈ N, we have from un,i = Trn,i(xn − rnΨixn) that

‖un,i −w‖ =
∥
∥Trn,i(xn − rnΨixn) − Trn,i(w − rnΨiw)

∥
∥

≤ ‖(xn − rnΨixn) − (w − rnΨiw)‖
≤ ‖xn −w‖,

(3.4)

which gives also that

‖ωn −w‖ ≤ 1
k

k∑

i=1

‖un,i −w‖ ≤ ‖xn −w‖ ∀w ∈ Ω. (3.5)

Since T1 is quasi-nonexpansive, we have
∥
∥yn −w

∥
∥ =

∥
∥γnωn +

(

1 − γn
)

T1ωn −w
∥
∥

=
∥
∥γn(ωn −w) +

(

1 − γn
)

(T1ωn −w)
∥
∥

≤ γn‖ωn −w‖ + (

1 − γn
)‖T1ωn −w‖

≤ ‖ωn −w‖.

(3.6)

So, we have from (3.5) and (3.6) and the quasi-nonexpansiveness of T2 that

‖xn+1 −w‖ = ‖αn(un −w) + (1 − αn)(zn −w)‖
≤ αn‖un −w‖ + (1 − αn)‖zn −w‖
≤ αn‖un −w‖ + (1 − αn)

{

βn
∥
∥yn −w

∥
∥ +

(

1 − βn
)‖T2ωn −w‖}

≤ αn‖un −w‖ + (1 − αn)
{

βn‖ωn −w‖ + (

1 − βn
)‖ωn −w‖}

≤ αn‖un −w‖ + (1 − αn)‖ωn −w‖
≤ αn‖un −w‖ + (1 − αn)‖xn −w‖
≤ max{M, ‖xn −w‖}.

(3.7)
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By Induction, we have that

‖xn −w‖ ≤ max{‖x1 −w‖,M}, ∀n ∈ N. (3.8)

Thus we obtain that {‖xn−w‖} is bounded, so also {xn}, {yn}, {zn}, {ωn}, {T1ωn}, and {T2ωn}
are bounded. Since Ω is closed and convex, we can take x∗ = PΩu. It follows that

∥
∥yn − x∗∥∥2 =

∥
∥γn(ωn − x∗) +

(

1 − γn
)

(T1ωn − x∗)
∥
∥
2

= γn‖ωn − x∗‖2 + (

1 − γn
)‖T1ωn − x∗‖2 − γn

(

1 − γn
)‖ωn − T1ωn‖2

≤ γn‖ωn − x∗‖2 + (

1 − γn
)‖ωn − x∗‖2 − γn

(

1 − γn
)‖ωn − T1ωn‖2

= ‖ωn − x∗‖2 − γn
(

1 − γn
)‖ωn − T1ωn‖2

≤ ‖ωn − x∗‖2.

(3.9)

From (3.9), we have

‖zn − x∗‖2 = ∥
∥βn

(

yn − x∗) +
(

1 − βn
)

(T2ωn − x∗)
∥
∥
2

= βn
∥
∥yn − x∗∥∥2 +

(

1 − βn
)‖T2ωn − x∗‖2 − βn

(

1 − βn
)∥
∥yn − T2ωn

∥
∥
2

≤ βn‖ωn − x∗‖2 + (

1 − βn
)‖ωn − x∗‖2 − βn

(

1 − βn
)∥
∥yn − T2ωn

∥
∥
2

= ‖ωn − x∗‖2 − βn
(

1 − βn
)∥
∥yn − T2ωn

∥
∥
2

≤ ‖ωn − x∗‖2.

(3.10)

Hence we have from (3.5), (3.9), and (3.10) that

‖ωn+1 − x∗‖2 ≤ ‖xn+1 − x∗‖2

= ‖αn(un − x∗) + (1 − αn)(zn − x∗)‖2

= αn‖un − x∗‖2 + (1 − αn)‖zn − x∗‖2 − αn(1 − αn)‖un − zn‖2

≤ αn‖un − x∗‖2 + (1 − αn)‖zn − x∗‖2

= αn‖un − x∗‖2 + (1 − αn)
{

βn
∥
∥yn − x∗∥∥2 +

(

1 − βn
)‖T2ωn − x∗‖2

− βn
(

1 − βn
)∥
∥yn − T2ωn

∥
∥
2
}

≤ αn‖un − x∗‖2 + βn
{

γn‖ωn − x∗‖2 + (

1 − γn
)‖T1ωn − x∗‖2

− γn
(

1 − γn
)‖ωn − T1ωn‖2

}

+
(

1 − βn
)‖T2ωn − x∗‖2

− βn
(

1 − βn
)∥
∥yn − T2ωn

∥
∥
2
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≤ αn‖un − x∗‖2 + βn
(

γn‖ωn − x∗‖2 + (

1 − γn
)‖ωn − x∗‖2

− γn
(

1 − γn
)‖ωn − T1ωn‖2

)

+
(

1 − βn
)‖ωn − x∗‖2

− βn
(

1 − βn
)∥
∥yn − T2ωn

∥
∥
2

= αn‖un − x∗‖2 + ‖ωn − x∗‖2 − γn
(

1 − γn
)‖ωn − T1ωn‖2

− βn
(

1 − βn
)∥
∥yn − T2ωn

∥
∥
2
.

(3.11)

We also have that

γn
(

1 − γn
)‖ωn − T1ωn‖2 ≤ αn‖un − x∗‖2 + ‖ωn − x∗‖2 − ‖ωn+1 − x∗‖2, (3.12)

βn
(

1 − βn
)∥
∥yn − T2ωn

∥
∥
2 ≤ αn‖un − x∗‖2 + ‖ωn − x∗‖2 − ‖ωn+1 − x∗‖2. (3.13)

Furthemore, we have from yn = γnωn + (1 − γn)T1ωn that

‖ωn − T2ωn‖ ≤ ∥
∥ωn − yn

∥
∥ +

∥
∥yn − T2ωn

∥
∥

=
∥
∥ωn − γnωn −

(

1 − γn
)

T1ωn

∥
∥ +

∥
∥yn − T2xn

∥
∥

=
(

1 − γn
)‖ωn − T1ωn‖ +

∥
∥yn − T2ωn

∥
∥.

(3.14)

On the other hand, since xn+1 − x∗ = αn(un − x∗) + (1 − αn)(zn − x∗), we have

‖ωn+1 − x∗‖2 ≤ ‖xn+1 − x∗‖2

≤ (1 − αn)‖zn − x∗‖2 + 2αn〈un − x∗, xn+1 − x∗〉
≤ (1 − αn)‖ωn − x∗‖2 + 2αn〈un − x∗, xn+1 − x∗〉
= (1 − αn)‖ωn − x∗‖2 + 2αn〈un − u, xn+1 − x∗〉
+ 2αn〈u − x∗, xn+1 − x∗〉

= (1 − αn)‖ωn − x∗‖2 + 2αn〈un − u, xn+1 − x∗〉
+ 2αn〈u − x∗, xn+1 −ωn〉 + 2αn〈u − x∗, ωn − x∗〉.

(3.15)

We also have that

‖xn+1 −ωn‖ ≤ ∥
∥xn+1 − yn

∥
∥ +

∥
∥yn −ωn

∥
∥

=
∥
∥αn

(

un − yn

)

+ (1 − αn)
(

zn − yn

)∥
∥ +

∥
∥
(

1 − γn
)

(ωn − T1ωn)
∥
∥

≤ αn

∥
∥un − yn

∥
∥ + (1 − αn)

∥
∥βnyn +

(

1 − βn
)

T2ωn − yn

∥
∥

+
(

1 − γn
)‖ωn − T1ωn‖

= αn

∥
∥un − yn

∥
∥ + (1 − αn)

(

1 − βn
)∥
∥yn − T2ωn

∥
∥

+
(

1 − γn
)‖ωn − T1ωn‖.

(3.16)
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Moreover, for any i ∈ {1, 2, . . . , k}, we have from un,i = Trn,i(xn − rnΨixn) that

‖un,i − x∗‖2 ≤ ‖(xn − x∗) − rn(Ψixn −Ψix
∗)‖2

= ‖xn − x∗‖2 − 2rn〈xn − x∗,Ψixn −Ψix
∗〉 + r2n‖Ψixn −Ψix

∗‖2

≤ ‖xn − x∗‖2 − rn
(

2μi − rn
)‖Ψixn −Ψix

∗‖2.
(3.17)

It follows that

‖ωn − x∗‖2 =
∥
∥
∥
∥
∥

k∑

i=1

1
k
(un,i − x∗)

∥
∥
∥
∥
∥

2

≤ 1
k

k∑

i=1

‖un,i − x∗‖2

≤ ‖xn − x∗‖2 − 1
k

k∑

i=1

rn
(

2μi − rn
)‖Ψixn −Ψix

∗‖2.

(3.18)

This implies that

‖xn+1 − x∗‖2 = ‖αn(un − x∗) + (1 − αn)(zn − x∗)‖2

≤ αn‖un − x∗‖2 + (1 − αn)‖ωn − x∗‖2

≤ αn‖un − x∗‖2 + (1 − αn)‖xn − x∗‖2

− (1 − αn)
1
k

k∑

i=1

rn
(

2μi − rn
)‖Ψixn −Ψix

∗‖2,

(3.19)

and hence

(1 − αn)
1
k

k∑

i=1

rn
(

2μi − rn
)‖Ψixn −Ψix

∗‖2 ≤ αn‖un − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (3.20)

Furthermore, we have from Lemma 2.2 that for any i ∈ 1, 2, . . . , k, we have

‖un,i − x∗‖2 ≤ 〈(xn − rnΨixn) − (x∗ − rnΨix
∗), un,i − x∗〉

=
1
2

{

‖(xn − rnΨixn) − (x∗ − rnΨix
∗)‖2 + ‖un,i − x∗‖2

− ‖(xn − rnΨixn) − (x∗ − rnΨix
∗) − (un,i − x∗)‖2

}

≤ 1
2

{

‖xn − x∗‖2 + ‖un,i − x∗‖2 − ‖(xn − un,i) − rn(Ψixn −Ψix
∗)‖2

}

=
1
2

{

‖xn − x∗‖2 + ‖un,i − x∗‖2 − ‖xn − un,i‖2 − r2n‖Ψixn −Ψix
∗‖2

+ 2rn〈xn − un,i, Ψixn −Ψix
∗〉
}

.

(3.21)
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This implies that

‖un,i − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − un,i‖2 + 2rn‖xn − un,i‖‖Ψixn −Ψix
∗‖. (3.22)

Then we have from (3.22) that

‖ωn − x∗‖2 ≤ 1
k

k∑

i=1

‖un,i − x∗‖2

≤ ‖xn − x∗‖2 − 1
k

k∑

i=1

‖un,i − xn‖2

+
1
k

k∑

i=1

2rn‖xn − un,i‖‖Ψixn −Ψix
∗‖.

(3.23)

Hence we have from (3.23) that

‖xn+1 − x∗‖2 ≤ αn‖un − x∗‖2 + (1 − αn)‖ωn − x∗‖2

≤ αn‖un − x∗‖2 + (1 − αn)

(

‖xn − x∗‖2 − 1
k

k∑

i=1

‖un,i − xn‖2
)

+ (1 − αn)

(

1
k

k∑

i=1

2rn‖xn − un,i‖‖Ψixn −Ψix
∗‖
)

.

(3.24)

It follows that

(1 − αn)
1
k

k∑

i=1

‖un,i − xn‖2 ≤ αn‖un − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+ (1 − αn)

(

1
k

k∑

i=1

2rn‖xn − un,i‖‖Ψixn −Ψix
∗‖
)

.

(3.25)

Next, we will consider the following two cases.

Case A. Put Γn = ‖ωn − x∗‖2 for all n ∈ N. Suppose that Γn+1 ≤ Γn for all n ∈ N. In this case
limn→∞Γn exists and then limn→∞(Γn+1 − Γn) = 0. By (C1), (C3), and (3.12), we have

lim
n→∞

‖ωn − T1ωn‖ = 0. (3.26)

Similarly by (C1), (C2), and (3.13), we also have

lim
n→∞

∥
∥yn − T2ωn

∥
∥ = 0. (3.27)
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So, we have from (3.14), (3.26), and (3.27) that

lim
n→∞

‖ωn − T2ωn‖ = 0. (3.28)

Since limn→∞‖ωn − x∗‖ exists, we have from (3.11) and (3.26)

lim
n→∞

‖ωn − x∗‖ = lim
n→∞

‖xn − x∗‖. (3.29)

We also have from (C1), (3.16), (3.26), and (3.27) that

lim
n→∞

‖xn+1 −ωn‖ = 0. (3.30)

Since limn→∞‖xn − x∗‖ exists we have from (C1) and (3.20) that

lim
n→∞

‖Ψixn −Ψix
∗‖ = 0, ∀i = 1, 2, . . . , k. (3.31)

This together with (3.25) and the existence of limn→∞‖xn − x∗‖ implies that

lim
n→∞

‖un,i − xn‖ = 0, ∀i = 1, 2, . . . , k, (3.32)

which gives that

‖ωn − xn‖ ≤ 1
k

k∑

i=1

‖un,i − xn‖ −→ 0 as n −→ ∞. (3.33)

So, from (3.30), limn→∞‖xn+1 − xn‖ = 0. Furthermore, we have from (3.33) that

‖ωn+1 −ωn‖ ≤ ‖ωn+1 − xn+1‖ + ‖xn+1 − xn‖ + ‖xn −ωn‖ −→ 0 as n −→ ∞; (3.34)

that is

lim
n→∞

‖ωn+1 −ωn‖ = 0. (3.35)

Now, since {ωn} is a bounded sequence, there exists a subsequence {ωnj} of {ωn} such that

lim sup
n→∞

〈u − x∗, ωn − x∗〉 = lim
j→∞

〈

u − x∗, ωnj − x∗
〉

. (3.36)

Without loss of generality, we may assume that ωnj ⇀ v. Since T1 is demiclosed at zero and
by (3.26), we conclude that v ∈ F(T1). Similarly, since T2 is demiclosed at zero and by (3.28),
we have v ∈ F(T2). Therefore, we get that

v ∈ F(T1) ∩ F(T2). (3.37)
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Next, we show that v ∈ ∩k
i=1 GEP(Gi,Ψi). For each i ∈ {1, 2, . . . , k}, since un,i = Trn,i(xn −

rnΨixn), we have

Gi

(

un,i, y
)

+
〈

Ψixn, y − un,i

〉

+
1
rn

〈

y − un,i, un,i − xn

〉 ≥ 0, ∀y ∈ C. (3.38)

From (A2), we also have

〈

Ψixn, y − un,i

〉

+
1
rn

〈

y − un,i, un,i − xn

〉 ≥ Gi

(

y, un,i

)

. (3.39)

Replacing n by nj , we have

〈

Ψixnj , y − unj ,i

〉

+

〈

y − unj ,i,
unj ,i − xnj

rnj

〉

≥ Gi

(

y, unj ,i

)

. (3.40)

Put yt = ty + (1 − t)v for all t ∈ (0, 1] and y ∈ C. Since v ∈ C, then yt ∈ C and

〈

yt − unj ,i,Ψiyt

〉

≥
〈

yt − unj ,i,Ψiyt

〉

−
〈

yt − unj ,i,Ψixnj

〉

−
〈

yt − unj ,i,
unj ,i − xnj

rnj

〉

+Gi

(

yt, unj ,i

)

=
〈

yt − unj ,i,Ψiyt −Ψiunj ,i

〉

+
〈

yt − unj ,i,Ψiunj ,i −Ψixnj

〉

−
〈

yt − unj ,i,
unj ,i − xnj

rnj

〉

+Gi

(

yt, unj ,i

)

.

(3.41)

Since ‖unj ,i−xnj‖ → 0 as j → ∞, we obtain that ‖Ψiunj ,i−Ψixnj‖ → 0 as j → ∞. Furthermore,
by the monotonicity of Ψi, we obtain that

〈

yt − unj ,i,Ψiyt −Ψiunj ,i

〉

≥ 0. (3.42)

Taking j → ∞ in (3.41), we have from (A4) that

〈

yt − v,Ψiyt

〉 ≥ Gi

(

yt, v
)

. (3.43)

Now, from (A1), (A4), and (3.43), we also have

0 = Gi

(

yt, yt

) ≤ tGi

(

yt, y
)

+ (1 − t)Gi

(

yt, v
)

≤ tGi

(

yt, y
)

+ (1 − t)
〈

yt − v,Ψiyt

〉

= tGi

(

yt, y
)

+ (1 − t)t
〈

y − v,Ψiyt

〉

,

(3.44)
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which yields that

Gi

(

yt, y
)

+ (1 − t)
〈

y − v,Ψiyt

〉 ≥ 0. (3.45)

Taking t → 0, we have, for each y ∈ C

Gi

(

v, y
)

+
〈

y − v, Ψiv
〉 ≥ 0, ∀i ∈ {1, 2, . . . , k}. (3.46)

This shows v ∈ GEP(Gi,Ψi), for all i = 1, 2, . . . , k. Then, v ∈ ∩k
i=1 GEP(Gi,Ψi). Hence we have

v ∈ F(T1) ∩ F(T2) ∩ (∩k
i=1 GEP(Gi,Ψi)) := Ω. So, we have from (3.36) that

lim sup
n→∞

〈u − x∗, ωn − x∗〉 = 〈u − x∗, v − x∗〉 ≤ 0. (3.47)

By (C1), (C4), (3.15), (3.30), (3.47), and Lemma 2.5, we obtain that limn→∞‖ωn − x∗‖ = 0.
Hence we have from (3.29) that {xn} converges to x∗, where x∗ = PΩu.

Case B. Assume that there exists a subsequence {Γni}i≥0 of {Γn}n≥0 such that Γni < Γni+1 for all
i ∈ N. In this case, it follows from Lemma 2.4 that there exists a subsequence {Γτ(n)} of {Γn}
such that Γτ(n)+1 > Γτ(n), where τ : N → N is defined by

τ(n) = max{k ≤ n : Γk < Γk+1}, ∀n ∈ N. (3.48)

So, from (3.12), that

∥
∥ωτ(n)+1 − x∗∥∥2 − ∥

∥ωτ(n) − x∗∥∥2 + γτ(n)
(

1 − γτ(n)
)∥
∥ωτ(n) − T1ωτ(n)

∥
∥
2 ≤ ατ(n)

∥
∥uτ(n) − x∗∥∥2

.

(3.49)

Since ‖ωτ(n) − x∗‖2 := Γτ(n) < Γτ(n)+1 := ‖ωτ(n)+1 − x∗‖2, we have

γτ(n)
(

1 − γτ(n)
)∥
∥ωτ(n) − T1ωτ(n)

∥
∥
2 ≤ ατ(n)

∥
∥uτ(n) − x∗∥∥2

. (3.50)

By (C1) and (C3), we have

lim
n→∞

∥
∥ωτ(n) − T1ωτ(n)

∥
∥ = 0. (3.51)

By (3.15), we have

∥
∥ωτ(n)+1 − x∗∥∥2 ≤ (

1 − ατ(n)
)∥
∥ωτ(n) − x∗∥∥2 + 2ατ(n)

〈

uτ(n) − x∗, xτ(n)+1 − x∗〉. (3.52)
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Now, in view of Γτ(n) < Γτ(n)+1, we see that

∥
∥ωτ(n) − x∗∥∥2 ≤ 2

〈

uτ(n) − x∗, xτ(n)+1 − x∗〉

= 2
〈

uτ(n) − u, xτ(n)+1 − x∗〉 + 2
〈

u − x∗, xτ(n)+1 −ωτ(n)
〉

+ 2
〈

u − x∗, ωτ(n) − x∗〉.

(3.53)

Furthermore, we also have from (3.13) that

βτ(n)
(

1 − βτ(n)
)∥
∥yτ(n) − T2ωτ(n)

∥
∥
2 ≤ ατ(n)

∥
∥uτ(n) − x∗∥∥2 +

∥
∥ωτ(n) − x∗∥∥2

− ∥
∥ωτ(n)+1 − x∗∥∥2

≤ ατ(n)
∥
∥uτ(n) − x∗∥∥2

.

(3.54)

Applying (C1) and (C2) to the last inequality, we get that

lim
n→∞

∥
∥yτ(n) − T2ωτ(n)

∥
∥ = 0. (3.55)

By (C1), (3.16), (3.51), and (3.55), we have

lim
n→∞

∥
∥xτ(n)+1 −ωτ(n)

∥
∥ = 0. (3.56)

By (3.33), we have

lim
n→∞

∥
∥ωτ(n)+1 − xτ(n)+1

∥
∥ = 0. (3.57)

It follows from (3.56) and (3.57) that

lim
n→∞

∥
∥ωτ(n)+1 −ωτ(n)

∥
∥ = 0. (3.58)

Since {ωτ(n)} is a bounded sequence, there exists a subsequence {ωτ(nj )} such that

lim sup
n→∞

〈

u − x∗, ωτ(n) − x∗〉 = lim
j→∞

〈

u − x∗, ωτ(nj ) − x∗
〉

. (3.59)

Following the same argument as the proof of Case A for {ωτ(nj )}, we have that

lim sup
n→∞

〈

u − x∗, ωτ(n) − x∗〉 ≤ 0. (3.60)

Using (C4), (3.53), (3.56), and (3.60), we have that

lim
n→∞

∥
∥ωτ(n) − x∗∥∥ = 0. (3.61)
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By (3.58) and (3.61), we have that

lim
n→∞

∥
∥ωτ(n)+1 − x∗∥∥ = 0. (3.62)

By Lemma 2.4 (ii), we get limn→∞Γn = 0; that is limn→∞‖ωn − x∗‖ = 0. We observe that

‖xn+1 − x∗‖2 ≤ αn‖un − x∗‖2 + (1 − αn)‖ωn − x∗‖2. (3.63)

Applying (C1), (C4), and limn→∞‖ωn − x∗‖2 = 0, we have immediately

lim
n→∞

‖xn − x∗‖ = 0; (3.64)

that is, {xn} converges strongly to x∗, where x∗ = PΩu. This completes the proof.

Setting Ψi ≡ 0 for all i = 1, 2, . . . , k in Theorem 3.1, we obtain the following result.

Corollary 3.2. LetC be a nonempty closed convex subset of a Hilbert spaceH. For each i = 1, 2, . . . , k,
let Gi : C × C → R be a bifunction satisfying (A1)–(A4). For each j = 1, 2, let Tj : C → H be
two quasi-nonexpansive mappings such that I − Tj are demiclosed at zero with Ω := F(T1) ∩ F(T2) ∩
(∩k

i=1EP(Gi))/= ∅. Let the sequences {xn}, {yn}, and {zn} be defined by

x1 ∈ H,

G1
(

un,1, y
)

+
1
rn

〈

y − un,1, un,1 − xn

〉 ≥ 0, ∀y ∈ C,

G2
(

un,2, y
)

+
1
rn

〈

y − un,2, un,2 − xn

〉 ≥ 0, ∀y ∈ C,

...

Gk

(

un,k, y
)

+
1
rn

〈

y − un,k, un,k − xn

〉 ≥ 0, ∀y ∈ C,

ωn =
1
k

k∑

i=1

un,i,

yn = γnωn +
(

1 − γn
)

T1ωn,

zn = βnyn +
(

1 − βn
)

T2ωn,

xn+1 = αnun + (1 − αn)zn, ∀n ∈ N,

(3.65)

where {αn}, {βn}, {γn} satisfy the following conditions.
(C1) limn→∞αn = 0 and

∑∞
n=1 αn = ∞;

(C2) lim infn→∞βn(1 − βn) > 0;

(C3) lim infn→∞γn(1 − γn) > 0;

(C4) limn→∞un = u for some u ∈ H.
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Then {xn} converges strongly to x∗, where x∗ = PΩu.

In the next results, using Theorem 3.1, we have new strong convergence theorems for
two nonexpansive mappings in a Hilbert space.

Corollary 3.3. LetC be a nonempty closed convex subset of a Hilbert spaceH. For each i = 1, 2, . . . , k,
let Gi : C × C → R be a bifunction satisfying (A1)–(A4) and Ψi a μi-inverse strongly monotone
mapping. For each j = 1, 2, let Tj : C → H be two nonexpansive mappings such that Ω := F(T1) ∩
F(T2) ∩ (∩k

i=1GEP(Gi,Ψi))/= ∅. Let the sequences {xn}, {yn}, and {zn} be defined by (3.1), where
{αn}, {βn}, {γn} satisfy the following conditions.

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) lim infn→∞βn(1 − βn) > 0;

(C3) lim infn→∞γn(1 − γn) > 0;

(C4) limn→∞un = u for some u ∈ H.

Then {xn} converges strongly to x∗, where x∗ = PΩu.

4. Applications

In this section, we present some convergence theorems deduced from the results in the pre-
vious section. Recall that a mapping T : C → H is said to be nonspreading [2] if

2
∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥Tx − y
∥
∥
2 +

∥
∥Ty − x

∥
∥
2 (4.1)

for all x, y ∈ C. Further, a mapping T : C → H is said to be hybrid [23] if

3
∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 +

∥
∥Tx − y

∥
∥
2 +

∥
∥Ty − x

∥
∥
2 (4.2)

for all x, y ∈ C. These mappings are deduced from a firmly nonexpansive mapping in a Hil-
bert space.

A mapping F : C → H is said to be firmly nonexpansive if

∥
∥Fx − Fy

∥
∥
2 ≤ 〈

x − y, Fx − Fy
〉

(4.3)

for all x, y ∈ C; see, for instance, Browder [24] and Goebel and Kirk [25]. We also know that
a firmly nonexpansive mapping F can be deduced from an equilibrium problem in a Hilbert
space.

Recently, Kocourek et al. [26] introduced a more broad class of nonlinear mappings
call generalized hybrid if there are α, β ∈ R such that

α
∥
∥Tx − Ty

∥
∥
2 + (1 − α)

∥
∥x − Ty

∥
∥
2 ≤ β

∥
∥Tx − y

∥
∥
2 +

(

1 − β
)∥
∥x − y

∥
∥
2 (4.4)
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for all x, y ∈ C. Very recently, they defined a more broad class of mappings than the class of
generalized hybrid mappings in a Hilbert space. A mapping S : C → H is called super hybrid
if there are α, β, γ ∈ R such that

α
∥
∥Sx−Sy∥∥2+

(

1−α+γ)∥∥x−Sy∥∥2 ≤ (

β+
(

β−α)γ)∥∥Sx−y∥∥2+
(

1−β−(β−α−1)γ)∥∥x−y∥∥2

+
(

α − β
)

γ‖x − Sx‖2 + γ
∥
∥y − Sy

∥
∥
2
,

(4.5)

for all x, y ∈ C. We call such a mapping an (α, β, γ)-super hybrid mapping. We notice that an
(α, β, 0)-super hybridmapping is (α, β)-generalized hybrid. So, the class of super hybridmap-
pings contains the class of generalized hybrid mappings. A super hybrid mapping is not
quasi-nonexpansive generally. For more details, see [27]. Before proving, we need the
following lemmas.

Lemma 4.1 (see [27]). LetC be a nonempty subset of a Hilbert spaceH and let α, β and γ be real num-
bers with γ /= −1. Let S and T be mappings ofC intoH such that S = (1/(1+γ))T+(γ/(1+γ))I. Then,
T is (α, β, γ)-super hybrid if and only if S is (α, β)-generalized hybrid. In this case, F(S) = F(T).

Lemma 4.2 (see [27]). LetH be a Hilbert space and let C be a nonempty closed convex subset ofH.
Let S : C → H be a generalized hybrid mapping. Then S is demiclosed on C.

Setting Sj := (1/(1+γj))Tj+(γj/(1+γj))I in Theorem 3.1, where Tj is a super hybrid mapping
and γj is a real number, we obtain the following result.

Theorem 4.3. LetC be a nonempty closed convex subset of a Hilbert spaceH. For each i = 1, 2, . . . , k,
let Gi : C × C → R be a bifunction satisfying (A1)–(A4) and Ψi a μi-inverse strongly monotone
mapping. For each j = 1, 2, let Tj : C → H be (αj , βj , γj)-super hybrid mappings such that Ω :=
F(T1) ∩ F(T2) ∩ (∩k

i=1GEP(Gi,Ψi))/= ∅. Let the sequences {xn},{yn}, and {zn} be defined by

x1 ∈ H,

G1
(

un,1, y
)

+
〈

Ψ1xn, y − un,1
〉

+
1
rn

〈

y − un,1, un,1 − xn

〉 ≥ 0, ∀y ∈ C,

G2
(

un,2, y
)

+ 〈Ψ2xn, y − un,2〉 + 1
rn
〈y − un,2, un,2 − xn〉 ≥ 0, ∀y ∈ C,

...

Gk

(

un,k, y
)

+
〈

Ψkxn, y − un,k

〉

+
1
rn
〈y − un,k, un,k − xn〉 ≥ 0, ∀y ∈ C,

ωn =
1
k

k∑

i=1

un,i,

yn = γnωn +
(

1 − γn
)
(

1
1 + γ1

T1ωn +
γ1

1 + γ1
ωn

)

,

zn = βnyn +
(

1 − βn
)
(

1
1 + γ2

T2ωn +
γ2

1 + γ2
ωn

)

,

xn+1 = αnun + (1 − αn)zn, ∀n ∈ N,

(4.6)
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where {αn}, {βn}, {γn} are sequences in (0, 1) and {un} ⊂ H is a sequence and {rn} ⊂ [a, 2μi) for
some a > 0 and for all i ∈ {1, 2, . . . , k}. Suppose the following conditions are satisfied.

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) lim infn→∞βn(1 − βn) > 0;

(C3) lim infn→∞γn(1 − γn) > 0;

(C4) limn→∞un = u for some u ∈ H.

Then {xn} converges strongly to x∗, where x∗ = PΩu.

Proof. For each j = 1, 2, setting

Sj =
1

1 + γj
Tj +

γj

1 + γj
I, (4.7)

we have from Lemma 4.1 that each Sj is a generalized hybrid mapping and F(Sj) =
F(Tj). Since F(Sj)/= ∅, we have that each Sj is quasi-nonexpansive. Following the proof
of Theorem 3.1 and applying Lemma 4.2, we have the desired result. This completes the
proof.

Setting Ψ ≡ 0 in Theorem 4.3, we obtains the following result.

Corollary 4.4. LetC be a nonempty closed convex subset of a Hilbert spaceH. For each i = 1, 2, . . . , k,
let Gi : C × C → R be a bifunction satisfying (A1)–(A4). For each j = 1, 2, let Tj : C → H be
(αj , βj , γj)-super hybrid mappings such thatΩ := F(T1)∩F(T2)∩(∩k

i=1EP(Gi))/= ∅. Let the sequences
{xn},{yn}, and {zn} be defined by

x1 ∈ H,

G1
(

un,1, y
)

+
1
rn

〈

y − un,1, un,1 − xn

〉 ≥ 0, ∀y ∈ C,

G2
(

un,2, y
)

+
1
rn
〈y − un,2, un,2 − xn〉 ≥ 0, ∀y ∈ C,

...

Gk

(

un,k, y
)

+
1
rn

〈

y − un,k, un,k − xn

〉 ≥ 0, ∀y ∈ C,

ωn =
1
k

k∑

i=1

un,i,

yn = γnωn +
(

1 − γn
)
(

1
1 + γ1

T1ωn +
γ1

1 + γ1
ωn

)

,

zn = βnyn +
(

1 − βn
)
(

1
1 + γ2

T2ωn +
γ2

1 + γ2
ωn

)

,

xn+1 = αnun + (1 − αn)zn, ∀n ∈ N,

(4.8)
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where {αn}, {βn}, {γn} are sequences in (0, 1) and {un} ⊂ H is a sequence and {rn} ⊂ [a,∞) for
some a > 0. Suppose the following conditions are satisfied.

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) lim infn→∞βn(1 − βn) > 0;

(C3) lim infn→∞γn(1 − γn) > 0;

(C4) limn→∞un = u for some u ∈ H.

Then {xn} converges strongly to x∗, where x∗ = PΩu.

In Corollary 4.4, put Gi(x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N. Then we have
that un,i = xn for all i = 1, 2, . . . , k, which gives that ωn = (1/k)

∑k
i=1 un,i = xn. Thus we obtain

the following results from Corollary 4.4.

Corollary 4.5. Let C be a nonempty closed convex subset of a Hilbert space H. For each j = 1, 2, let
Tj : C → H be (αj , βj , γj)-super hybrid mappings such that F(T1) ∩ F(T2)/= ∅. Let the sequences
{xn},{yn}, and {zn} be defined by

x1 ∈ H,

yn = γnxn +
(

1 − γn
)
(

1
1 + γ1

T1xn +
γ1

1 + γ1
xn

)

,

zn = βnyn +
(

1 − βn
)
(

1
1 + γ2

T2xn +
γ2

1 + γ2
xn

)

,

xn+1 = αnun + (1 − αn)zn, ∀n ∈ N,

(4.9)

where {αn}, {βn}, {γn} are sequences in (0, 1) and {un} ⊂ H is a sequence. Suppose the following
conditions are satisfied.

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) lim infn→∞βn(1 − βn) > 0;

(C3) lim infn→∞γn(1 − γn) > 0;

(C4) limn→∞un = u for some u ∈ H.

Then {xn} converges strongly to x∗, where x∗ = PF(T1)∩F(T2)u.

In Corollary 4.5, put T1 = I, the identity mapping, and T2 := T , an (α, β, γ)-super hybrid
mapping. Thus we obtain the following results.

Corollary 4.6. Let C be a nonempty closed convex subset of a Hilbert space H. Let T be an (α, β, γ)-
super hybrid mapping such that F(T)/= ∅. Let the sequences {xn}, {yn}, and {zn} be defined by

x1 ∈ H, (4.10)

zn = βnxn +
(

1 − βn
)
(

1
1 + γ

Txn +
γ

1 + γ
xn

)

, (4.11)

xn+1 = αnun + (1 − αn)zn, ∀n ∈ N, (4.12)
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where {αn} and {βn} are sequences in (0, 1) and {un} ⊂ H is a sequence. Suppose the following con-
ditions are satisfied.

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) lim infn→∞βn(1 − βn) > 0;

(C3) limn→∞un = u for some u ∈ H.

Then {xn} converges strongly to x∗, where x∗ = PF(T)u.
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