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We study analytic properties of the Poincaré return map and generalized focal values of analytic
planar systems with a nilpotent focus or center. We use the focal values and the map to study
the number of limit cycles of this kind of systems and obtain some new results on the lower and
upper bounds of the maximal number of limit cycles bifurcating from the nilpotent focus or center.
The main results generalize the classical Hopf bifurcation theory and establish the new bifurcation
theory for the nilpotent case.

1. Introduction and Main Result

Consider an analytic system of the form:

ẋ = y + αx +X
(
x, y, δ

)
, ẏ = −x + αy + Y

(
x, y, δ

)
, (1.1)

where α ∈ R, δ ∈ Rn, and X,Y = O(|x, y|2) for (x, y) near the origin. A Poincaré map can be
defined on a cross-section with an endpoint at the origin using positive orbits of the above
system and can be written in the form:

P(r, α, δ) = r +
∑

j≥1
vj(α, δ)rj , (1.2)
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where the series converges for small r. A well-known fact is that for any k ≥ 1v2j−1(α, δ) = 0
for all j = 1, . . . , k imply that v2k(α, δ) = 0; that is, only odd values of the expansion are
important for determining the behavior of trajectories near the origin. The value v2k+1(α, δ)
is called the kth focal value or the kth Lyapunov constant. For quadratic systems, Bautin [1]
proved that the Poincaré map can be written in the form:

P(r, α, δ) = r +
4∑

j=1

v2j−1(α, δ)r2j−1
(
1 + Pj(r, α, δ)

)
, (1.3)

where Pj(r, α, δ) = O(r) ∈ Cω. This implies that there are at most 3 limit cycles near the origin.
Suppose now that the origin is a nilpotent singular point, so the system is written in

the form:

ẋ = y +X
(
x, y
)
, ẏ = Y

(
x, y
)
, (1.4)

where X, Y = O(|x, y|2) for (x, y) near the origin. The following criterion for the existence of
a center or a focus at the origin of (1.4) has been established in [2–4].

Theorem 1.1 (see [2–4]). Let (1.4) have an isolated singular point at the origin. Let

Y (x, F(x)) = ax2n−1 +O
(
x2n
)
, a /= 0,

∂X

∂x
(x, F(x)) +

∂Y

∂y
(x, F(x)) = bxn−1 +O(xn),

(1.5)

where y = F(x) is the solution to the equation y + X(x, y) = 0 satisfying F(0) = 0. Then the origin
of (1.4) is a center or a focus if and only if a is negative and b2 + 4an < 0.

Introducing the generalized polar coordinates:

x = r Cs(θ), y = rn Sn(θ), (1.6)

where (Cs(t), Sn(t)) is the solution of the initial problem

ẋ = y, ẏ = −x2n−1,
(
x(0), y(0)

)
= (1, 0), (1.7)

Liapunov [3, 4] proposed a method to solve the center-focus problem for (1.4). Sadovskiı̆ [5]
(see also [6]) andMoussu [7] investigated the problem using Lyapunov functions and normal
forms, respectively. Other few approaches for computing focal values, Lyapunov constants or
equivalent values and methods for studying bifurcations of local limit cycles were suggested
by Chavarriga et al. [8], Giacomini et al. [9], Álvarez and Gasull [10, 11], and Liu and Li
[12–15]. From [16] we know that (1.4) can be formally transformed into a formal normal
form:

ẋ = y, ẏ = −g(x) − yf(x), (1.8)



Abstract and Applied Analysis 3

where g(x) = axm +O(xm+1), m ≥ 2 (system (1.8) is a generalized Liénard system). Stróżyna
and Żoła̧dek [17] proved that this formal normal form can be achieved through an analytic
change of variables. Thus, if (1.4) has a center or focus at the origin, then it can be changed
into (1.8)with

g(x) = x2n−1(a2n−1 +O(x)), n ≥ 2, a2n−1 > 0. (1.9)

According to [11] under (1.9) by a change of variables x and t of the form:

u =
[
2n
∫x

0
g(x)dx

]1/2n(
sgnx

) ≡ u(x),
dt

dt1
=

u2n−1(x)
g(x)

(1.10)

system (1.8) is transformed into

ẋ = y, ẏ = −x2n−1 − yf(x), (1.11)

where

f(x) =
x2n−1f

(
u−1(x)

)

g
(
u−1(x)

) , n ≥ 2,

u(x) =
[
2n
∫x

0
g(x)dx

]1/2n(
sgnx

)
= (a2n−1)1/2n

(
x +O

(
x2
))

.

(1.12)

Then, by Theorem 1.1 system (1.11) has a center or a focus at the origin if and only if the
function f given in (1.12) satisfies

f(x) =
∑

j≥n−1
bjx

j , b2n−1 − 4n < 0. (1.13)

By Filippov’s theorem (see, e.g., Ye et al. [18]) under (1.13) system (1.11) has a stable
(unstable) focus at the origin if there exists an integer l with 2l ≥ n − 1 such that

b2l > 0(< 0), b2j = 0 for j < l, (1.14)

and it has a center at the origin if b2j = 0 for all 2j ≥ n − 1.
Passing to the generalized polar coordinates (x, y) = (r Cs(θ), rn Sn(θ))we obtain from

(1.11) the following equation:

dr

dθ
=

∑
j≥n−1 bj(Sn(θ))

2(Cs(θ))j r2−n+j

1 +
∑

j≥n−1 bjSn(θ)(Cs(θ))
j+1r1−n+j

. (1.15)
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The function on the right hand side of (1.15) is periodic of the period T =
2
√
π/nΓ(1/2n)/Γ((n + 1)/2n). Let r(θ, r0) denote the solution of (1.15)with the initial value

r(0) = r0. Then the Poincaré map of (1.15) has the form:

r(T, r0) =
∑

j≥1
Vjr

j

0. (1.16)

Assuming that V1 = 1, V2 = · · · = Vk−1 = 0 Álvarez and Gasull [11] called the constant Vk

the kth generalized Lyapunov constant of (1.15) (we will see that this definition is too rough
since a half of the constants cannot be used to determine the stability of the origin of (1.8) or
(1.11)). They also studied the normal form (1.11) and proved the following theorem.

Theorem 1.2 (see [11]). Let (1.13) and (1.14) be satisfied. Then

(1) V1 = exp(−2bn−1π/n
√
4n − b2n−1) if 2l = n − 1;

(2) V1 = 1, Vj = 0 for 1 < j < 2 − n + 2l, and V2−n+2l = −Klb2l if either bn−1 = 0 or bn−1 /= 0
and n is even, where Kl is a positive constant.

In the case n = 2 Liu and Li [12] introduced different generalized polar coordinates of
the form x = r cos θ, y = r2 sin θ to change (1.4) into the form:

dr

dt
= R(θ, r),

dθ

dt
= Q(θ, r), (1.17)

where it is assumed that the origin is a center or a focus. Let r̃(θ, h) denote the solution of the
2π-periodic system

dr

dθ
=

R(θ, r)
Q(θ, r)

(1.18)

satisfying r̃(0) = h. Note that the initial value problem is well defined also for negative h.
Let D be a simply connected domain. Denote by R the ring of analytic functions on

D and by 〈φ1, . . . , φk〉 the ideal in R generated by the functions φ1, . . . , φk from R. Liu and Li
[12] found the following facts.

Theorem 1.3 (see [12]). Consider system (1.4). Let the conditions of Theorem 1.1 be satisfied with
n = 2 (orm = 3) so that the origin is a center or a focus. Then

(1) r̃(θ,−r̃(π, h)) = −r̃(π − θ, h).

(2) Δ(h) = r̃(−2π, h) − h =
∑

k≥2 vkh
k, where

v2k+1 ∈ 〈v2, v4, . . . , v2k〉, k ≥ 1. (1.19)

In particular, v2j = 0, j = 1, . . . , k imply that v2k+1 = 0.
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(3) The origin is a stable (unstable) focus if

v2k < 0(> 0), v2j = 0 for j < k. (1.20)

In the latter case the origin is called a kth order weak focus of (1.4).

We remark that the conclusions of Theorem 1.3 provide new and useful information on
the property of the coefficients vk. Liu and Li [12] also gave some new methods to compute
the focal values v2, v4, . . . , v2k, or equivalent values and studied the problem of limit cycle
bifurcations near the origin (using the second conclusion of the above theorem). They found
a new phenomenon: a node can generate a limit cycle when its stability changes.

In this paper we study the problem of limit cycle bifurcations near the origin of the
analytic system

ẋ = y +X
(
x, y, δ

)
, ẏ = Y

(
x, y, δ

)
, (1.21)

where δ = (δ1, . . . , δm) ∈ D ⊂ R
m, D is a simply connected domain, and X,Y = O(|x, y|2) for

|x| small and δ ∈ D.
To perform our analysis we first introduce a novel Poincaré map using a specific

transversal section, study its analytical properties (Theorems 1.5 and 1.6), and then give a
new definition of generalized focal values (or generalized Lyapunov constants) following
[12]. Second, using the Poincaré map together with the generalized focal values we establish
new bifurcation theory of limit cycles from a nilpotent focus or center and obtain conditions
for finding a lower bound and an upper bound of the maximal number of limit cycles
bifurcated directly from the nilpotent point (Theorems 1.7 and 1.8). Third, we provide a
new method to compute the generalized focal values using the normal form (Theorems
1.10 and 1.11). Moreover, we prove that the normal form and the original system have
the same generalized focal values when the higher-order term has a sufficiently high order
(Theorem 1.12 and Corollary 1.13). For polynomial systems we prove that the maximal order
of a nilpotent focus is uniformly bounded (Theorem 1.14). All these results directly generalize
the classical Hopf bifurcation theory and establish the new bifurcation theory in the nilpotent
case.

We now state our main results more precisely. Let y = F(x, δ) be the solution to the
equation y +X(x, y, δ) = 0. We define the following two functions:

g(x, δ) = −Y (x, F(x, δ), δ), f(x, δ) = −
[
∂X

∂x
(x, F(x, δ), δ) +

∂Y

∂y
(x, F(x, δ), δ)

]
. (1.22)

By Theorem 1.1, if

g(x, δ) =
∑

j≥2n−1
aj(δ)xj , n ≥ 2, a2n−1(δ) > 0, (1.23)

f(x, δ) =
∑

j≥n−1
bj(δ)xj , b2n−1(δ) − 4na2n−1(δ) < 0, (1.24)
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then the origin is a center or a focus of (1.21) for all δ ∈ D. For convenience, we introduce the
following definition.

Definition 1.4. Let for all δ ∈ D (1.23) and (1.24) be satisfied for some n ≥ 2 so that the the
origin is a center or a focus of (1.21). In this case we say that (1.21) has a singular point of
multiplicity n at the origin.

Next, let us define a Poincaré return map for the planar system (1.21). For each δ ∈
D and x0 /= 0 with |x0| small consider the solution (x(t, x0, δ), y(t, x0, δ)) of (1.21) with the
initial condition (x(0), y(0)) = (x0, F(x0, δ)). Then there is a unique least positive number
τ = τ(x0, δ) > 0 such that y(τ, x0, δ) = F(x(τ, x0, δ), δ) and x0x(τ, x0, δ) > 0 (see Figure 1 for
the case of small x0 > 0).

Assume that for all δ ∈ D (1.23) and (1.24) are satisfied, so that the solution x(τ, x0, δ)
exists for 0 < |x0| < ε0, where ε0 = ε0(D) is a small positive constant. Define

P(x0, δ) =

{
x(τ, x0, δ), 0 < |x0| < ε0,

0, x0 = 0.
(1.25)

The map P(x0, δ) is the Poincaré map we will use for the remainder of the paper.
Obviously, the function P(x0, δ) is continuous at x0 = 0 if (1.23) and (1.24) hold. It is

easily seen that (1.21) has a periodic orbit near the origin if and only if the map has two fixed
points near zero: one positive and the other one negative. Moreover, we note that the function
is uniquely defined since the Poincaré section is chosen to be on the curve y = F(x, δ). This
enables us to obtain some nice analytical properties of this function at x0 = 0, as stated in the
following theorem.

Theorem 1.5. Let (1.21) satisfy (1.23) and (1.24) for all δ ∈ D. Then there is a unique analytic
function P(x0, δ) in x0 at x0 = 0, satisfying (∂P/∂x0)(0, δ) > 0 and such that the displacement
function d(x0, δ) has the expansion

d(x0, δ) = P(x0, δ) − x0 =
∑

j≥1
vj(δ)x

j

0 (1.26)

for |x0| sufficiently small, where

(1) if n is odd, then P(x0, δ) = P(x0, δ) for all |x0| small;

(2) if n is even, then for all |x0| small

P(x0, δ) =

{
P(x0, δ) for x0 > 0,

P
−1
(x0, δ) for x0 < 0,

(1.27)

where P
−1

denotes the inverse of P in x0.

It follows from the theorem that system (1.21) has a periodic orbit near the origin if
and only if the analytic function d defined by (1.26) has two zeros in x0 near x0 = 0, among
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x

y

O

y = F(x, δ)

P(x0, δ)x0

Figure 1: The Poincaré map of (1.21) with x0 > 0.

which one is positive and the other one is negative. The function d is called the displacement
function or the bifurcation function of (1.21).

The above theorem tells us that the function P(x0, δ) is analytic in x0 at x0 = 0 if n is
odd, and not analytic in x0 at x0 = 0 if n is even unless the origin is a center (in this case P is
the identity). The theorem is a natural generalization of the case of elementary center or focus
to the nilpotent case (n > 1), but it deals with two different cases (odd and even n), and the
phenomenon in the case of n even is new.

For the property of the coefficients vj in (1.26) we have the following theorem which
is more general than Theorem 1.3.

Theorem 1.6. Let (1.21) satisfy (1.23) and (1.24) for all δ ∈ D. Then

(1) for n odd we have v2k ∈ 〈v1, v3, . . . , v2k−1〉, k ≥ 1;

(2) for n even we have v1 = 0, v2k+1 ∈ 〈v2, v4, . . . , v2k〉, k ≥ 1.

Define pn = [1 + (−1)n]/2. Then the conclusions of the above theorem can be written
uniformly as

v2k+pn ∈
〈
v1+pn , v3+pn , . . . , v2k−1+pn

〉
, k ≥ 1. (1.28)

From the proof of Theorem 1.6 we will see that v2k+pn depends on
v1+pn , v3+pn , . . . , v2k−1+pn smoothly. Using Theorem 1.6 we derive the following two statements
on limit cycle bifurcations near the origin.

Theorem 1.7 (bifurcations from the focus). Let (1.21) satisfy (1.23) and (1.24) for all δ ∈ D.
Denote that pn = [1 + (−1)n]/2.
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(1) If there is an integer k ≥ 1 such that

k+1∑

j=1

∣∣v2j−1+pn(δ)
∣∣ > 0, ∀δ ∈ D, (1.29)

then there exists a neighborhood U of the origin such that (1.21) has at most k limit cycles
inU for all δ ∈ D, where D is any compact subset of D.

(2) If there is δ0 ∈ D such that v2k+1+pn(δ0)/= 0, then for all δ ∈ D near δ0 (1.21) has at most
k limit cycles in a neighborhood of the origin. If further,

v2j−1+pn(δ0) = 0, j = 1, . . . , k,

rank
∂
(
v1+pn , v3+pn , . . . , v2k−1+pn

)

∂(δ1, δ2, . . . , δm)
(δ0) = k,

(1.30)

then for an arbitrary sufficiently small neighborhood of the origin there are some δ ∈ D near
δ0 such that (1.21) has exactly k limit cycles in the neighborhood.

Theorem 1.8 (bifurcations from the center). Let (1.21) satisfy (1.23) and (1.24) for all δ ∈ D.
Assume

(i) there exist δ0 ∈ D and an integer k ≥ 1 such that (1.30) is satisfied,

(ii) the origin is a center of (1.21) if v2j−1+pn(δ0) = 0, j = 1, . . . , k,

then there exists a neighborhood U of the origin such that (1.21) has at most k − 1 limit
cycles inU for all δ ∈ D near δ0, and also, for an arbitrary sufficiently small neighborhood
of the origin, there are some δ ∈ D near δ0 such that (1.21) has exactly k − 1 limit cycles in
the neighborhood. Hence, the cyclicity of the system at the point δ0 is equal to k − 1.

Now, different from [11–15], we give the following definition.

Definition 1.9. We call v2k+1+pn(δ) the generalized focal value of order k of (1.21) at the origin
and call the origin a focus of order k if v2k+1+pn(δ)/= 0 and v2j−1+pn(δ) = 0 for j = 1, . . . , k.

The above definition is very reasonable and natural, since by Theorem 1.7, we see that
a nilpotent focus of order k generates at most k limit cycles under perturbations which satisfy
(1.23) and (1.24).

By the above definition, condition (ii) of Theorem 1.8 means that the origin is a focus
of (1.21) of order at most k − 1. This condition alone is not enough to ensure the conclusion
of the theorem. For example, using Theorem 1.10 stated below one can prove that the system

ẋ = y −
(
a1x

3 − a2
2x

5 + a2x
7
)
, ẏ = −x3 (1.31)

has exactly two limit cycles near the origin for 0 < a1 	 a2 	 1. But, the focus at the origin
has the order at most 1 for (a1, a2)/= 0 (the origin is a center for a1 = a2 = 0).
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The generalized focal values v1+pn , v3+pn , . . . , v2k+1+pn , . . . can be calculated using the
normal form of system (1.21). We will give a different method to compute them. From a
result of Stróżyna and Żoła̧dek [17] we know that (1.21) has the analytic normal form:

ẋ = y, ẏ = −g(x, δ) − yf(x, δ). (1.32)

Note that f and g in (1.32) may be different from the ones given by (1.22). As before, let
δ ∈ D ⊂ R

m where D is a domain. Also, suppose that for small |x| the function g(x, δ)
satisfies (1.23). Define

F(x, δ) =
∫x

0
f(x, δ)dx, G(x, δ) =

∫x

0
g(x, δ)dx. (1.33)

It is easy to see that for xy < 0 the equation G(x, δ) = G(y, δ) defines a unique analytic
function y = α(x, δ) = −x +O(x2). Set

F(α(x, δ), δ) − F(x, δ) =
∑

j≥1
Bj(δ)xj . (1.34)

By Theorem 1.1, if (1.32) satisfies (1.23) and (1.24), then it has a center or focus at the
origin. Thus, under (1.23) and (1.24) the Poincaré map for (1.32) is well defined near the
origin.

Theorem 1.10. Let (1.32) satisfy (1.23) and (1.24) for all δ ∈ D. Then, for x0 > 0 small, the Poincaré
map P(x0, δ) has the form:

P(x0, δ) − x0 =
∑

j≥0
v2j+1+pn(δ)x

2j+1+pn
0

(
1 + P ∗

j (x0, δ)
)
, (1.35)

where P ∗
j (x0, δ) = O(x0),

v1+pn(δ) = K∗
l B2l+1(δ) +

(
1 − pn

)
O
(
B2
2l+1

)
,

v2j+1+pn(δ) = K∗
l+jB2l+2j+1(δ) + B̃2l+2j+1(δ), j ≥ 1,

(1.36)

l = [n/2], K∗
l+j , j ≥ 0 are positive constants and B̃2l+2j+1 ∈ 〈B2l+1, B2l+3, . . . , B2l+2j−1〉. Thus,

Theorems 1.7 and 1.8 hold if v2j+1+pn is replaced by B2l+2j+1, j ≥ 0.

Let

f(x, δ) =
∑

j≥0
bj(δ)xj . (1.37)

For system (1.32)we have the following result.
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Theorem 1.11. Let (1.32) satisfy (1.23), (1.34), and (1.37) for all δ ∈ D. Assume there exist δ0 ∈ D
and k ≥ [n/2] such that

B2k+1(δ0) < 0(> 0), B2j−1(δ0) = 0, j = 1, . . . , k. (1.38)

Let one of the following conditions be satisfied:

(a) n = 2, and

b0(δ0) = 0, b21(δ0) − 8a3(δ0) < 0; (1.39)

(b) n > 2, g(−x, δ) = −g(x, δ), f(−x, δ) = f(x, δ), and

bj(δ0) = 0 for j = 0, . . . , n − 2, b2n−1(δ0) − 4na2n−1(δ0) < 0. (1.40)

Then

(1) for δ = δ0 (1.32) has a stable (unstable) focus at the origin.

(2) If further

rank
∂(B1, B3, . . . , B2k−1)
∂(δ1, δ2, . . . , δm)

(δ0) = k, (1.41)

then for an arbitrary sufficiently small neighborhood of the origin there are some δ ∈ D near δ0 such
that (1.32) has at least k limit cycles in the neighborhood.

From Theorems 1.5–1.10, it seems that under (1.23) and (1.24) we have solved the
problem of limit cycle bifurcation for generic systems. Theoretically it is, but in practice it is
not. The reason is that in general we do not knowwhat is the transformation from (1.21) to its
normal form (1.32). Herewe give amethod to solve the problem completely both theoretically
and in practice. It includes three main steps described below.

Under (1.23) and (1.24) by the normal form theory (see, e.g., [16]) for any integer
m > 2n − 1 there is a change of variables of the form:

(
x
y

)
=
(
u
v

)
+Hm(u, v, δ), (1.42)

where Hm(u, v, δ) = O(|u, v|2) is a polynomial in u, v of degree at most m, such that it
transforms (1.21) into (1.43) (called the normal form of order m of (1.21), or the Takens
normal form; we still use (x, y) for the new variables u, v)

ẋ = y +Xm+1
(
x, y, δ

)
, ẏ = −gm(x, δ) − yfm−1(x, δ) + Ym+1

(
x, y, δ

)
, (1.43)
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where

gm(x, δ) =
m∑

j=2n−1
aj(δ)xj , fm−1(x, δ) =

m−1∑

j=n−1
bj(δ)xj (1.44)

with a2n−1(δ) > 0 and b2n−1(δ) − 4na2n−1(δ) < 0, and Xm+1(x, y, δ), Ym+1(x, y, δ) being analytic
functions satisfying Xm+1, Ym+1 = O(|x, y|m+1). Here, we should mention that the functions
gm and fm−1 depend only on the terms of degree at mostm of the expansions of the functions
X and Y in (1.21) at the origin.

The Poincaré maps of (1.21) and (1.43) are essentially the same. Denote the Poincaré
map of (1.43) by P(x0, δ), and then the displacement function has the expansion

P(x0, δ) − x0 =
∑

j≥1
vj(δ)x

j

0, (1.45)

where the series converge for small |x0|.
Truncating the series (1.43) at terms of order m we obtain the polynomial system

ẋ = y, ẏ = −gm(x, δ) − yfm−1(x, δ). (1.46)

In practice, for given system (1.21) it is not difficult to find the corresponding system (1.46).
For (1.46)we can use Theorem 1.10 to find its focal values at the origin up to any large order.
Let Pm(x0, δ) denote the Poincaré map of (1.46). We write the expansion of the displacement
function as

Pm(x0, δ) − x0 =
∑

j≥1
vj(δ)x

j

0, (1.47)

where the series converge for small |x0|.
We intend to use vj(δ) instead of vj(δ). To this end, we have to solve the following

problem. For any given k > 1 find m > 2n − 1 such that vj(δ) = vj(δ) for 1 ≤ j ≤ k. The
following theorem gives a solution.

Theorem 1.12. Consider (1.43) and (1.46). Then, for any integer k ≥ 1, ifm ≥ (k + 2)n − 2, then

vj(δ) = vj(δ) for 1 ≤ j ≤ kn. (1.48)

Therefore, we have the following.

Corollary 1.13. Under (1.23) and (1.24) for any integer k ≥ 1 for (1.21) the coefficients
v1, v2, . . . , vkn in (1.26) depend only on the terms of degree at most (k + 2)n − 2 of the expansions of
the functions X and Y at the origin.

In the case of elementary center or focus, the above conclusion is well-known.
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Finally, we consider the following polynomial system of degree k

ẋ = y +
∑

2≤i+j≤k
aijx

iyj , ẏ =
∑

2≤i+j≤k
bijx

iyj . (1.49)

Theorem 1.14. For any k ≥ 3 there is an integer Nk > 0 such that an arbitrary polynomial system
of the form (1.49) has a singular point of multiplicity at most Nk at the origin (i.e., one must have
2 ≤ n ≤ Nk if (1.49) satisfies (1.23) and (1.24), see Definition 1.4). Further, for each 2 ≤ n ≤ Nk,
if (1.49) satisfies (1.23) and (1.24), then there exists an integer Kn(k) > 0 such that for (1.49) the
origin is a focus of order at most Kn(k). Hence, the origin as a nilpotent focus of (1.49) generates at
most Kn(k) limit cycles.

We organize the paper as follows. In Section 2 we give preliminary lemmas. In
Section 3 we prove our main results. In Section 4 few examples are provided.

2. Preliminaries

Consider system (1.21). In this section we will always suppose that (1.23) and (1.24) are
satisfied. Introducing the new variable v = y −F(x, δ)we obtain from (1.21) (reusing y for v)

ẋ = y
(
1 + Z1

(
x, y, δ

))
,

ẏ = −g(x, δ) − yf(x, δ) + y2Z2
(
x, y, δ

)
,

(2.1)

where the functions f and g are given by (1.22), Z1 and Z2 are analytic functions near the
origin withZ1(x, y, δ) = O(|x, y|). In the discussion below for convenience we will often omit
δ. As suggested by Liu and Li in [15] we pass in (2.1) to the generalized polar coordinates

x = r cos θ, y = rn sin θ, r > 0. (2.2)

Lemma 2.1. Let (1.23) and (1.24) be satisfied. Then the substitution (2.2) transforms (2.1) into the
system

θ̇ = S(θ, r) =
rn−1

H(θ)
[S0(θ) +O(r)],

ṙ = R(θ, r) =
rn

H(θ)
[R0(θ) +O(r)],

(2.3)
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where S and R are 2π-periodic in θ and have the properties

S
(
π + (−1)n−1θ,−r

)
= (−1)n−1S(θ, r), R

(
π + (−1)n−1θ,−r

)
= −R(θ, r), (2.4)

H(θ) = cos2θ + n sin2θ > 0,

S0(θ) = −
[
n sin2θ + bn−1cosnθ sin θ + a2n−1cos2nθ

]
< 0,

R0(θ) = cos θ sin θ
(
1 − a2n−1 cos2n−2θ − bn−1 sin θ cosn−2θ

)
.

(2.5)

Proof. From (2.2)we have

ẋ = cos θṙ − r sin θθ̇, ẏ = nrn−1 sin θṙ + rn cos θθ̇. (2.6)

We solve the above equations for θ̇ and ṙ and obtain (2.3)with

S(θ, r) =
cos θẏ − nrn−1 sin θẋ

rn
(
cos2θ + n sin2θ

) ,

R(θ, r) =
sin θẏ + rn−1 cos θẋ

rn−1
(
cos2θ + n sin2θ

) .

(2.7)

Then noting that

cos(π ± θ) = − cos θ, sin(π ± θ) = ∓ sin θ (2.8)

and that (2.2) is invariant as (θ, r) is replaced by (π + (−1)n−1θ,−r) one can easily prove (2.4).
The other conclusions are direct. This ends the proof.

By (2.3) and (2.4) we obtain the following analytic 2π-periodic equation

dr

dθ
= R(θ, r), (2.9)

where

R(θ, r) = r
sin θẏ + rn−1 cos θẋ
cos θẏ − nrn−1 sin θẋ

= r

[
R0(θ)
S0(θ)

+O(r)
]
,

R
(
π + (−1)n−1θ,−r

)
= (−1)nR(θ, r).

(2.10)
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Let r(θ, h) denote the solution of (2.9) with the initial value r(0) = h. For properties of
the solution we have the following.

Lemma 2.2. The solution r(θ, h) = O(h) is analytic in (θ, h) for |h| small and satisfies the following:

(1) r(θ,−r(π, h)) = −r(π + (−1)n−1θ, h);
(2) r(θ ± 2π, h) = r(θ, r(±2π, h)).

Proof. Let r̃(θ) = −r(π + (−1)n−1θ, h). Then by (2.9) and (2.10)we have

dr̃

dθ
= (−1)nR

(
π + (−1)n−1θ, r

(
π + (−1)n−1θ, h

))

= (−1)nR
(
π + (−1)n−1θ,−r̃(θ)

)

= R(θ, r̃(θ)).

(2.11)

This means that r̃(θ) is also a solution to (2.9). Then the first conclusion follows from the
uniqueness of the solution to the initial problem. The second one follows in the same way.
This completes the proof.

Further we have the following.

Lemma 2.3. Let P(x0, δ) be the Poincaré return map of (1.21) defined in Section 1. Then for |x0| > 0
small we have P(x0, δ) = r(−2π, x0) for x0 > 0, and P(x0, δ) = r((−1)n2π, x0) for x0 < 0.

Proof. First, it is easy to see that (1.21) and (2.1) have the same Poincaré map P(x0, δ). Then,
noting from (2.3) that θ̇ < 0 for small r > 0, by the definition of P and (2.2), we see that

P(x0, δ) = x(τ, x0) = r(−2π, x0) (2.12)

for x0 > 0 small. Now consider the case of x0 < 0. Let r∗(θ, h) denote the solution of (2.9)
satisfying r∗(π) = h. Similarly as above we have

P(x0, δ) = x(τ, x0) = −r∗(−π,−x0), (2.13)

since under (2.2) the points (x0, 0) and (P(x0, δ), 0) on the (x, y) plane correspond to the
points (π,−x0) and (−π,−P(x0, δ)) on the (θ, r) plane, respectively.

Further, by Lemma 2.2(1), we have

r∗(θ,−h) = −r(π − θ, h) for n even, (2.14)

r∗(θ,−r(2π, h)) = −r(π + θ, h) for n odd. (2.15)

Noting that, by Lemma 2.2(2), x0 = r(2π, h) if and only if h = r(−2π, x0), we see that (2.15)
becomes

r∗(θ,−x0) = −r(π + θ, r(−2π, x0)) for n odd. (2.16)
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Therefore, by (2.14) and (2.16) we have for x0 < 0

P(x0, δ) =

{
r(2π, x0) for n even,
r(−2π, x0) for n odd.

(2.17)

This ends the proof.

Lemma 2.4. Let d(x0, δ) = P(x0, δ)−x0. Then there exists an analytic functionK(h, δ) convergent
for small |h| with K(0, δ) = (∂r/∂x0)(π, 0) > 0 such that

d(x̃0, δ) = −K(x0, δ)d(x0, δ) (2.18)

for x0 > 0 small, where x̃0 = −r(π, x0).

Proof. By Lemma 2.2, we have

r
(
(−1)n2π, x̃0

)
= −r(−π, x0) = −r(π, r(−2π, x0)). (2.19)

Hence, by Lemma 2.3 for x0 > 0

d(x̃0, δ) = r
(
(−1)n2π, x̃0

) − x̃0

= −r(π, r(−2π, x0)) + r(π, x0)

= −K(x0, δ)[r(−2π, x0) − x0]

= −K(x0, δ)d(x0, δ),

(2.20)

where

K(x0, δ) =
∫1

0

∂r

∂x0
(π, x0 + s(r(−2π, x0) − x0))ds. (2.21)

It is obvious that K is analytic for |x0| small and K(0, δ) = (∂r/∂x0)(π, 0) > 0. This completes
the proof.

3. Proof of the Main Results

In this section we prove our main results presented in Theorems 1.5–1.12.

Proof of Theorem 1.5. We take P(x0, δ) = r(−2π, x0) for |x0| small. Then by Lemma 2.2 P is
analytic. Note that by Lemma 2.2, r(2π, x0) is the inverse of r(−2π, x0) in x0. Then Theorem 1.5
follows directly from Lemma 2.3. The proof is complete.
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Proof of Theorem 1.6. There are two cases to consider separately.
Case A (n odd). By (1.26) and Theorem 1.5(1), we have

d(x0, δ) = d(x0, δ) =
∑

j≥1
vj(δ)x

j

0 (3.1)

for all |x0| small.
By Lemma 2.4, we can suppose that

K(x0, δ) =
∑

j≥0
kjx

j

0, x̃0 = −r(π, x0) =
∑

j≥1
ljx

j

0, (3.2)

where k0 > 0, l1 = −k0. Substituting (3.1) and (3.2) into (2.18), we obtain

∑

j≥1
vj

(
∑

i≥1
lix

i
0

)j

= −
∑

i≥0,j≥1
kivjx

i+j
0 . (3.3)

Comparing the coefficients of the terms x2
0, x

4
0 and x

2j
0 on both sides yields

v2l
2
1 + v1l2 = −(k0v2 + k1v1),

v4l
4
1 + 3v3l

2
1l2 + v2

(
l22 + 2l1l3

)
+ v1l4 = −(k0v4 + k1v3 + k2v2 + k3v1),

· · ·

v2j l
2j
1 + v2j−1L1,j(l1, l2) + · · · + v2L2j−2,j

(
l1, l2, . . . , l2j−1

)
+ v1l2j = −

2j−1∑

i=0

kiv2j−i,

· · · ,

(3.4)

where Li,j(l1, l2, . . . , li+1), i = 1, 2, . . . , 2j − 2, are polynomials. Thus, from the above equations
we obtain

v2k ∈ 〈v1, v3, . . . , v2k−1〉, k ≥ 1. (3.5)

Case B (n even). By (1.26) and x0 = P
−1
(P(x0, δ), δ) we find that

P
−1
(x0, δ) = ṽ1x0 + ṽ2x

2
0 + ṽ3x

3
0 + · · · , (3.6)
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where

ṽ1 = (v1 + 1)−1,

ṽ2 = −v2(v1 + 1)−3,

· · ·

ṽj = −vj(v1 + 1)−(j+1) + Lj

(
v2, v3, . . . , vj−1

)
,

· · ·

(3.7)

and each Lj is a polynomial of degree at least 2. Now we suppose that x0 > 0. Then (3.1)
holds by Theorem 1.5. Further, noting that x̃0 < 0 by Theorem 1.5 again

d(x̃0, δ) = P(x̃0, δ) − x̃0 = P
−1
(x̃0, δ) − x̃0. (3.8)

Then, inserting (3.1), (3.2), (3.6), and (3.8) into (2.18)we obtain

(ṽ1 − 1)l1 = −k0v1,

(ṽ1 − 1)l2 + ṽ2l
2
1 = −(k0v2 + k1v1),

· · ·

(ṽ1 − 1)lj + Lj

(
ṽ2, ṽ3, . . . , ṽj−1

)
+ ṽj l

j

1 = −(k0vj + k1vj−1 + · · · + kj−1v1
)
,

· · · ,

(3.9)

where

Lj

(
ṽ2, ṽ3, . . . , ṽj−1

) ∈ 〈ṽ2, ṽ3, . . . , ṽj−1
〉
. (3.10)

Finally, noting that l1 = −k0 and substituting (3.7) into (3.9)we easily see that

v2j+1 ∈
〈
v2, v4, . . . , v2j

〉
, j ≥ 1. (3.11)

This ends the proof.

Proof of Theorem 1.7. For the first part, suppose that the conclusion is not true. Then
there exists a sequence {δm} in D such that for δ = δm (1.21) has k + 1 limit cycles
Lm,1, Lm,2, . . . , Lm,k+1 which approach the origin asm → ∞. Then by Theorem 1.6, the function
d(x0, δm) has 2k + 2 nonzero roots in x0 which approach zero as m → ∞.

Since D is compact, we can assume δm → δ0 ∈ D as m → ∞. By our assumption,∑k+1
j=1 |v2j−1+pn(δ0)| > 0. Thus, for some 1 ≤ l ≤ k + 1,

v2l−1+pn(δ0)/= 0, v2j−1+pn(δ0) = 0 for 1 ≤ j ≤ l − 1. (3.12)
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Therefore, by (1.26) and Theorem 1.6, we have

d(x0, δ0) = v2l−1+pn(δ0)x
2l−1+pn
0 +O

(
x
2l+pn
0

)
. (3.13)

Note that d(0, δ) = 0. It follows fromRolle’s theorem (see [1]) that for some ε0 > 0 the function
d(x0, δ) has at most 2l − 2 + pn nonzero roots in (−ε0, ε0) for all |δ − δ0| < ε0. We have proved
that the function d(x0, δm) has 2k + 2 nonzero roots which approach zero as m → ∞. It then
follows that 2k + 2 ≤ 2l − 2 + pn, contradicting to 2l − 2 + pn ≤ 2k + pn ≤ 2k + 1. The first
conclusion follows.

For the second one, from the above proof one can see that for all δ ∈ D near δ0
(1.21) has at most k limit cycles in a neighborhood of the origin. Then, by Theorem 1.6, the
displacement function d can be written as

d(x0, δ) =
∑

j≥1
v2j−1+pn(δ)x

2j−1+pn
0

(
1 + Pj(x0, δ)

)
, (3.14)

where Pj(0, δ) = 0. Like in [19] one can show that Pj are series convergent in a neighborhood
of δ0 (see also, e.g., [20, 21]). Further, by (1.30), we can take v1+pn , v3+pn , . . . , v2k−1+pn as free
parameters, varying near zero. Precisely, if we change them such that

0 <
∣∣v1+pn

∣∣	 ∣∣v3+pn

∣∣	 · · · 	 ∣∣v2k−1+pn
∣∣	 1, v1+pnv3+pn < 0, . . . ,

v2k−1+pnv2k+1+pn < 0,
(3.15)

then by (3.14) the function d has exactly k positive zeros in x0 near x0 = 0, which give k limit
cycles. This finishes the proof.

By Theorem 1.5 and (3.14)we immediately have the following.

Corollary 3.1. Let (1.21) satisfy (1.23) and (1.24) for a fixed δ ∈ D. Then, if

v2k+1+pn(δ) < 0(> 0), v2j−1+pn(δ) = 0 for j = 1, . . . , k, (3.16)

then the origin is a stable (unstable) focus of order k of (1.21). If

v2j−1+pn(δ) = 0 ∀j ≥ 1, (3.17)

the origin is a center of (1.21).

Proof of Theorem 1.8. Under (1.30) the values v1+pn , v3+pn , . . . , v2k−1+pn can be taken as free
parameters. Further, by our assumption, the origin is a center of (1.21) as v2j−1+pn(δ) = 0,
j = 1, . . . , k. It then follows that

v2j−1+pn(δ) ∈
〈
v1+pn , v3+pn , . . . , v2k−1+pn

〉 ∀j ≥ k + 1. (3.18)
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Therefore, (3.14) can be further written in the form:

d(x0, δ) =
k∑

j=1

v2j−1+pn(δ)x
2j−1+pn
0

(
1 + Pj(x0, δ)

)
, (3.19)

where Pj(0, δ) = 0 and Pj are series convergent in a neighborhood of δ0 [19]. Using the
reasoning of Bautin [1] (see also e.g., [20–22]) one can easily see that the conclusion of the
theorem holds. The proof is completed.

Proof of Theorem 1.10. Now we consider (1.32), where g satisfies (1.23). Let

F(x, δ) =
∫x

0
f(x, δ)dx, G(x, δ) =

∫x

0
g(x, δ)dx. (3.20)

If f satisfies (1.24), then the origin is a center or focus of (1.32), and

F(α(x, δ), δ) − F(x, δ) =
∑

j≥n
Bj(δ)xj =

∑

j≥n1

Bj(δ)xj , (3.21)

where

Bn =
(−1)n − 1

n
bn−1, n1 = 2l + 1, l =

[n
2

]
, (3.22)

and α(x, δ) = −x + O(x2) satisfies G(α(x, δ), δ) = G(x, δ) for |x| small. Note that (1.32) is
equivalent to the following system:

ẋ = y − F(x, δ), ẏ = −g(x, δ) (3.23)

which has the same Poincaré return map P(x0, δ) as (1.32). Introducing the change of
variables x and t

u = [2nG(x, δ)]1/2n
(
sgnx

)
= (a2n−1)1/2n

(
x +O

(
x2
))

≡ ϕ(x),
dt

dt1
=

ϕ2n−1(x)
g(x, δ)

(3.24)

system (3.23) becomes

u̇ = y − F(u, δ), ẏ = −u2n−1, (3.25)

which is equivalent to

u̇ = y, ẏ = −u2n−1 − yf(u, δ), (3.26)
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where

F(u, δ) = F
(
ϕ−1(u), δ

)
, f(u, δ) =

∂F

∂u
(u, δ). (3.27)

The systems (3.25) and (3.26) have the same Poincaré return map, denoted by P1(u0, δ). One
can see that the maps P and P1 have the relation P1 ◦ ϕ = ϕ ◦ P . Hence,

P(x0, δ) − x0 = K(u0)(P1(u0, δ) − u0), (3.28)

where K(u0) = (a2n−1)
−1/2n +O(u0) is analytic. By (1.26) and (3.14), for u0 > 0 small we have

P1(u0, δ) − u0 =
∑

j≥1
vj(δ)u

j

0 =
∑

j≥1
v2j−1+pn(δ)u

2j−1+pn
0

(
1 + Pj(u0, δ)

)
. (3.29)

Hence,

P(x0, δ) − x0 =
∑

j≥1
v2j−1+pn(δ)(a2n−1)−1/2nu

2j−1+pn
0

(
1 + P̃j(u0, δ)

)

=
∑

j≥1
v2j−1+pn(δ)(a2n−1)(2j−2+pn)/2nx

2j−1+pn
0

(
1 + P ∗

j (x0, δ)
)
,

(3.30)

where P̃j(u0, δ) = O(u0), P ∗
j (x0, δ) = O(x0).

Since α satisfies G(α(x, δ), δ) = G(x, δ) and xα < 0 for |x| small, we have ϕ(α) = −ϕ(x)
or α = ϕ−1(−ϕ(x)) = ϕ−1(−u), where u = ϕ(x). Thus, we have

F(α(x, δ), δ) − F(x, δ) = F
(
ϕ−1(−u), δ

)
− F
(
ϕ−1(u), δ

)
= F(−u, δ) − F(u, δ). (3.31)

Let

f(u, δ) =
∑

j≥n−1
bj(δ)uj . (3.32)

Then

F(u, δ) =
∑

j≥n

bj−1(δ)
j

uj . (3.33)

Thus, by (3.31) we have

F(α(x, δ), δ) − F(x, δ) = −2
∑

j≥[n/2]

b2j(δ)
2j + 1

u2j+1. (3.34)
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Substituting u = ϕ(x) = (a2n−1)
1/2n(x + O(x2)) into the above equality and comparing with

(3.21)we obtain

B2l+1 = −Klb2l, B2l+2 = O
(
b2l
)
,

B2l+2j+1 = −Kl+jb2l+2j + B̃2l+2j+1,

B2l+2j+2 ∈
〈
b2l, b2l+2, . . . , b2l+2j

〉
, j ≥ 1,

(3.35)

where Kl, Kl+1, . . . are positive constants and B̃2l+2j+1 ∈ 〈b2l, b2l+2, . . . , b2l+2j−2〉.
Then by Theorem 1.5 for u0 > 0 small we clearly have

P1(u0, δ) = u0 +
∑

j≥1
vj(δ)u

j

0 =
∑

j≥1
Vj(δ)u

j

0, (3.36)

where Vj are introduced before Theorem 1.2. Thus, by Theorem 1.2, we have

v1 = −Klb2l +O

(
b
2
2l

)
, v2j+1

∣∣
v1=···=v2j−1=0

= −Kl+jb2l+2j , j ≥ 1 (3.37)

for n = 2l + 1 odd, and

v2 = −Klb2l, v2j+2
∣∣
v2=···=v2j=0

= −Kl+jb2l+2j , j ≥ 1 (3.38)

for n = 2l even, where Kl+j , j ≥ 0 are positive constants. Hence,

v1+pn = −Klb2l +
(
1 − pn

)
O

(
b
2
2l

)
,

v2j+1+pn = −Kl+jb2l+2j + ϕ
(
b2l, b2l+2, . . . , b2l+2j−2

)
, j ≥ 1,

(3.39)

where ϕ(0, 0, . . . , 0) = 0. Note that (1.32) is analytic in each bj . It follows from Theorem 1.5
that ϕ is analytic in (b2l, b2l+2, . . . , b2l+2j−2), which yields ϕ ∈ 〈b2l, b2l+2, . . . , b2l+2j−2〉. Then (3.35)
and (3.39) together give

v1+pn =
Kl

Kl

B2l+1 +
(
1 − pn

)
O
(
B2
2l+1

)
,

v2j+1+pn =
Kl+j

Kl+j

B2l+2j+1 + B̃2l+2j+1, j ≥ 1,

(3.40)

where B̃2l+2j+1 ∈ 〈B2l+1, B2l+3, . . . , B2l+2j−1〉.
Then (1.36) follows from (3.30) and (3.40). This finishes the proof.
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Proof of Theorem 1.11. Let |δ−δ0| be small. For n = 2 we have pn = 1. Then the first conclusion
follows directly from Corollary 3.1 and (1.36)–(1.39). In fact, we have by Theorem 1.10

v2k(δ0) = K∗
kB2k+1(δ0), K∗

k > 0, v2j(δ0) = 0 for j = 1, . . . , k − 1. (3.41)

For the second conclusion, we first keep B1(δ) = 0 and vary B3(δ), . . . , B2k−1(δ) near
zero to obtain exactly k−1 simple limit cycles near the origin. These limit cycles are bifurcated
by changing the stability of the focus at the origin k − 1 times. Then we vary B1 such that
0 < |B1| 	 |B3|, and B1B3 < 0. This step produces one more limit cycle bifurcated from the
origin by changing the stability of the origin which is a node now by [23]. The theorem is
proved for the case n = 2.

For n > 2 since g(−x, δ) = −g(x, δ), f(−x, δ) = f(x, δ) we have

bj(δ) = 0 for j = 0, . . . , n − 2, b2n−1(δ) − 4na2n−1(δ) < 0 (3.42)

if

B2l+1(δ) < 0(> 0), B2j−1(δ) = 0, j = 1, . . . , l (3.43)

for some [n/2] ≤ l ≤ k. In this case the origin is a stable (unstable) focus of (3.23) by
Theorem 1.10. If (3.43) holds for some 0 ≤ l < [n/2], then by [23] again the origin is a stable
(unstable) node of (3.23). Thus, we can proceed similarly as above. The proof is complete.

We remark that if g(−x, δ) = −g(x, δ), then α(x, δ) = −x.
Proof of Theorem 1.12. Consider (1.43). Without loss of generality, we can assume Xm+1 = 0 in
(1.43) (otherwise, introduce the change of variables v = y + Xm+1(x, y)). In this case, we can
write (1.43) into the form:

ẋ = y, ẏ = −g(x) − f(x)y + y2
∑

j≥0
ϕj(x)yj, (3.44)

where

g(x) = gm(x) +O
(
|x|m+1

)
, f(x) = fm−1(x) +O

(|x|m), ϕj(x) = O
(
|x|m−1−j

)
. (3.45)

For the sake of convenience we rewrite the functions g, f , and ϕj as follows:

g(x) = x2n−1
[
g0(x) + xng1(x) + x2ng2(x) + · · ·

]
,

f(x) = xn−1
[
f0(x) + xnf1(x) + x2nf2(x) + · · ·

]
,

ϕj(x) = ϕj0(x) + xn−1ϕj1(x) + x2n−1ϕj2(x) + · · · ,

(3.46)

where fj , gj , and ϕjl, j ≥ 0, l ≥ 1, are polynomials in x of degree at most n − 1, and ϕj0, j ≥ 0,
are polynomials in x with degree at most n − 2.
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Now we change (3.44) using (2.2) to the system

ẋ = rn sin θ, ẏ = r2n−1
∑

j≥0
Vj(θ, r)rjn, (3.47)

where by (3.46)

V0(θ, r) = −cos2n−1θg0(r cos θ) − sinnθf0(r cos θ) + r sin2θϕ00(r cos θ),

Vj(θ, r) = −cos2n−1+jnθgj(r cos θ) − sinnθ cosjnθfj(r cos θ) + r sin2+jθϕj0(r cos θ)

+
j−1∑

k=0

sin2+kθ cos(j−k)n−1θϕk,j−k(r cos θ), j ≥ 1.

(3.48)

This yields the equation

dr

dθ
= r

∑
j≥0 Rj(θ, r)rjn

∑
j≥0 Sj(θ, r)rjn

, (3.49)

where

S0(θ, r) = −n sin2θ + cos θ V0(θ, r), R0(θ, r) = sin θ cos θ + sin θV0(θ, r),

Sj(θ, r) = cos θVj(θ, r), Rj(θ, r) = sin θVj(θ, r), j ≥ 1.
(3.50)

By (3.48) and (3.50)we can further expand Sj and Rj in r to obtain for j ≥ 0

Sj(θ, r) =
n−1∑

l=0

Sl+jn(θ)rl, Rj(θ, r) =
n−1∑

l=0

Rl+jn(θ)rl, (3.51)

so that the above differential equation can be written as

dr

dθ
= r

∑
j≥0 Rj(θ)rj

∑
j≥0 Sj(θ)rj

. (3.52)

Further, letting

1
∑

j≥0 Sj(θ)rj
=
∑

j≥0
S̃j(θ)rj , (3.53)

R̃j(θ) =
∑

k+l=j

Rk(θ)S̃l(θ), j ≥ 0 (3.54)
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we obtain

dr

dθ
= r
∑

j≥0
R̃j(θ)rj . (3.55)

Note that for any j ≥ 0, S̃j depends only on Sk with 0 ≤ k ≤ j. Then by (3.54) one can see that,

for any j ≥ 0, R̃j depends only on Rk and Sk with 0 ≤ k ≤ j. (3.56)

Let r(θ, r0) denote the solution of (3.55) with the initial value r0. The for r0 small we
have

r(θ, r0) =
∑

j≥1
rj(θ)r

j

0, (3.57)

where r1, r2, r3, . . . satisfy r1(0) = 1, r2(0) = r3(0) = · · · = 0, and

r ′1 = R̃0r1,

r ′2 = R̃0r2 + R̃1r
2
1 ,

r ′3 = R̃0r3 + 2R̃1r1r2 + R̃2r
3
1 ,

· · ·

(3.58)

which implies that, for any j ≥ 1, the function rj depends only on R̃k with 0 ≤ k ≤ j−1. Hence,
by Lemma 2.3, (1.45), and (3.56)we come to the following conclusion.

For any j ≥ 1, vj(δ) depends only on Rk andSk with 0 ≤ k ≤ j − 1. (3.59)

Further, by (3.48)–(3.51), one can observe that, for 0 ≤ l ≤ n − 1, Sl and Rl depend
only on the coefficients of degree l of the polynomials g0, f0, and xϕ00 in x. Hence, by (3.59)
we see that for 1 ≤ j ≤ n, vj depends only on the coefficients of degree at most j − 1 of the
polynomials g0, f0, and xϕ00 in x.

Similarly, for j ≥ 1 and 0 ≤ l ≤ n − 1, or jn ≤ l + jn ≤ (j + 1)n − 1, Sl+jn and Rl+jn depend
only on the coefficients of degree l of the polynomials gj , fj , xϕj0 and ϕi,j−i with i = 0, . . . , j − 1
in x. In other words, for jn+1 ≤ u ≤ (j +1)n, Su−1, and Ru−1 depend only on the coefficients of
degree u − 1 − jn of the polynomials gj , fj , xϕj0, and ϕi,j−i with i = 0, . . . , j − 1 in x. Let N[a,b]

denote the set of integers in the interval [a, b]. Then, for jn + 1 ≤ u ≤ (j + 1)n, we have

N[0,u−1] =
j−1⋃

i=0

N[in,(i+1)n−1]
⋃

N[jn,u−1]. (3.60)
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Thus, for all k ∈ N[in,(i+1)n−1], Sk and Rk depend only on gi, fi, xϕi0, and ϕl,i−l with l = 0, . . . , i−
1. And for k ∈ N[jn,u−1], Sk and Rk depend only on the coefficients of degree k − jn of the
polynomials gj , fj , xϕj0, and ϕl,j−l with l = 0, . . . , j − 1 in x.

Therefore, by (3.59) for jn+1 ≤ u ≤ (j +1)n, vu(δ) depends only on the functions gi, fi,
xϕi0 and ϕl,i−l with l = 0, . . . , i−1, i = 0, . . . , j −1 and the coefficients of degree at most u−1− jn
of the polynomials gj , fj , xϕj0, and ϕl,j−l with l = 0, . . . , j − 1 in x.

We claim that if j ≥ 0, m ≥ (j + 1)n, then, for jn + 1 ≤ u ≤ (j + 1)n, vu(δ) depends only
on the functions gi, fi, with i = 0, . . . , j − 1 and the coefficients of degree at most u − 1 − jn of
the polynomials gj , fj in x.

In fact, by the above discussion, we need only to prove ϕ00 = 0 in the case j = 0 and
ϕls = 0 for l + s ≤ j and 0 ≤ l ≤ j − 1 in the case j > 0. This can be shown easily since

ϕj0 = O
(
|x|m−1−j

)
, ϕjs = O

(
|x|m−j−sn

)
for s ≥ 1,

degϕj0 ≤ n − 2, degϕjs ≤ n − 1 for s ≥ 1
(3.61)

by (3.45) and (3.46).
By (3.46), the above claim can be restated as the claim that if j ≥ 0, m ≥ (j + 1)n, then

for jn + 1 ≤ u ≤ (j + 1)n, vu(δ) depends only on the coefficients of degree at most 2n + u − 2
of g and the coefficients of degree at most n + u − 2 of f in x. Thus, for any integers k and
m satisfying k ≥ 1 and m ≥ (k + 1)n, taking j = 0, . . . , k we see that, for all 1 ≤ u ≤ (k + 1)n,
vu(δ) depends only on the coefficients of degree at most 2n+ u− 2 of g and the coefficients of
degree at most n + u − 2 of f in x.

Finally, by (3.45), ifm ≥ (k + 3)n − 2, then

2n + u − 2 ≤ m, n + u − 2 ≤ m − 1 for u ≤ (k + 1)n. (3.62)

In this case, for all 1 ≤ u ≤ (k + 1)n, vu(δ) depends only on gm and fm−1 in (3.45). Then the
conclusion of Theorem 1.12 follows.

Proof of Theorem 1.14. Let

X
(
x, y, δ

)
=
∑

2≤i+j≤k
aijx

iyj , Y
(
x, y, δ

)
=
∑

2≤i+j≤k
bijx

iyj . (3.63)

Then (1.49) is equivalent to an analytic system of the form (2.1), where the functions f and g
are given by (1.22). We can write

g(x, δ) =
∑

j≥2
ajx

j , (3.64)

where all aj are polynomials in aij and bij . Thus, by the well-known Hilbert basis theorem
there exists Nk > 0 such that aj = 0 for all j ≥ 2Nk if a2 = · · · = a2Nk−1 = 0. That is, a2 = · · · =
a2Nk−1 = 0 imply that g = 0. In this case, all points on the line y = 0 and near the origin are
singular for (2.1). Thus, the origin has a multiplicity at mostNk as a nilpotent focus or center.
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Further, for any 2 ≤ n ≤ Nk let (1.49) have a nilpotent focus or center at the origin,
having multiplicity n. Then for any sufficiently largem, (1.49) is equivalent to a system of the
form (1.43), where the coefficients aj in gm and bj in fm−1 are all polynomials in aij and bij .
Moreover, a2n−1 > 0 and b2n−1 − 4na2n−1 < 0. Let

F(x) =
∫x

0
fm−1dx, G(x) =

∫x

0
gmdx, (3.65)

and α(x) = −x +
∑

j≥2 αjx
j satisfies G(α) = G(x). Then, noting that

G1/2n =
[
a2n−1
(2n)

]1/2n
|x|
⎛

⎝1 +
∑

j≥1
βjx

j

⎞

⎠, (3.66)

where all βj are polynomials in aij , bij , and c ≡ a−1
2n−1, one can see that all αj are polynomials

in aij , bij , and c. Therefore, if we let

F(α(x)) − F(x) =
∑

j≥n
Bm
j x

j =
∑

j≥2l+1
Bm
j x

j , (3.67)

where l = [n/2], then all Bm
j are polynomials in aij , bij , and c. By Theorems 1.10 and 1.12, for

any integer k0 > 0 there exists an integerm0 > 0 such that Bm
j , j = 2l+1, . . . , k0 are independent

of m for all m ≥ m0, denoting Bm
j by Bj . Then, we have defined a series of coefficients Bj for

all j ≥ 2l + 1, which are all polynomials in aij , bij , and c. Again, by the Hilbert basis theorem
there exists Kn(k) > 0 such that

B2l+1 = B2l+2 = B2l+3 = · · · = B2l+2Kn(k)+1 = 0 =⇒ B2l+j+1 = 0, j ≥ 2Kn(k) + 1. (3.68)

Now, we take K and m such that 2Kn(k) + 1 + pn ≤ Kn, m > (K + 2n) − 2. Then by
Theorems 1.10 and 1.12 again, for (1.49) we have

v1+pn = v3+pn = · · · = v2Kn(k)+1+pn = 0 (3.69)

yielding vj+pn = 0, j ≥ 1. Then the conclusion follows.

4. Application Examples

In this section we provide some application examples based on the ones given in [11].
Consider a Kukles type system of the form

ẋ = y, ẏ = −
(
a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3
)
. (4.1)
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The authors of [11] proved that if a30 > 0 and a2
11−8a30 < 0, then for (4.1) v2 = v4 = v6 = v8 = 0

if and only if a21 = a03 = a11a02 = 0, which implies that the origin is a center. Moreover, there
can be 3 limit cycles near the origin. See Theorem 4.1 in [11] and its proof.

From this conclusion and Theorem 1.7 we have immediately the following.

Proposition 4.1. Let a11, a02, a30, a21, a12, and a03 be bounded parameters satisfying

a30 > 0, a2
11 − 8a30 < 0, |a21| + |a03| + |a11a02| > 0. (4.2)

Then there exists a neighborhood V of the origin such that the system (4.1) has at most 3 limit cycles
in V .

Consider now the system

ẋ = −y +Ax2 + Bxy + Cy2, ẏ = x3 + xy2 + y3. (4.3)

By Theorem 4.2 in [11] and its proof if A2 < 2, then the origin of (4.3) is always a focus with
|v2| + |v4| + |v6| + |v8| > 0. Moreover, there are systems inside (4.3) with at least 3 limit cycles
around the origin. Then by Theorem 1.7 again we have the following.

Proposition 4.2. Let A,B, and C be bounded parameters with A2 < 2. Then there exists a
neighborhood V of the origin such that the system (4.3) has at most 3 limit cycles in V .

Finally, consider the system

ẋ = y, ẏ = −
(
x3 + x5

)
−

k∑

j=0

b2jx
2jy, (4.4)

where k ≥ 2. By Theorems 1.8–1.11, we obtain the following.

Proposition 4.3. Let b2j be bounded parameters. Then

(1) if b0 = 0, the system (4.4) has at most k − 1 limit cycles near the origin, and k − 1 limit
cycles can appear.

(2) If b0 /= 0, there are systems inside (4.4) which have at least k limit cycles near the origin.
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