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We propose a hybrid total-variation-type model for the image restoration problem based on
combining advantages of the ROF model with the LLT model. Since two L1-norm terms in the
proposed model make it difficultly solved by using some classically numerical methods directly,
we first employ the alternating direction method of multipliers (ADMM) to solve a general form
of the proposed model. Then, based on the ADMM and the Moreau-Yosida decomposition theory,
a more efficient method called the proximal point method (PPM) is proposed and the convergence
of the proposedmethod is proved. Some numerical results demonstrate the viability and efficiency
of the proposed model and methods.

1. Introduction

Image restoration is of momentous significance in coherent imaging systems and various
image processing applications. The goal is to recover the real image from the deteriorated
image, for example, image denoising, image deblurring, image inpainting, and so forth; see
[1–3] for details.

For the additive noisy image, many denoising models have been proposed based on
PDEs or variational methods over the last decades [1–3]. The essential idea for this class of
models is to filter out the noise in an image while preserving significant features such as
edges and textures. However, due to the ill-posedness of the restoration problem, we have to
employ some regularization methods [4] to overcome it. The general form of regularization
methods consists in minimizing an energy functional of the following form:

F(u) =
λ

2
‖u − u0‖2X + R(u) (1.1)
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in Banach space X, where λ is the regularization parameter, R, is a regularization term, u0

is the observed image, and u is the image to be restored. The development of the energy
functional (1.1) actually profits from the ROF model [5] which is of the following form:

min
u

λ1
2
‖u − u0‖2L2 + |u|BV , (1.2)

where |u|BV :=
∫
Ω |∇u|dx. In the case without confusion, for simplification we omit the open

setΩwith Lipschitz boundary for ‖·‖L2(Ω) and |·|L1(Ω). Due to edge-preserving property of the
term |u|BV , this model has been extended to other sorts of image processing problems such as

min
u

λ2
2
‖Ku − u0‖2L2 + |u|BV (1.3)

for image deblurring [6] and

min
u

λ3
2
‖u − u0‖2L2(Ω\D) + |u|BV (1.4)

for image inpainting [2, 7], where K is a blurring operator and D is the inpainting domain.
Furthermore, this model was applied to restore the multiplicative noisy image which usually
appears in various image processing applications such as in laser images, ultrasound images
[8], synthetic aperture radar (SAR) [9], and medical ultrasonic images [10]. One of the
models based on BV was proposed by Huang et al. (HNW) [11] with the form

min
z

α

∫

Ω

(
z + fe−z

)
dx + |z|BV , (1.5)

where z is the logarithmic transformation of u and |z|BV keeps the total variation property
related to |ez|BV and α > 0. Here u satisfies f = uη for the noise η.

However, as we all know the | · |BV term usually reduces the computational solution
of the above models to be piecewise constant, which is also called the staircasing effect in
smooth regions of the image. The staircase effect implies to produce new edges that do not
exist in the true image so that the restored image is unsatisfactory to the eye. To overcome this
drawback, some high-order models [12–15] have been proposed such as a model proposed
by Lysaker, Lundervold, and Tai (the LLT model) with the following form:

min
u

β1
2
‖u − u0‖2L2 + |u|BV 2 , (1.6)

where |u|BV 2 :=
∫
Ω |∇2u|dx for the Hessian operator ∇2. However, these classes of models

can blur the edges of the image in the course of restoration. Therefore, it is a natural choice
to combine advantages of the ROF model and the LLT model if we want to preserve edges
while avoiding the staircase effect in smooth regions. One of convex combinations between
the BV and BV 2 was proposed by Lysaker et al. [13] to restore the image with additive noise.
But their model is not quite intuitive due to lack of gradient information in the weighting
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function. Since the edge detector function g := g(u0) := 1/(1+ �|∇(u0 ∗Gσ(x))|)with Gσ(x) =
(1/2πσ2) exp(−(x2/2σ2)) can depict the information of edges, we can employ it as a balance
function; that is, we can apply the following model:

min
u

β

2
‖u − u0‖2L2 +

∣
∣(1 − g

)
u
∣
∣
BV +
∣
∣gu
∣
∣
BV 2 (1.7)

to restore the noisy image [16]. Obviously, |(1 − g)u|BV tends to be predominant where edges
most likely appear and |gu|BV 2 tends to be predominant at the locations with smooth signals.
Based on the advantages of the hybrid model (1.7), we also extend it to the image restoration
models (1.3)–(1.5) in this paper.

Another topic for image restoration is to find some efficient methods to solve the
above proposed models. In fact, there are many different methods based on PDE or convex
optimization to solve the minimization problem (1.1) by means of the specific models (1.2)–
(1.6). For example, for the purpose of solving the ROF model (1.2) or the LLT model (1.6),
we can use the gradient descent method [5, 13], the Chambolle’s dual method [13, 17, 18],
the primal and dual method [19–21], the second order cone programming method [22], the
multigrid method [23], operator splitting method [24–26], the inverse scale method [27], and
so forth. However, different from the ROF model (1.2) and the LLT model (1.6), the model
(1.7) includes two L1-norm terms which make it solved more difficultly. More generally, the
model (1.7) can be fell into the following framework:

min
u

θ

2
∥∥u − f

∥∥2
L2 + h1(Λ1u) + h2(Λ2u), (1.8)

where h1, h2 : X → R are proper, convex, and lower semicontinuous (l.s.c.), Λ1 and Λ2 are
bounded linear operators, and θ is a parameter. A specific form of (1.8) was considered by
Afonso and Bioucas-Dias in [28] where a Bregman iterative method was proposed to solve
the model with the combination of the L1-norm term and the total variation (TV) term.
Actually this splitting Bregman method is formally equivalent to the alternating direction
method of multipliers (ADMM) [24, 29–34]. However, the ADMM ineluctably tends to solve
some subproblems which correspond to the related modified problems. Furthermore, these
make us obtain the numerical results by requiring much more computational cost. In order
to obtain an efficient numerical method, it is a natural choice to avoid solving the related
subproblems. In this paper, we propose a proximal point method (PPM) which can be
deduced from the ADMM. This deduction is based on the connection that the sum of the
projection operator and the shrinkage operator is equal to the identity operator; it is known
as the Moreau-Yosida decomposition Theorem 31.5 in [35]. Then the PPM not only keeps the
advantages of the ADMM but also requires much less computational cost. This implies that
the PPM is much more fast and efficient, especially for the larger scale images. Furthermore,
using the monotone operator theory, we give the convergence analysis of the proposed
method. Moreover, we extend the PPM to solve the model (1.7) to image deblurring, image
inpainting, and the multiplicative noisy image restoration. Experimental results show that
the restored images generated by the proposed models and methods are desirable.

The paper is organized as follows. In Section 2, we recall some knowledge related to
convex analysis. In Section 3, we first propose the ADMM to solve the problem (1.8) and then
give the PPM to improve this method. In Section 4, we give some applications by using the
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proposed algorithms and also compare the related models and the proposed methods. Some
concluding remarks are given in Section 5.

2. Notations and Definitions

Let us describe some notations and definitions used in this paper. For simplifying, we use
X = Rn. Usually, we can set n = 2 for the gray-scale images. The related contents can be
referred to [1, 27, 36–43].

Definition 2.1. The operator A : X → R is monotone if it satisfies

(
y1 − y2, x1 − x2

) ≥ 0 (2.1)

for all y1 ∈ A(x1) and y2 ∈ A(x2), and A is maximal if it is not strictly contained in any other
monotone operator on X.

Definition 2.2. Let G : X → R∪{+∞} be a convex function. The subdifferential of G at a point
y ∈ X is defined by

∂G
(
y
)
=
{
η : G
(
y
) −G(x) ≤ (η, y − x

)
, ∀x ∈ X

}
, (2.2)

where η ∈ ∂G(y) is called a subgradient. It reduces to the classical gradient if G(x) is
differentiable.

Definition 2.3. Assume that A is a maximal monotone operator. Denote by Hc its Yosida
approximation:

HcA =
1
c
(I − JcA), (2.3)

where I denotes the identity operator [38, 39] and JcA is the resolvent of A with the form as

JcA = (I + cA)−1. (2.4)

Definition 2.4. Let G : X → R be a convex proper function. The conjugate function of G is
defined by

G∗(x∗) = sup
x∈X

{(x, x∗) −G(x)} (2.5)

for all x∗ ∈ X.
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Definition 2.5. LetG : X → R∪{∞} be convex and t > 0. The proximal mapping toG : X → X
is defined by

ProxtG(x) := argmin
y

{
G
(
y
)
+

1
2t
∥
∥y − x

∥
∥2
L2

}
(2.6)

for y ∈ X.

Definition 2.6. The projection operator PBτ (·) : X → X onto the closed disc Bτ := {x ∈ X :
|x|L1 ≤ 1/τ} is defined by

PBτ (x) =
x

|x|L1
min
(
|x|L1 ,

1
τ

)
, (2.7)

where x ∈ X and τ > 0.

Definition 2.7. The shrinkage operator Sτ(·) : X → X is defined by

Sτ(x) =
x

|x|L1
max
(
|x|L1 − 1

τ
, 0
)
, (2.8)

where we use the convention 0/0 = 0.

Remark 2.8. It is obvious that the function G : X → R and its conjugate function G∗ satisfy
the following relationship:

ProxtG(x) + Prox1/tG∗(x) = x, (2.9)

for t > 0. Especially, the projection operator PBτ (·) and the shrinkage operator Sτ(·) satisfy

PBτ (x) + Sτ(x) = x (2.10)

for any x ∈ X. In fact, this corresponds to the classic Moreau-Yosida decomposition
Theorem 31.5 in [35].

3. The Alternating Direction Method of Multipliers (ADMM) and
the Proximal Point Method (PPM)

Variable splitting methods such as the ADMM [29–32, 44] and the operator splitting methods
[42, 45, 46] have been recently used in the image, signal, and data processing community. The
key of this class of methods is to transform the original problem into some subproblems so
that we can easily solve these subproblems by employing some numerical methods. In this
section we first consider to use the ADMM to solve the general minimization problem (1.8).
However, the computational cost of the ADMM is tediously increased due to its looser form.
In order to overcome this drawback, we thus change this method to a compacter form called
the proximal method based on the relationship (2.9) in Remark 2.8.
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3.1. The Alternating Direction Method of Multipliers (ADMM)

We now consider the following constrained problem:

min
u,v,w

θ

2
∥
∥u − f

∥
∥2
L2 + h1(v) + h2(z),

s.t. v = Λ1u, z = Λ2u,

(3.1)

which is clearly equivalent to the constrained problem (1.8) in the feasible set {(u, v, z) :
v = Λ1u, and z = Λ2u}. Throughout the following subsections, we always assume that Λ1

and Λ2 are a surjective map. It seems that the problem (3.1) including three variables looks
more complex than the original unconstrained problem (1.8). In fact, this problem can be
solvedmore easily under the condition that h1 and h2 are nondifferentiable. In the augmented
Lagrangian framework [33, 34, 47, 48], the problem (3.1) equivalently solves the following
minimization Lagrangian function:

min
u,v,z,ζ1,ζ2,μ1,μ2

L
(
u, v, z, ζ1, ζ2, μ1, μ2

)
=

θ

2
∥∥u − f

∥∥2
L2 + h1(v) + (ζ1,Λ1u − v) +

μ1

2
‖Λ1u − v‖2L2

+ h2(z) + (ζ2,Λ2u − z) +
μ2

2
‖Λ2u − z‖2L2 ,

(3.2)

where ζi is the Lagrangian multiplier and μi is the penalty parameter for i = 1, 2. Then we can
use the following augmented Lagrangian method (ALM):

(un, vn, zn) = argmin
u,v,z

L
(
u, v, z, ζn−11 , ζn−12 , μ1, μ2

)
, (3.3a)

ζn1 = ζn−11 + μ1(Λ1u − v), (3.3b)

ζn2 = ζn−12 + μ2(Λ2u − z) (3.3c)

with choosing the original values ζ01 and ζ02 to solve (3.2). If we set dn
i = ζni /μi for i = 1, 2 and

omit the terms which are independent of (un, vn, zn) in (3.3a), the above strategy (3.3a)–(3.3c)
can be written as

(un, vn, zn) = argmin
u,v,z

θ

2
∥∥u − f

∥∥2
L2 + h1(v) +

μ1

2

∥∥∥Λ1u − v + dn−1
1

∥∥∥
2

L2
+ h2(z),

+
μ2

2

∥∥∥Λ2u − z + dn−1
2

∥∥∥
2

L2
,

(3.4a)

dn
1 = dn−1

1 + Λ1u
n − vn, (3.4b)

dn
2 = dn−1

2 + Λ2u
n − zn (3.4c)

for the original values d0
1 and d0

2. Thenwe can use the following ADMM to solve (3.4a)–(3.4c).
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Algorithm 3.1 (ADMM for solving (3.4a)–(3.4c)). (1) Choose the original values: v0, z0, d0
1,

and d0
2. Set θ, μ1, μ2 > 0 and n = 1.
(2) Compute (un, vn, zn, dn

1 , d
n
2 ) by

un = argmin
u

θ

2
∥
∥u − f

∥
∥2
L2 +

μ1

2

∥
∥∥Λ1u − vn−1 + dn−1

1

∥
∥∥
2

L2
+
μ2

2

∥
∥∥Λ2u − zn−1 + dn−1

2

∥
∥∥
2

L2
︸ ︷︷ ︸

=h(u)

,
(3.5a)

vn = argmin
v

h1(v) +
μ1

2

∥
∥
∥Λ1u

n − v + dn−1
1

∥
∥
∥
2

L2
, (3.5b)

zn = argmin
z

h2(z) +
μ2

2

∥
∥
∥Λ2u

n − z + dn−1
2

∥
∥
∥
2

L2
, (3.5c)

dn
1 = dn−1

1 + Λ1u
n − vn, (3.5d)

dn
2 = dn−1

2 + Λ2u
n − zn. (3.5e)

(3) If the stop criterion is not satisfied, set n := n + 1 and go to step (2).
Since h(u) is differentiable and strictly convex, we can get the unique solution of (3.5a)

which satisfies

θ
(
un − f

)
+ μ1Λ∗

1

(
Λ1u

n − vn−1 + dn−1
1

)
+ μ2Λ∗

2

(
Λ2u

n − zn−1 + dn−1
2

)
= 0, (3.6a)

0 = wn
1 + μ1

(
vn − dn−1

1 −Λ1u
n
)
, (3.6b)

0 = wn
2 + μ2

(
zn − dn−1

2 −Λ2u
n
)
, (3.6c)

dn
1 = dn−1

1 + Λ1u
n − vn, (3.6d)

dn
2 = dn−1

2 + Λ2u
n − zn, (3.6e)

where Λ∗
1 and Λ∗

2 are the adjoint operators of Λ1 and Λ2, wn
1 ∈ ∂h1(vn) and wn

2 ∈ ∂h2(zn),
respectively. It follows that the solution un in (3.6a) can be directly obtained by the following
explicit formulation:

un =
(
θI + μ1Λ∗

1Λ1 + μ2Λ∗
2Λ2
)

︸ ︷︷ ︸
M

−1(
θf + μ1Λ∗

1

(
vn−1 − dn−1

1

)
+ μ2Λ∗

2

(
zn−1 − dn−1

2

))
. (3.7)

However, when the operator M is ill-posed, the solution is unsuitable or unavailable. Hence
we have to go back to (3.6a) and to employ some iteration strategy such as the Gauss-Seidel
method to solve this equation. On the other hand, it is obvious that (3.5b) and (3.5c) can be
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looked at as the proximal mapping, so the solutions of the minimization problems (3.5b) and
(3.5c) can be obviously written as

vn = Prox1/μ1h1

(
Λ1u

n + dn−1
1

)
, zn = Prox1/μ2h2

(
Λ2u

n + dn−1
2

)
. (3.8)

Theorem 3.2. Assume that (u∗, v∗, z∗, w∗
1, w

∗
2) is the saddle point of the Lagrange function

L(u, v, z,w1, w2) =
θ

2
∥
∥u − f

∥
∥2
L2 + h1(v) + (w1,Λ1u − v) + h2(z) + (w2,Λ2u − z). (3.9)

Then u∗ is the solution of the minimization problem (1.8). Furthermore, the sequence {(un, vn, zn)}
generated by Algorithm 3.1 converges to (u∗, v∗, z∗).

Notice that Algorithm 3.1 can be actually looked at as the split Bregman method [25].
The based idea of this method is to introduce some intermediate variables so as to transform
the original problem into some subproblemswhich are easily solved. The connection between
the split Bregman method and the ADMM has been shown in [29, 49]. However, our
algorithm considers the sum of three convex functions, which is more general than the related
algorithms in [25, 49]. Furthermore, it must be noted that v and z are completely separated
in (3.4a), so the two subproblems (3.5b) and (3.5c) are parallel. Therefore the convergence
results of the ADMM can be applied here.

3.2. The Proximal Point Method

Though the ADMM in Algorithm 3.1 can effectively solve the original problem (3.1), we have
to solve five subproblems. This actually makes this method suffer from a looser form as in
[25, 45] so that it can badly affect its numerical computation efficiency. In this subsection, we
propose a compacter form comparing to the ADMM. This formation called the PPM by using
the relationship (2.9) in Remark 2.8 can reduce the original five subproblems of the ADMM
in Algorithm 3.1 to solve three subproblems, thus it can improve computation cost of the
ADMM. Now we have rewritten (3.5a)–(3.5e) with a little variation as the following form:

vn = argmin
v

h1(v) +
μ1

2

∥∥∥v − dn−1
1 −Λ1u

n−1
∥∥∥
2

L2
, (3.10a)

zn = argmin
z

h2(z) +
μ2

2

∥∥∥z − dn−1
2 −Λ2u

n−1
∥∥∥
2

L2
, (3.10b)

dn
1 = dn−1

1 + Λ1u
n−1 − vn, (3.10c)

dn
2 = dn−1

2 + Λ2u
n−1 − zn, (3.10d)

un = argmin
u

θ

2
∥∥u − f

∥∥2
L2 +

μ1

2
∥∥Λ1u − vn + dn

1

∥∥2
L2 +

μ2

2
∥∥Λ2u − zn + dn

2

∥∥2
L2 (3.10e)
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with the first order optimality conditions given by

vn = prox1/μ1
h1

(
Λ1u

n−1 + dn−1
1

)
, (3.11a)

zn = prox1/μ1
h2

(
Λ2u

n−1 + dn−1
2

)
, (3.11b)

dn
1 = dn−1

1 + Λ1u
n−1 − vn, (3.11c)

dn
2 = dn−1

2 + Λ2u
n−1 − zn, (3.11d)

θ
(
un − f

)
+ μ1Λ∗

1

(
Λ1u

n − vn + dn
1

)
+ μ2Λ∗

2
(
Λ2u

n − zn + dn
2

)
= 0. (3.11e)

If (3.11e) is replaced by

θ
(
un − f

)
+ μ1Λ∗

1

(
Λ1u

n−1 − vn + dn−1
1

)
+ μ2Λ∗

2

(
Λ2u

n−1 − zn + dn−1
2

)
= 0, (3.12)

it follows from (3.11a)–(3.11e) and Moreau-Yosida decomposition Theorem 31.5 in [35] that

dn
1 = proxμ1

h∗
1

(
Λ1u

n−1 + dn−1
1

)
,

dn
2 = proxμ2

h∗
2

(
Λ2u

n−1 + dn−1
2

)
,

un = f −
(
μ1

θ
Λ∗

1d
n
1 +

μ2

θ
Λ∗

2d
n
2

)
.

(3.13)

So we propose the following algorithm to solve (3.1).

Algorithm 3.3 (PPM for solving (3.1)). (1) Choose the original values: d0
1, d

0
2, and u0. Set θ, μ1,

μ2 > 0 and n = 1.
(2) Compute (dn

1 , d
n
2 , u

n) by (3.13).
(3) If the stop criterion is not satisfied, set n := n + 1 and go to step (2).

Lemma 3.4. Set x1, x2 ∈ X and A is a maximal monotone operator, then the operators HcA and JcA
satisfy

1
c2
‖JcA(x1) − JcA(x2)‖2L2 + ‖HcA(x1) −HcA(x2)‖2L2 ≤ 1

c2
‖x1 − x2‖2L2 . (3.14)

Theorem 3.5. Assume that h1(x) and h2(u) are convex and proper. If μ1 ∈ (0, 1/θ‖Λ1‖2) and
μ2 ∈ (0, 1/θ‖Λ2‖2), here ‖ · ‖ := max{‖Kx‖L2 : x ∈ X with ‖x‖L2 ≤ 1} for a continuous linear
operator K, then the sequence {(un, dn

1 , d
n
2 )} generated by Algorithm 3.3 converges to the limit point

(d1, d2, u). Furthermore, the limit point u is the solution of (1.8).
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4. Some Applications in Image Restoration

In Section 4.1, we apply the ADMM and the above PPM to the image denoising problem.
Here we also compare the proposed hybrid model with the ROF model and the LLT model.
Then, based on the proposed hybrid model, we set the PPM as a basic method to solve image
deblurring, image inpainting, and image denoising for the multiplicative noise in the last
three subsections. For simplicity, we assume that the image region Ω is squared with the size
M ×M and set S = RM×M, T = S × S, and Z = T × T as in [17]. The usual scalar product can
be denoted as 〈p1, p2〉T :=

∑M
i=1
∑M

j=1 p
1
i,jp

2
i,j for p

1, p2 ∈ T and (p,q)Z =
∑M

i,j=1(p
11
i,j q

11
i,j + p12i,j q

12
i,j +

p21i,j q
21
i,j + p22i,j q

22
i,j ) for p,q ∈ Z. The L1 norm of p = (p1, p2) ∈ T is defined by |p|1 =

√
p21 + p22 and

the 1 norm of q = (q1, q2; q3, q4) ∈ Z is defined by |q|1 =
√
q21 + q22 + q23 + q24. If u ∈ S, we use

∇+ = (∇+
x,∇+

y) ∈ T to denote the first order forward difference operator with

∇+
xui,j =

{
ui+1,j − ui,j for 1 ≤ i < N,

0 for i = N,
∇+

yui,j =

{
ui,j+1 − ui,j for 1 ≤ j < N,

0 for j = N,
(4.1)

and use ∇− = (∇−
x,∇−

y) to denote the first order backward difference operator with

∇−
xui,j =

⎧
⎪⎪⎨

⎪⎪⎩

−ui,j , for i = 1,
ui,j − ui−1,j for 1 < i < N,

u
(
i, j
)

for i = N,

∇−
yui,j =

⎧
⎪⎪⎨

⎪⎪⎩

−ui,j for j = 1,
ui,j − ui,j−1 for 1 < j < N,

ui,j for j = N,

(4.2)

for i, j = 1, . . . ,N. Based on the first order difference operators, we can give the second order
difference operator as follows:

∇2ui,j =

⎛

⎜
⎝

∇−
x

(∇+
xui,j

) ∇+
x

(
∇+

yui,j

)

∇−
y

(∇−
xui,j

) ∇−
y

(
∇+

yui,j

)

⎞

⎟
⎠ ∈ Z. (4.3)

Using the same approach, we can define some other second order operators such as
∇+

x(∇−
xui,j), ∇−

x(∇−
yui,j), ∇+

y(∇+
xui,j), and ∇+

y(∇−
yui,j). Then we can give the first order and the

second divergence operators as

divui,j = ∇−
xui,j +∇−

yui,j ,

div2ui,j = ∇+
x

(∇−
xui,j

)
+∇−

x

(
∇−

yui,j

)
+∇+

y

(∇+
xui,j

)
+∇+

y

(
∇−

yui,j

)
.

(4.4)

Furthermore, if we set p ∈ T and q ∈ Z, it is easy to deduce that

∥∥div p
∥∥2
2 ≤ 8‖p‖2T ,

∥∥∥div2q
∥∥∥
2

2
≤ 64‖q‖2Z. (4.5)
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Remark 4.1. The related examples in the following subsections are performed usingWindows
7 and Matlab 2009(a) on a desktop with Intel Core i5 processor at 2.4GHz and 4GB memory.
All of the parameters for related models are chosen by trial and empirically which can yield
better restored images. On the other hand, we should notice that it is not very expensive when
we use the ADMM and the PPM to get un, but the total computational effort of one outer
iteration requiring many inner steps can be very huge. In order to reduce the computational
effort and keep fair comparison of these twomethods, we so simplify the inner-outer iterative
framework by performing only one-step in inner iteration. It is obvious that these sets are
very efficient from the following numerical experiences.

4.1. Image Denoising for the Additive Noise

In this subsection, we consider to use the ADMM and the PPM to solve (1.7) for restoring
the additive noisy image. If we set Λ1 = ∇ and Λ2 = ∇2, then the algorithms are proposed as
follows.

Algorithm 4.2 (ADMM to solve (1.7)). (1) Choose the original d0
1 = v0 = 0 ∈ T and d0

2 = z0 =
0 ∈ Z. Set θ, μ1, μ2 > 0 and n = 1.

(2) Compute (un, vn, zn, dn
1 , d

n
2 ) by

(
θI − μ1Δ + μ2Δ2

)
un = θf + μ1 div

(
vn−1 − dn−1

1

)
− μ2div2

(
zn−1 − dn−1

2

)
(4.6a)

vn =
∇un + dn−1

1∣∣∇un + dn−1
1

∣∣
1

·max

(∣∣∣∇un + dn−1
1

∣∣∣
1
−
(
1 − g(x)

)

μ1
, 0

)

, (4.6b)

zn =
∇2un + dn−1

2∣∣∇2un + dn−1
2

∣∣
1

·max
(∣∣∣∇2un + dn−1

2

∣∣∣
1
− g(x)

μ2
, 0
)
, (4.6c)

dn
1 = dn−1

1 +∇un − vn, (4.6d)

dn
2 = dn−1

2 +∇2un − zn, (4.6e)

where Δ = div ◦∇ and Δ2 = div2 ◦ ∇2.
(3) If the stop criterion is not satisfied, set n := n + 1 and go to step (2).

Remark 4.3. For the first subproblem (4.6a), we can use the Gauss-Seidel method as shown in
[25] to get the solution. However, in this paper, we use the following strategy:

un
i,j =

θfi,j + μ1div
(
vn−1
i,j − dn−1

1,i,j

)
+ 4μ1u

n−1
i,j − μ2div2

(
zn−1i,j − dn−1

2,i,j

)
+ 28μ2u

n−1
i,j

θ + 4μ1 + 28μ2
, (4.7)
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where some information of operators Δ and Δ2 related to u is used. The formulas (4.6b) and
(4.6c) of Algorithm 4.2 can be easily deduced from

min
v

∣
∣(1 − g

)
v
∣
∣
1 +

μ1

2

∥
∥∥v − ∇un − dn−1

1

∥
∥∥
2

2
,

min
z

∣
∣gv
∣
∣
1 +

μ2

2

∥
∥
∥z − ∇2un − dn−1

2

∥
∥
∥
2

2
.

(4.8)

Furthermore, following form Theorem 3.2, we can also deduce that the sequence {un}
generated by Algorithm 4.2 converges to the solution of (1.7).

Algorithm 4.4 (PPM to solve (1.7)). (1) Choose the original d0
1 = 0 ∈ S, d0

2 = 0 ∈ Z and u0 = f .
Set θ, μ1, μ2 > 0 and n = 1.

(2) Compute (dn
1 , d

n
2 , u

n) by

dn
1 =

∇un−1 + dn−1
1∣∣∇un−1 + dn−1

1

∣∣
1

·min
(∣∣∣∇un−1 + dn−1

1

∣∣∣
1
, 1
)
,

dn
2 =

∇2un−1 + dn−1
2∣∣∇2un−1 + dn−1

2

∣∣
1

·min
(∣∣∣∇2un−1 + dn−1

2

∣∣∣
1
, 1
)
,

un = f − μ1

θ

(
1 − g

)
divdn

1 +
μ2

θ
gdiv2dn

2 .

(4.9)

(3) If the stop criterion is not satisfied, set n := n + 1 and go to step (2).

For Algorithm 4.4, based on the relations in (4.5) and Theorem 3.5, we have the
following result.

Theorem 4.5. If μ1 ∈ (0, 1/8θ) and μ2 ∈ (0, 1/64θ), then the sequence {un} generated by
Algorithm 4.4 converges to the solution of (1.7).

Remark 4.6. For the above two algorithms, we can also set g as a constant between 0 and 1.
In fact, it is easy to find that the algorithms correspond to solving the ROF model or the LLT
model, respectively, when g = 0 or g = 1. At this time, the iteration strategy can be simplified
as

un
i,j =

θfi,j + μ1div
(
vn−1
i,j − dn−1

1,i,j

)
+ 4μ1u

n−1
i,j

θ + 4μ1
,

un
i,j =

θfi,j − μ2div2
(
zn−1i,j − dn−1

2,i,j

)
+ 28μ2u

n−1
i,j

θ + 28μ2

(4.10)

for these two models, respectively. Furthermore, when g ∈ (0, 1), these two algorithms
correspond to solve the model which is the convex combination of the ROF model and the
LLT model.
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Figure 1: The original images and the noisy images with three different sizes in Example 4.7.

Example 4.7. In this example, we compare the ADMM with the PPM for solving the ROF
model (1.4), the LLT model (1.6), and the hybrid model (1.7). The original images with three
different sizes shown in Figure 1 are added to the Gaussian white noise with the standard
deviation σ = 15.3. Iterations were terminated when the stop conditions ‖un+1 −un‖2/‖un‖2 ≤
ε are met. It is easy to find the related results from Table 1 that the PPM is faster than the
ADMM. Especially, the average CPU time of the PPM compared with that of the ADMM can
save about 50% for the ROF model and the LLT model. It saves about 40% for the hybrid
model.

Example 4.8. In this example, the noisy image is added to the Gaussian white noisy with the
standard deviation σ = 12. The algorithms will be stopped after 100 iterations. We compare
the results generated by the ROF model, the LLT model, the convex combination of the ROF
model and the hybrid model. As we can see from Table 2, the hybrid model get the lowest
MSE and the highest SNR; these imply that the hybridmodel can give the best restored image.
On the other hand, it is easy to find that the ROF model makes staircasing effect appear and
the LLT model leads to edge blurring. In fact, they are based on the fact that the restored
model by the ROF model is piecewise constant on large areas and the LLT model as a higher
model damps oscillations much faster in the region of edges. For the convex combined model
and the hybrid model, they can efficiently suppress these two drawbacks. Furthermore, the
hybrid model is more efficient than the convex combined model, because the hybrid model
uses the edge detector function which can efficiently coordinate edge information. It should
be noticed that here we use the Chambolle’s strategy [17] to solve the convex combined



14 Abstract and Applied Analysis

Table 1: The related results in Example 4.7.

g = 0 The ROF model
Stopping ADMM PPM

Size Conditions ε Time (s) Ite. SNR Time (s) Ite. SNR
128 × 128 1.0 × 10−4 0.2184 86 24.7949 0.1248 83 24.7043
256 × 256 1.0 × 10−4 0.9204 77 16.2934 0.2652 38 16.3540
512 × 512 1.0 × 10−4 4.3368 64 15.7146 1.9656 53 15.9353
g = 1 The LLT model

Stopping ADMM PPM
Size Conditions ε Time (s) Ite. SNR Time (s) Ite. SNR
128 × 128 1.0 × 10−4 0.4368 60 24.5688 0.3432 80 25.0287
256 × 256 1.0 × 10−4 1.7004 55 16.9065 0.9360 53 16.9083
512 × 512 1.0 × 10−4 15.4441 55 15.9432 7.2384 50 15.9512
g ∈ (0, 1) The hybrid model

Stopping ADMM PPM
Size Conditions ε Time (s) Ite. SNR Time (s) Ite. SNR
128 × 128 1.0 × 10−4 0.7176 69 25.7224 0.5304 70 25.4982
256 × 256 1.0 × 10−4 2.5584 55 16.9699 1.4664 52 16.9701
512 × 512 1.0 × 10−4 19.6561 56 15.9503 9.3445 50 15.9512

Table 2: The related data in Example 4.8 (here R.P. is the regularization parameter).

Model R.P. Time (s) SNR MSE
ROF 4.5 0.8268 17.7677 44.0400
LLT 3.0 2.0904 17.9998 42.7826
Convex 3.5 2.6832 18.2399 39.7756
Hybrid 4.5 2.5272 18.3694 39.1447

model so that it is slower than the strategy by using the PPM to solve the hybrid model. To
focus on these facts, we present some zoomed-in local results and select a slice of the images
which meets contours and the smooth regions shown in Figures 2 and 3.

4.2. Other Applications

In this subsection, we extend the hybrid model to other classes of restoration problems. As
we can see in Section 4.1, the hybrid model has some advantages compared with the ROF
model and the LLT model. Since the PPM is faster and more efficient than the ADMM, we
only employ the PPM to solve the related image restoration model. Nowwe first consider the
following iteration strategy:

zn = F(un) =: argmin
z

β

2
‖un − z‖2L2 + h(z), (4.11a)

un+1 = G(zn) := argmin
u

β

2
‖u − zn‖2L2 +

∫

Ω

∣∣(1 − g
)∇u
∣∣dx +

∫

Ω

∣∣∣g∇2u
∣∣∣dx

︸ ︷︷ ︸
D(u)

,
(4.11b)
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Figure 2: The original and the noisy image in Example 4.8.

where h(z) ∈ C1(Ω). It is easy to find that the minimization problem D(u) in (4.11b) is
coercive and strictly convex, so the subproblem (4.11b) has a unique solution. Based on [50,
Lemma2.4], we also deduce that the operator G is (1/2)-averaged nonexpansive.

Theorem 4.9. Assume that the functional

M(u, z) =
β

2
‖u − z‖2L2 + h(z) +

∫

Ω

∣∣(1 − g
)∇u
∣∣dx +

∫

Ω

∣∣∣g∇2u
∣∣∣dx (4.12)

is convex, coercive, and bounded below, then the sequence {(un, zn)} generated by (4.11a)-(4.11b)
converges to a point (u∗, z∗). Furthermore, when u∗ = z∗, u∗ is the solution of

min
u

h(u) +
∫

Ω

∣∣(1 − g
)∇u
∣∣dx +

∫

Ω

∣∣∣g∇2u
∣∣∣dx. (4.13)

Remark 4.10. It should be noticed that the following three models satisfy the conditions of
Theorem 4.9, so we can use the strategy (4.11a)-(4.11b) to solve these models.
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Figure 3: The related restored images in Example 4.8.
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4.2.1. Image Deblurring

Now we apply the hybrid model to the image deblurring problems with the following
formula:

min
u

λ

2
‖Ku − u0‖2L2 + |u|BV(1−g) + |u|BV 2

g
. (4.14)

Because of the compactness, the blurring operator K is not continuously invertible, which
implies that we cannot directly use the proximal method to solve minimization problem
(4.14). However, based on the penalty method [48], we can transform the problem (4.14)
to solve the following problem:

zn =
(
μλKTK + I

)−1(
μλKTf + un

)
, (4.15a)

un+1 := argmin
u

1
2μ

‖u − zn‖2L2 +
∫

Ω

∣∣(1 − g
)∇u
∣∣dx +

∫

Ω

∣∣∣g∇2u
∣∣∣dx. (4.15b)

The key of (4.15a)-(4.15b) is to separate the blurring operator K from the original problem
(4.14) so that we can avoid the ill-posed operator K. Furthermore, it is obvious that the
problem (4.15b) satisfies Theorem 4.9, so we can use the proximal method to solve it.

Example 4.11. In this experiment, we use the image Lena, which is blurred with a Gaussian
kernel of “hsize = 3” and in which is added the Gaussian white noise with the standard
deviation σ = 0.02. The related images and SNRs are arranged in Figure 4. As we can see
in Example 4.7, the proximal method tends to be stable before 100 iterations, so here we fix
the algorithm to be stopped when the iteration attains 100. It is easy to find that the hybrid
model can give a better image quality than the other two models. Especially, we also observe
some staircasing effect in Figure 4(b) and edge blurring in Figure 4(c). However, all of the
drawbacks can be efficiently suppressed in Figure 1(d).

4.2.2. Image Inpainting

Here we consider to use the hybrid model for the image inpainting problem with the
following form:

min
u

λ

2
‖u − u0‖2L2(Ω\D) +

∣∣(1 − g
)
u
∣∣
BV +
∣∣gu
∣∣
BV 2 , (4.16)

where D is the inpainting domain and λ satisfies

λ =

{
λ, ifu ∈ Ω \D,

0, if u ∈ D.
(4.17)
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(a) Original image (b) ROF model

(c) LLT model (d) Hybrid model

Figure 4: The related SNRs in Example 4.11. (a) 11.2166; (b) 14.3378; (c) 14.4778; (d) 14.5118.

If we introduce an auxiliary variable z, based on the penalty method [48] again, then
the solution of the problem (4.15a)-(4.15b) can be approximated by solving the following
problem:

un :=
zn + λμu0

1 + λμ
, (4.18a)

zn+1 := argmin
z

1
2μ

‖z − un‖2L2 +
∫

Ω

∣∣(1 − g
)∇z
∣∣dx +

∫

Ω

∣∣∣g∇2z
∣∣∣dx. (4.18b)

Example 4.12. In this example, we show the results of real image inpainting in Figures 6 and
7. We consider to use these three models to restore images shown in Figures 5(c) and 5(d),
which are, respectively, contaminated by the mask image and the noise with the standard
deviation σ = 12. The parameters of these three models are chosen for getting better restored
images and the algorithms will be stopped after 500 iterations (see also Table 3). It is obvious
that these three models can efficiently restore the original deteriorated images. However,
there are much more inappropriate information restored by the ROF model than the LLT
model and the hybrid model. These advantages is based on the fact that the fourth-order
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(a) Original image (b) Mask image

(c) Painting image (d) Noisy image

Figure 5: The related images in Example 4.12.

Table 3: The related results in Example 4.12.

Model Image (c) in Figure 5 Image (d) in Figure 5
λ μ SNR λ μ SNR

ROF 220 0.005 18.5533 32 0.008 15.4055
LLT 150 0.005 16.2934 60 0.005 16.4336
Hybrid 220 0.005 20.2713 70 0.0025 16.6034

linear diffusion (the LLT model and the hybrid model) damps oscillations much faster than
second-order diffusion (the ROF model). Especially, these unsuitable effects can be easily
seen from the local zooming images in Figures 6 and 7. Furthermore, the restored image by
the hybrid model looks more natural than the LLT model.

4.2.3. Image Denoising for the Multiplicative Noise

Based on the hybrid model (1.7), the multiplicative noise model (1.5) can be naturally
extended to the following minimization:

min
z

α

∫

Ω

(
z + fe−z

)
dx +

∫

Ω

∣∣(1 − g
)∇z
∣∣dx +

∫

Ω

∣∣∣g∇2z
∣∣∣dx. (4.19)
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(b1) Local zooming

(c) Hybrid model
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Figure 6: The related restored images corresponding to the painting image in Example 4.12.

It is obvious that the problem (4.19) can be approximated by

un := argmin
u

1
2μ

‖zn − u‖2L2 + α

∫

Ω

(
u + fe−u

)
dx, (4.20a)

zn+1 := argmin
z

1
2μ

‖z − un‖2L2 +
∫

Ω

∣∣(1 − g
)∇z
∣∣dx +

∫

Ω

∣∣∣g∇2z
∣∣∣dx. (4.20b)

For the first subproblem (4.20a), its solution un can be approximately obtained by using the
Newton method to solve the following nonlinear equation:

μ(u − zn) + α
(
1 − fe−u

)
= 0. (4.21)

Example 4.13. In this example, we restore the multiplicative noisy image. The noisy Lena
image shown in Figure 7 is contaminated by the Gamma noise (L = 33) with mean one,
in which probability density function p(u) is given by

p(u) =

⎧
⎪⎨

⎪⎩

LLuL−1

Γ(L)
e−Lu, ifu > 0,

0, if u ≤ 0,
(4.22)
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Figure 7: The related restored images corresponding to the noisy image in Example 4.12.

where L is an integer and Γ(·) is a Gamma function. Based on the iteration formula (4.20a)-
(4.20b), we should notice that there are two interior iterations. For employing the Newton
method to solve the problem (4.21), we set the stepsize t = 1 and the Newton method will be
stopped when ‖un+1 −un‖2/‖un‖2 ≤ 1.0 × 10−5. For solving the second subproblem (4.20b),
we set the fixed iterations with 40. In fact for using the PPM to solve the ROF model, the
LLT model and the hybrid model, the solutions of these models will tend to the steady. The
outer iteration will be stopped after 200 iterations. The related restored images are shown in
Figure 8, and it is easy to find that the hybrid model gives a better restored image than the
two other models.

5. Concluding Remarks

In this paper, based on the edge detector function, we proposed a hybrid model to overcome
some drawbacks of the ROFmodel and the LLTmodel. Following the augmented Lagrangian
method, we can employ the ADMM of multipliers to solve this hybrid model. In this paper,
we mainly proposed the PPM to solve this model due to the fact that the PPM unnecessarily
solves a PDE compared with the ADMM so that it is more effective than the ADMM. The
convergence of the proposed method was also given. However, the convergence rate of
the proposed method is only O(1/k), so our future work is to improve our method with
convergence rate O(1/k2) based on the same strategies in [51, 52].
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Appendices

A. Proof of Theorem 3.2

Proof. Following the assumption, we can find that the saddle point (u∗, v∗, z∗, w∗
1, w

∗
2) of (3.9)

satisfies

0 = θ
(
u∗ − f

)
+ Λ∗

1w
∗
1 + Λ∗

2w
∗
2,

0 = p∗1 −w∗
1,

0 = p∗2 −w∗
2,

0 = Λ1u
∗ − v∗,

0 = Λ2u
∗ − z∗

(A.1)

with p∗1 ∈ ∂h1(v∗) and p∗2 ∈ ∂h2(z∗). If we set d∗
1 = w∗

1/μ1 and d∗
2 = w∗

2/μ2, then (A.1) can be
written as

0 = θ
(
u∗ − f

)
+ μ1Λ∗

1

(
Λ1u

∗ − v∗ + d∗
1

)
+ μ2Λ∗

2
(
Λ2u

∗ − z∗ + d∗
2
)
, (A.2a)

0 = w∗
1 + μ1

(
v∗ − d∗

1 −Λ1u
∗), (A.2b)

0 = w∗
2 + μ2

(
z∗ − d∗

2 −Λ2u
∗), (A.2c)

d∗
1 = d∗

1 + Λ1u
∗ − v∗, (A.2d)

d∗
2 = d∗

2 + Λ2u
∗ − z∗. (A.2e)

Then the above equations (A.2a)–(A.2e) can be rewritten as a compact form

0 = θ
(
u∗ − f

)
+ Λ∗

1∂h1(Λ1u
∗) + Λ∗

2∂h2(Λ2u
∗), (A.3)

which implies that u∗ is the solution of the minimization problem (1.8).
Set

un
e = un − u∗, vn

e = vn − v∗, zne = zn − z∗, dn
1e = dn

1 − d∗
1, dn

2e = dn
2 − d∗

2 (A.4)
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denote the related errors. Then subtracting (3.6a)–(3.6e) by (A.2a)–(A.2e) and using the
similar strategy as in [24], we successively obtain

0 = θ‖un
e‖2L2 + μ1‖Λ1u

n
e‖2L2 + μ2‖Λ2u

n
e‖2L2 − μ1

(
vn−1
e − dn−1

1e ,Λ1u
n
e

)
− μ2

(
zn−1e − dn−1

2e ,Λ2u
n
e

)
,

0 = μ1‖vn
e‖2L2 + μ1

(
vn
e , d

n
1e − dn−1

1e −Λ1u
n
e

)
,

0 = μ2‖zne‖2L2 + μ2

(
zne , d

n
2e − dn−1

2e −Λ2u
n
e

)
,

0 = μ1
∥
∥dn

1e

∥
∥2
L2 − μ1

∥
∥
∥dn−1

1e

∥
∥
∥
2

L2
+ 2μ1

(
dn−1
1e , vn

e −Λ1u
n
e

)
− μ1‖vn

e −Λ1u
n
e‖2L2 ,

0 = μ2
∥
∥dn

2e

∥
∥2
L2 − μ2

∥
∥
∥dn−1

2e

∥
∥
∥
2

L2
+ 2μ2

(
dn−1
2e , zne −Λ2u

n
e

)
− μ2‖zne −Λ2u

n
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(A.5)

where dn
1e ∈ (1/μ1)∂h1(vn

1e) and dn
2e ∈ (1/μ2)∂h2(zn1e). Summing the above five equations, we

get
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So it is easy to deduce that
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(A.7)

Following the fact that h(x) is strictly convex, dn
1e ∈ (1/μ)∂h1(vn

e ) and dn
2e ∈ (1/μ)∂h2(zne), we

can get

(
dn
1e, v

n
e

) ≥ 0,
(
dn
2e, z

n
e

) ≥ 0. (A.8)

Combined with (A.7), it follows that
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‖un
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Then we deduce that

lim
n→∞

un = u∗,
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(A.10)

So we have

lim
n→∞

‖vn − v∗‖2L2 = 0, lim
n→∞

‖zn − z∗‖2L2 = 0. (A.11)

Hence the proof is complete.

B. Proof of Lemma 3.4

Proof. Let xi (i = 1, 2) be solutions of

xi ∈ yi + cA
(
yi

)
, (B.1)

then we can obtain
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(B.2)

which implies that the assertion holds.

C. Proof of Theorem 3.5

Proof. Setting A1(x) := ∂h1(x) and A2(x) := ∂h2(x), then operators A1 and A2 are maximal
monotone. Following from (3.11a)–(3.11e) and the definition of the Yosida approximation,
(3.13) can be equivalently written as

μ1d
n
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(
Λ1u
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1

)
, (C.1a)

μ2d
n
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(
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)
, (C.1b)
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(
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θ
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1d
n
1 +

μ2

θ
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2d
n
2

)
. (C.1c)
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(b) ROF model

(c) LLT model (d) Hybrid model

(a) The noisy image

(b1) ROF model (c1) LLT model (d1) Hybrid model

Figure 8: The related images and the local zooming images in Example 4.13. SNRs: (a) 9.2017; (b) 15.6059;
(c) 15.1754; (d) 16.0546.

Then, by (C.1a)–(C.1c) and Lemma 3.4, we can deduce that
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(C.2)

Combine (C.2) and (C.3)with
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(C.3)

which implies that
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(C.4)

Since μ1 ≤ 1/θ‖Λ1‖2 and μ2 ≤ 1/θ‖Λ2‖2, by (C.3) we eventually get
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as long as un /=u and

lim
n→∞
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= 0. (C.6)

Furthermore, by (C.4)we also get

lim
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Based on (C.1a) and (C.1b), using the definitions of resolvent and the Yosida approximation,
it is easy to find that

lim
n→∞
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Then, using Corollary 4 in page 199 of [53], we can deduce that limn→∞dn
1 = d1 and

limn→∞dn
2 = d2.

On the other hand, if (d1, d2, u) is the limit of the sequence {(dn
1 , d

n
2 , u

n)} generated by
Algorithm 3.3, it is easy to find that (3.13) can be rewritten as

d1 = proxμ1h
∗
1

(
Λ1u + d1

)
,

d2 = proxμ2h
∗
2

(
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)
,

u = f −
(
μ1

θ
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1d1 +
μ2

θ
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2d2

)
(C.9)

as n → +∞. Using the relationship (2.9) in Remark 2.8, (C.1a)–(C.1c) can be then rewritten
as

Λ1u = prox1/μ1h1

(
Λ1u + d1

)
, (C.10a)

Λ2u = prox1/μ2h2

(
Λ2u + d2

)
, (C.10b)

u = f −
(
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θ
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1d1 +
μ2

θ
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2d2

)
. (C.10c)

Following from (C.10a) and (C.10b), we can find that

d1 =
1
μ1

∂h1(Λ1(u)),

d2 =
1
μ2

∂h2(Λ2(u)).

(C.11)

Submitting (C.10a)–(C.10c) into (C.11), we have

θ
(
u − f

)
+ Λ∗

1∂h1(Λ1(u)) + Λ∗
2∂h2(Λ2(u)) = 0, (C.12)

which implies that u is the solution of (1.8).

D. Proof of Theorem 4.9

Proof. From the assumption, the functional M(u, z) exists in at least a minimized point
denoted by (u, z), which implies that (u, z) satisfies

z = F(u),
u = G(z).

(D.1)

That is to say that u is a fixed point of the operator G ◦ F.
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Now we show that the sequence {un} generated by (4.11a)-(4.11b) converges to this
fixed point u. In fact, based on the nonexpansive operators F and G, for the sequence {un}
we can get

∥
∥
∥un+1 − u

∥
∥
∥
L2

= ‖F ◦ G(un) − F ◦ G(u)‖L2 ≤ ‖un − u‖L2 . (D.2)

This implies that the positive sequence {‖un − u‖L2} is monotonically decreasing. So we can
find a subsequence {unk} from {un} converging to a limit point u∗ as n → ∞. Form the
continuity of F and G, we then have

‖u∗ − u‖L2 = ‖F ◦ G(u∗) − u‖L2 . (D.3)

Furthermore, we can get u = u∗ based on the uniqueness of the fixed point. Thus, (u∗, z∗) is
the solution of (4.11a)-(4.11b), where z∗ corresponds to u∗. Setting J(u) =

∫
Ω |(1 − g)∇u|dx +∫

Ω |g∇2u|dx, we can get

0 = β(z∗ − u∗) + h′(z∗),

0 ∈ β(u∗ − z∗) + ∂J(u∗),
(D.4)

which implies that

h′(z∗) + ∂J(u∗) = 0. (D.5)

Then u∗ is the solution of (4.13) when u∗ = z∗.
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[39] A. Bermúdez and C. Moreno, “Duality methods for solving variational inequalities,” Computers &

Mathematics with Applications, vol. 7, no. 1, pp. 43–58, 1981.
[40] C. L. Byrne, Applied Iterative Methods, A K Peters, 2008.
[41] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton,

Fla, USA, 1992.
[42] I. Ekeland and R. Teman, Convex Analysis and Variational Problems. North-Holland, Amsterdam, The

Netherlands, 1976.
[43] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture

Series, American Mathematical Society, 2001.
[44] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation

image reconstruction,” SIAM Journal on Imaging Sciences, vol. 1, no. 3, pp. 248–272, 2008.
[45] A. Marquina and S. J. Osher, “Image super-resolution by TV-regularization and Bregman iteration,”

Journal of Scientific Computing, vol. 37, no. 3, pp. 367–382, 2008.
[46] S. Setzer, “Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage,” in Proceedings

of the Second International Conference on Scale Space and Variational Methods in Computer Vision (SSVMCV
’09), vol. 5567, pp. 464–476, 2009.

[47] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via
finite-element approximations,” Computers and Mathematics with Applications, vol. 2, no. 1, pp. 17–40,
1976.

[48] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Athena Scientific, 1996.
[49] E. Esser, “Applications of the Lagrangian-based alternating direction methods and connections to

split Bregman,” UCLA Report 2009-31.
[50] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,”Multiscale

Modeling & Simulation, vol. 4, no. 4, pp. 1168–1200, 2005.
[51] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse

problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.
[52] Y. Nesterov, “Amethod for unconstrained convexminimization problemwith the rate of convergence

O(1/k2),” Soviet Mathematics Doklady, vol. 27, no. 2, pp. 372–376, 1983.
[53] A. Pazy, “On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space,” Israel

Journal of Mathematics, vol. 26, no. 2, pp. 197–204, 1977.


