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This paper is concerned with oscillation of second-order nonlinear dynamic equations of the

form (r(t)((y(t) + p(t)y(τ(t)))Δ)
γ
)
Δ
+ f1(t, y(δ1(t))) + f2(t, y(δ2(t))) = 0 on time scales. By using

a generalized Riccati technique and integral averaging techniques, we establish new oscillation
criteria which handle some cases not covered by known criteria.

1. Introduction

The theory of time scales was introduced by Stefan Hilger in his Ph.D. thesis in 1988 in order
to unify continuous and discrete analysis. Not only can this theory of the so-called “dynamic
equations” unify theories of differential equations and difference equations but also extend
these classical cases to cases “in between”, for example, to the so-called q-difference
equations. A time scale T is an arbitrary nonempty closed subset of the real numbers R with
the topology and ordering inherited form R, and the cases when this time scale is equal to
R or to the integers Z represent the classical theories of differential and difference equations.
Of course many other interesting time scales exist, and they give rise to plenty of applications.
In recent years, there has been much research activity concerning the oscillation and nono-
scillation of solutions of various dynamic equations on time scales, we refer the reader to
[1–14].

In 2006, Wu et al. [1] considered the second-order nonlinear neutral dynamic equation
with variable delays

(
r(t)

((
y(t) + p(t)y(τ(t))

)Δ)γ)Δ
+ f

(
t, y(δ(t))

)
= 0, t ∈ T, (1.1)
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where γ ≥ 1 is a quotient of odd positive integers. In 2007, Saker et al. [2] also discussed (1.1)
for an odd positive integer γ ≥ 1. In 2010, Zhang and Wang [3] extended and complemented
some results in [1, 2] for γ ≥ 1 and gave some new results for 0 < γ < 1. In 2011, Saker [4]
considered (1.1) in different conditions. In 2010, Sun et al. [5] considered the second-order
quasiliner neutral delay dynamic equation

(
r(t)

((
y(t) + p(t)y(τ(t))

)Δ)γ)Δ
+ q1x

α(τ1(t)) + q2x
β(τ2(t)) = 0, t ∈ T, (1.2)

where γ , α, and β are quotients of odd positive integers with 0 < α < γ < β.
In this paper, we study the second-order nonlinear dynamic equation

(
r(t)

((
y(t) + p(t)y(τ(t))

)Δ)γ)Δ
+ f1

(
t, y(δ1(t))

)
+ f2

(
t, y(δ2(t))

)
= 0, (1.3)

on a time scale T, where p ∈ Crd(T, [0, 1)), fi ∈ C(T×R,R), i = 1, 2, γ > 0 is a quotient of odd
positive integers.

The paper is organized as follows. In the next section, we give some preliminaries and
lemmas. In Section 3, we will use the Riccati transformation technique to prove our main
results. In Section 4, we present two examples to illustrate our results.

2. Preliminaries and Lemmas

For convenience, we recall some concepts related to time scales. More details can be found in
[6].

Definition 2.1. Let T be a time scale, for t ∈ T the forward jump operator is defined by σ(t) :=
inf{s ∈ T : s > t}, the backward jump operator by ρ(t) := sup{s ∈ T : s < t}, and the
graininess function by μ(t) := σ(t) − t, where inf ∅ := supT and sup ∅ := infT. If σ(t) > t, t is
said to be right-scattered, otherwise, it is right-dense. If ρ(t) < t, t is said to be left-scattered,
otherwise, it is left-dense. The set T

κ is defined as follows. If T has a left-scattered maximum
m, then T

κ = T − {m}, otherwise, T
κ = T.

Definition 2.2. For a function f : T → R and t ∈ T
κ, one defines the delta-derivative fΔ(t) of

f(t) to be the number (provided it exists) with the property that given any ε > 0, there is a
neighborhood U of t (i.e.,U = (t − δ, t + δ) ∩ T for some δ) such that

∣∣∣[f(σ(t)) − f(s)
] − fΔ(t)[σ(t) − s]

∣∣∣ ≤ ε|σ(t) − s|, ∀s ∈ U. (2.1)

We say that f is delta-differentiable (or in short, differentiable) on T
κ provided fΔ(t) exists,

for all t ∈ T
κ.

It is easily seen that if f is continuous at t ∈ T and t is right-scattered, then f is
differentiable at twith

fΔ(t) =
f(σ(t)) − f(t)

μ(t)
. (2.2)
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Moreover, if t is right-dense then f is differential at t if the limit

lim
s→ t

f(t) − f(s)
t − s

(2.3)

exists as a finite number. In this case

fΔ(t) = lim
s→ t

f(t) − f(s)
t − s

. (2.4)

In addition, if fΔ ≥ 0, then f is nondecreasing. A useful formula is

fσ(t) = f(t) + μ(t)fΔ(t), where fσ(t) := f(σ(t)). (2.5)

Wewill make use of the following product and quotient rules for the derivative of the product
fg and the quotient f/g (where ggσ /= 0) of two differentiable functions f and g:

(
fg

)Δ = fΔg + fσgΔ = fgΔ + fΔgσ,

(
f

g

)Δ

=
fΔg − fgΔ

ggσ
.

(2.6)

Definition 2.3. Let f : T → R be a function, f is called right-dense continuous (rd-continuous)
if it is continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense
points in T. A function F : T → R is called an antiderivative of f provided FΔ(t) = f(t)
holds for all t ∈ T

k. By the antiderivative, the Cauchy integral of f is defined as
∫b
a f(s)Δs =

F(b) − F(a), and
∫∞
a f(s)Δs = limt→∞

∫ t
a f(s)Δs.

Let Crd(T,R) denote the set of all rd-continuous functions mapping T to R. It is
shown in [6] that every rd-continuous function has an antiderivative. An integration by parts
formula is

∫b

a

f(t)gΔ(t)Δt =
[
f(t)g(t)

]∣∣b
a −

∫b

a

fΔ(t)gσ(t)Δt. (2.7)

In (1.3), we assume that T is a time scale and

(h1) τ(t), δi(t) ∈ Crd(T,T), limt→∞τ(t) = ∞, τ(t) ≤ t, limt→∞δi(t) = ∞, and t ≤ δi(t),
i = 1, 2,

(h2) r(t) ∈ Crd(T,R+),
∫∞(1/r(t))1/γΔt = ∞, p(t) ∈ Crd(T, [0, 1)), where R

+ = (0,∞),

(h3) fi(t, u) : T × R → R is continuous function such that ufi(t, u) > 0 for all u/= 0, there
exist qi(t) ∈ Crd(T,R+) (i = 1, 2), quotients of odd positive integers α and β such
that |uf1(t, u)| ≥ q1(t)|u|α+1, |uf2(t, u)| ≥ q2(t)|u|β+1, and 0 < α < γ < β.

Since we are interested in the oscillatory and asymptotic behavior of solutions near
infinity, we assume throughout that the time scale T under consideration satisfies infT = t0
and supT = ∞. For T ∈ T, let [T,∞)

T
:= {t ∈ T : t ≥ T}. Throughout this paper, these
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assumptions will be supposed to hold. Let τ∗(t) = min{τ(t), δ1(t), δ2(t)}, T0 = min{τ∗(t) : t ≥
t0} and τ∗−1(t) = sup{s ≥ t0 : τ∗(s) ≤ t}. Clearly τ∗−1(t) ≥ t for t ≥ T0, τ∗−1(t) is nondecreasing
and coincides with the inverse of τ∗(t)when the latter exists.

By a solution of (1.3), we mean a nontrivial real-valued function y(t) which has
the properties [y(t) + p(t)y(τ(t))] ∈ C1

rd[τ
∗
−1(t0),∞) and r(t)([y(t) + p(t)y(τ(t))])Δ)γ ∈

C1
rd[τ

∗
−1(t0),∞). Our attention is restricted to those solutions of (1.3) that exist on some half

line [ty,∞) and satisfy sup{|y(t)| : t ≥ t1} > 0 for any t1 ≥ ty. A solution y(t) of (1.3) is said to
be oscillatory if it is neither eventually positive nor eventually negative. Otherwise it is called
nonoscillatory. The equation itself is called oscillatory if all its solutions are oscillatory.

For convenience, we use the notation x(σ(t)) = xσ(t), x(δi(t)) = xδi(t) (i = 1, 2) and
xΔ(σ(t)) = (xΔ(t))σ , and set

x(t) := y(t) + p(t)y(τ(t)). (2.8)

Then (1.3) becomes

(
r(t)

(
xΔ(t)

)γ)Δ
+ f1

(
t, y(δ1(t))

)
+ f2

(
t, y(δ2(t))

)
= 0. (2.9)

Now, we give the first lemma. Set

RT (t) =
∫ t

T

Δs

(r(s))1/γ
. (2.10)

Lemma 2.4. Let conditions (h1)–(h3) hold. If y(t) is an eventually positive solution of (1.3), then
there exists T ∈ T sufficiently large such that x(t) > 0, xΔ(t) > 0, (r(t)(xΔ(t))γ)Δ < 0, x(t) >
RT (t)r1/γ(t)xΔ(t), and (xδi(t)/xσ(t)) > (RT (t)r

1/γ(t))/(RT (t)r1/γ(t) + μ(t)) (i = 1, 2) for t ∈
[T,∞)

T
.

Proof. If y(t) is an eventually positive solution of (1.3), then by (h1) there exists a T ∈ [t0,∞)
T

such that

y(t) > 0, y(τ(t)) > 0, y(δi(t)) > 0, for t ≥ T, i = 1, 2. (2.11)

From (2.8), (1.3), and (h2), we see that x(t) ≥ y(t). Also by (1.3) and (h3), we have

(
r(t)

(
xΔ(t)

)γ)Δ
≤ −q1(t)yα(δ1(t)) − q2(t)yβ(δ2(t)) < 0, for t ≥ T, (2.12)

which implies that r(t)(xΔ(t))γ is decreasing on [T,∞)
T
.

We claim that r(t)(xΔ(t))γ > 0 on [T,∞)
T
. Assume not, there is a t1 ∈ [T,∞)

T
such that

r(t1)(xΔ(t1))
γ < 0. Since r(t)(xΔ(t))γ ≤ r(t1)(xΔ(t1))

γ for t ≥ t1, we have

xΔ(t) ≤ (r(t1))1/γxΔ(t1)
(

1
r(t)

)1/γ

. (2.13)
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Integrating the inequality above form t1 to t (≥ t1), by (h2) we get

x(t) ≤ x(t1) + (r(t1))1/γxΔ(t1)
∫ t

t1

(
1

r(s)

)1/γ

Δs −→ −∞ (t −→ ∞), (2.14)

and this contradicts the fact that x(t) > 0, for all t ≥ T . Thus we have r(t)(xΔ(t))γ > 0 on
[T,∞)

T
and so xΔ(t) > 0 on [T,∞)

T
.

Note that

x(t) > x(t) − x(T) =
∫ t

T

xΔ(s) =
∫ t

T

(
r(s)

(
xΔ(s)

)γ)1/γ

r1/γ(s)
Δs

>
(
r(t)

(
xΔ(t)

)γ)1/γ
∫ t

T

1
r1/γ(s)

Δs = RT (t)r1/γ(t)xΔ(t),

(2.15)

we have

xσ(t)
x(t)

=
x(t) + μ(t)xΔ(t)

x(t)
= 1 + μ(t)

xΔ(t)
x(t)

< 1 + μ(t)
1

RT (t)r1/γ(t)
=

RT (t)r1/γ(t) + μ(t)
RT (t)r1/γ(t)

.

(2.16)

Since δi(t) ≥ t and xΔ(t) > 0, we get

xδi(t)
xσ(t)

=
xδi(t)
x(t)

· x(t)
xσ(t)

≥ x(t)
xσ(t)

>
RT (t)r1/γ(t)

RT (t)r1/γ(t) + μ(t)
, i = 1, 2. (2.17)

The proof is complete.

Remark 2.5. By x(t) ≥ y(t) on [T,∞)
T
, xΔ > 0, (1.3), (2.8) and (h1)–(h3), we get

0 ≥
(
r(t)

(
xΔ(t)

)γ)Δ
+ q1(t)

[
y(δ1(t))

]α + q2(t)
[
y(δ2(t))

]β

=
(
r(t)

(
xΔ(t)

)γ)Δ
+ q1(t)

[
x(δ1(t)) − p(δ1(t))y(τ(δ1(t)))

]α

+ q2(t)
[
x(δ2(t)) − p(δ2(t))y(τ(δ2(t)))

]β

≥
(
r(t)

(
xΔ(t)

)γ)Δ
+ q1(t)

[
x(δ1(t)) − p(δ1(t))x(τ(δ1(t)))

]α

+ q2(t)
[
x(δ2(t)) − p(δ2(t))x(τ(δ2(t)))

]β

≥
(
r(t)

(
xΔ(t)

)γ)Δ
+ q1(t)

[
1 − p(δ1(t))

]α(x(δ1(t)))α

+ q2(t)
[
1 − p(δ2(t))

]β(x(δ2(t)))β.

(2.18)
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Lemma 2.6 (see [3]). Let g(u) = Bu−Au(γ+1)/γ , whereA > 0 and B are constants, γ is a quotient of
odd positive integers. Then g attains its maximum value on R at u∗ = (Bγ/(A(γ + 1)))γ , and

max
u∈R

g = g(u∗) =
γγ

(
γ + 1

)γ+1
Bγ+1

Aγ
. (2.19)

Lemma 2.7 (see [11]). x and z are delta-differentiable on T. For x /= 0 and any t ∈ T, one has

xΔ(t)

(
z2(t)
x(t)

)Δ

=
(
zΔ(t)

)2 − x(t)xσ(t)

[(
z(t)
x(t)

)Δ
]2

. (2.20)

3. Main Results

In this section, by employing the Riccati transformation technique we will establish oscilla-
tion criteria for (1.3) in two cases: γ ≥ 1 and 0 < γ < 1. Set

Q(s) =
(
q1(s)

(
1 − p(δ1(s))

)α)(β−γ)/(β−α) ·
(
q2(s)

(
1 − p(δ2(s))

)β)(γ−α)/(β−α)
,

Q1(s) =

(
RT (s)r1/γ(s)

RT (s)r1/γ(s) + μ(s)

)γ

z(s)Q(s),

Q2(s) =

(
RT (s)r1/γ(s)

RT (s)r1/γ(s) + μ(s)

)γ(
z2(s)

)σ
Q(s),

C(t, s) = HΔ
s (t, s) +H(t, s)

zΔ(s)
z(σ(s))

, A(s) =
zΔ(s)
z(σ(s))

+
HΔ

s (t, s)
H(t, s)

,

(3.1)

(I) γ ≥ 1.

Theorem 3.1. Assume that (h1)–(h3) hold and γ ≥ 1. Furthermore, assume that there exists a
positive rd-continuous Δ-differentiable function z(t) such that for all sufficiently large T ∈ T,

lim sup
t→∞

∫ t

T

⎡
⎣Q1(s) − 1

(
γ + 1

)γ+1
r(s)

(
zΔ(s)

)γ+1
zγ(s)

⎤
⎦Δs = ∞, (3.2)

then (1.3) is oscillatory.

Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of (1.3). Without loss of
generality, we may assume that y(t) is eventually positive (note that in the case when y(t) is
eventually negative, the proof is similar, since the substitution Y (t) = −y(t) transforms (1.3)
into the same form). Then, by (h1)–(h3) there exists T ≥ t0 sufficiently large such that y(t) > 0,
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y(τ(t)) > 0, y(δ1,2(t)) > 0, and Lemma 2.4 holds for t ≥ T , where x(t) is defined by (2.8).
Define the function w(t) by the Riccati substitution

w(t) :=
z(t)r(t)

(
xΔ(t)

)γ
xγ(t)

, for t ≥ T, (3.3)

then w(t) > 0 and

wΔ(t) =
(
r(t)

(
xΔ(t)

)γ)Δ
(

z(t)
xγ(t)

)
+
(
r(t)

(
xΔ(t)

)γ)σ
(

z(t)
xγ(t)

)Δ

=
(
r(t)

(
xΔ(t)

)γ)Δ
(

z(t)
xγ(t)

)
+
(
r(t)

(
xΔ(t)

)γ)σ
[
zΔ(t)xγ(t) − z(t)(xγ(t))Δ

xγ(t)(xσ(t))γ

]
.

(3.4)

By (1.3), xΔ(t) > 0, and (2.18), we obtain

(
r(t)

(
xΔ(t)

)γ)Δ

xγ(t)
≤ − q1(t)

[
1 − p(δ1(t))

]α(
xδ1(t)

)α
(xσ(t))γ

− q2(t)
[
1 − p(δ2(t))

]β(
xδ2(t)

)β
(xσ(t))γ

.

(3.5)

Noting that 0 < α < γ < β, we have

β − γ

β − α
< 1,

γ − α

β − α
< 1. (3.6)

By Young’s inequality

aχb1−χ ≤ χa +
(
1 − χ

)
b, 0 < χ < 1, (3.7)

with

χ =
β − γ

β − α
, a =

q1(t)
[
1 − p(δ1(t))

]α(
xδ1(t)

)α
(xσ(t))γ

,

b =
q2(t)

[
1 − p(δ2(t))

]β(
xδ2(t)

)β
(xσ(t))γ

,

(3.8)
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we have

q1(t)
[
1 − p(δ1(t))

]α(
xδ1(t)

)α
(xσ(t))γ

+
q2(t)

[
1 − p(δ2(t))

]β(
xδ2(t)

)β
(xσ(t))γ

≥ β − γ

β − α

q1(t)
[
1 − p(δ1(t))

]α(
xδ1(t)

)α
(xσ(t))γ

+
γ − α

β − α

q2(t)
[
1 − p(δ2(t))

]β(
xδ2(t)

)β
(xσ(t))γ

≥
(

q1(t)
[
1 − p(δ1(t))

]α(
xδ1(t)

)α
(xσ(t))γ

)(β−γ)/(β−α)
·
⎛
⎝q2(t)

[
1 − p(δ2(t))

]β(
xδ2(t)

)β
(xσ(t))γ

⎞
⎠

(γ−α)/(β−α)

=
(
q1(t)

[
1 − p(δ1(t))

]α)(β−γ)/(β−α) ·
(
q2(t)

[
1 − p(δ2(t))

]β)(γ−α)/(β−α)

·
(
xδ1(t)

)(αβ−αγ)/(β−α) · (xδ2(t)
)(βγ−βα)/(β−α)

(xσ(t))γ
.

(3.9)

By γ = ((αβ − αγ)/(β − α)) + ((βγ − βα)/(β − α)) and Lemma 2.4, we get

q1(t)
[
1 − p(δ1(t))

]α(
xδ1(t)

)α
(xσ(t))γ

+
q2(t)

[
1 − p(δ2(t))

]β(
xδ2(t)

)β
(xσ(t))γ

≥ (
q1(t)

[
1 − p(δ1(t))

]α)(β−γ)/(β−α) ·
(
q2(t)

[
1 − p(δ2(t))

]β)(γ−α)/(β−α)

·
(

xδ1(t)
xσ(t)

)(αβ−αγ)/(β−α)
·
(

xδ2(t)
xσ(t)

)(βγ−βα)/(β−α)

>

(
RT (t)r1/γ(t)

RT (t)r1/γ(t) + μ(t)

)γ

Q(t).

(3.10)

In view of xΔ(t) > 0 and (3.5)–(3.10), for all t ≥ T , we obtain

wΔ(t) < − z(t)

(
RT (t)r1/γ(t)

RT (t)r1/γ(t) + μ(t)

)γ

Q(t) +wσ(t)
zΔ(t)
zσ(t)

−
(
r(t)

(
xΔ(t)

)γ)σ z(t)(xγ(t))Δ

xγ(t)(xσ(t))γ

= −Q1(t) +wσ(t)
zΔ(t)
zσ(t)

−
(
r(t)

(
xΔ(t)

)γ)σ z(t)(xγ(t))Δ

xγ(t)(xσ(t))γ
.

(3.11)
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Using γ ≥ 1, Lemma 2.4 and the Keller’s chain rule, we get

(xγ(t))Δ = γ

[∫1

0

(
x(t) + hμ(t)xΔ(t)

)γ−1
dh

]
xΔ(t)

= γxΔ(t)
∫1

0
((1 − h)x(t) + hxσ(t))γ−1dh

≥ γxΔ(t)
∫1

0
((1 − h)x(t) + hx(t))γ−1dh = γxγ−1(t)xΔ(t).

(3.12)

Also from Lemma 2.4 and σ(t) ≥ t, we have

r(t)
(
xΔ(t)

)γ ≥ r(σ(t))
(
xΔ(σ(t))

)γ
. (3.13)

By (3.11)–(3.13), we get

wΔ(t) < −Q1(t) +wσ(t)
zΔ(t)
zσ(t)

−
(
r(t)

(
xΔ(t)

)γ)σ z(t)γxγ−1(t)xΔ(t)
xγ(t)(xσ(t))γ

≤ −Q1(t) +wσ(t)
zΔ(t)
zσ(t)

− z(t)γ
r1/γ(t)

(rσ(t))(γ+1)/γ
(
xΔ(σ(t))

)γ+1

(xσ(t))γ+1

= −Q1(t) +wσ(t)
zΔ(t)
zσ(t)

− z(t)γ

r1/γ(t)(zσ(t))(γ+1)/γ
(wσ(t))(γ+1)/γ .

(3.14)

Setting

B =
zΔ(t)
zσ(t)

, A =
z(t)γ

r1/γ(t)(zσ(t))(γ+1)/γ
, u = wσ(t), (3.15)

then by Lemma 2.6, from (3.14)we obtain that for all t ≥ T ,

wΔ(t) < −Q1(t) +
1

(
γ + 1

)γ+1
r(t)

(
zΔ(t)

)γ+1
zγ(t)

. (3.16)

Integrating the above inequality from T to t(≥ T), we get

∫ t

T

⎡
⎣Q1(s) − 1

(
γ + 1

)γ+1
r(s)

(
zΔ(s)

)γ+1
zγ(s)

⎤
⎦Δs < w(T) −w(t) < w(T). (3.17)

Taking lim sup on both sides of the above inequality as t → ∞, we obtain a contradiction to
condition (3.2). The proof is complete.
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The following theorem gives new oscillation criteria for (1.3)which can be considered
as the extension of Philos-type oscillation criterion. Define D = {(t, s) ∈ T

2 : t ≥ s ≥ 0} and

H∗ =
{
H(t, s) ∈ C1(D,R+) : H(t, t) = 0,H(t, s) > 0, HΔ

s (t, s) ≥ 0, for t > s ≥ 0
}
. (3.18)

Theorem 3.2. Assume that (h1)–(h3) hold and γ ≥ 1. Furthermore, assume that there exist a
positive rd-continuous Δ-differentiable function z(t) and a function H ∈ H∗ such that for
all sufficiently large T ∈ T,

lim sup
t→∞

1
H(t, T)

∫ t

T

[
H(t, s)Q1(s) − Cγ+1(t, s)r(s)(z(σ(s)))γ+1

Hγ(t, s)
(
γ + 1

)γ+1
zγ(s)

]
Δs = ∞, (3.19)

then (1.3) is oscillatory.

Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of (1.3). Without loss of
generality, we may assume that y(t) is eventually positive. Then, by (h1)–(h3) there exists
T ≥ t0 sufficiently large such that y(t) > 0, y(τ(t)) > 0, y(δ1,2(t)) > 0, and Lemma 2.4 holds for
t ≥ T , where x(t) is defined by (2.8). Define w(t) as in (3.3). Proceeding as in the proof of
Theorem 3.1, we can get (3.14). From (3.14), for function H ∈ H∗ and all t ≥ T we have

∫ t

T

H(t, s)Q1(s)Δs < −
∫ t

T

H(t, s)wΔ(s)Δs +
∫ t

T

H(t, s)wσ(s)
zΔ(s)
zσ(s)

Δs

−
∫ t

T

H(t, s)
z(s)γ

r1/γ(s)(zσ(s))(γ+1)/γ
(wσ(s))(γ+1)/γΔs.

(3.20)

Using the integration by parts formula (2.7), we obtain

−
∫ t

T

H(t, s)wΔ(s)Δs = −H(t, s)w(s)|tT +
∫ t

T

HΔ
s (t, s)w

σ(s)Δs

= H(t, T)w(T) +
∫ t

T

HΔ
s (t, s)w

σ(s)Δs.

(3.21)

It follows that

∫ t

T

H(t, s)Q1(s)Δs < H(t, T)w(T) +
∫ t

T

[
HΔ

s (t, s) +H(t, s)
zΔ(s)
zσ(s)

]
wσ(s)Δs

−
∫ t

T

H(t, s)
z(s)γ

r1/γ(s)(zσ(s))(γ+1)/γ
(wσ(s))(γ+1)/γΔs

= H(t, T)w(T) +
∫ t

T

C(t, s)wσ(s)Δs

−
∫ t

T

H(t, s)z(s)γ

r1/γ(s)(zσ(s))(γ+1)/γ
(wσ(s))(γ+1)/γΔs.

(3.22)
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Setting

B = C(t, s), A =
H(t, s)z(s)γ

r1/γ(s)(zσ(s))(γ+1)/γ
, u = wσ(s), (3.23)

by Lemma 2.6 we obtain that for all t ≥ T ,

∫ t

T

H(t, s)Q1(s)Δs < H(t, T)w(T) +
∫ t

T

[C(t, s)]γ+1(zσ(s))γ+1r(s)

Hγ(t, s)
(
γ + 1

)γ+1
zγ(s)

Δs. (3.24)

That is,

1
H(t, T)

∫ t

T

[
H(t, s)Q1(s) − [C(t, s)]γ+1r(s)(zσ(s))γ+1

Hγ(t, s)
(
γ + 1

)γ+1
zγ(s)

]
Δs < w(T). (3.25)

Taking lim sup on both sides of the above inequality as t → ∞, we obtain a contradiction to
condition (3.19). The proof is complete.

Theorem 3.3. Assume that (h1)–(h3) hold and γ ≥ 1. Then (1.3) is oscillatory if for all sufficiently
large T ∈ T,

lim sup
t→∞

∫ t

T

Q(s)Rγ

T (s)Δs = ∞. (3.26)

Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of (1.3). Without loss of
generality, we may assume that y(t) is eventually positive. Then, by (h1)–(h3) there exists
T ≥ t0 sufficiently large such that y(t) > 0, y(τ(t)) > 0, y(δ1,2(t)) > 0, and Lemma 2.4 holds for
t ≥ T , where x(t) is defined by (2.8). Set φ(t) = r1/γ(t)xΔ(t). By Lemma 2.4, we get φ > 0,
(φγ)Δ < 0. Using γ ≥ 1 and the keller’s chain rule, we get

(
φγ(t)

)Δ = γ

[∫1

0

(
φ(t) + hμ(t)φΔ(t)

)γ−1
dh

]
φΔ(t)

= γ

[∫1

0

(
(1 − h)φ(t) + hφσ(t)

)γ−1
dh

]
φΔ(t) < 0.

(3.27)

So we have φΔ(t) < 0 and there is a constant L > 0 such that φ(t) ≤ L for t ≥ T . Then (1.3)
becomes (φγ)Δ(t) + f1(t, y(δ1(t))) + f2(t, y(δ2(t))) = 0. By (2.18), we have

0 ≥
(
φγ(t)

)Δ
(
φσ(t)

)γ + q1(t)
(
1 − p(δ1(t))

)α
(
xδ1(t)

)α
(
φσ(t)

)γ + q2(t)
(
1 − p(δ2(t))

)β
(
xδ2(t)

)β
(
φσ(t)

)γ . (3.28)
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Similar to the proof of (3.10), we get

0 ≥
(
φγ(t)

)Δ
(
φσ(t)

)γ +Q(t)

(
xδ1(t)
φσ(t)

)(αβ−αγ)/(β−α)
·
(

xδ2(t)
φσ(t)

)(βγ−βα)/(β−α)
. (3.29)

Using the Keller’s chain rule and φΔ(t) < 0, we get φσ ≤ φ and

(φγ(t))Δ ≥ γ
(
φσ(t)

)γ−1
φΔ(t). (3.30)

From δ1,2(t) ≥ t and xΔ(t) > 0, it follows that

0 ≥ γφΔ(t)
φσ(t)

+Q(t)

(
xδ1(t)
φσ(t)

)(αβ−αγ)/(β−α)
·
(

xδ2(t)
φσ(t)

)(βγ−βα)/(β−α)
≥ γφΔ(t)

L
+Q(t)

(
x(t)
φσ(t)

)γ

≥ γφΔ(t)
L

+Q(t)
(
x(t)
φ(t)

)γ

.

(3.31)

By Lemma 2.4, we get

x(t)
φ(t)

=
x(t)

r1/γ(t)xΔ(t)
> RT (t). (3.32)

It follows that

0 >
γφΔ(t)

L
+Q(t)Rγ

T (t). (3.33)

Integrating the above inequality from T to t(≥ T), we obtain

∫ t

T

Q(s)Rγ

T (s)Δs < − γ

L

∫ t

T

φΔ(s)Δs =
γ

L

(
φ(T) − φ(t)

)
<

γ

L
φ(T). (3.34)

Taking lim sup on both sides of the above inequality as t → ∞, we obtain a contradiction to
condition (3.26). The proof is complete.

Theorem 3.4. Assume that (h1)–(h3) hold and γ ≥ 1. Furthermore, assume that there exists a
positive rd-continuous Δ-differentiable function z(t) such that for all sufficiently large T ∈ T,

lim sup
t→∞

∫ t

T

[
Q1(s) −

r1/γ(s)
(
zΔ(s)

)2

4γ(RT (s))γ−1z(s)

]
Δs = ∞, (3.35)

then (1.3) is oscillatory.
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Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of (1.3). Without loss of
generality, we may assume that y(t) is eventually positive. Then, by (h1)–(h3) there exists
T ≥ t0 sufficiently large such that y(t) > 0, y(τ(t)) > 0, y(δ1,2(t)) > 0, and Lemma 2.4 holds
for t ≥ T , where x(t) is defined by (2.8). Define w(t) as in (3.3). By (2.6), we obtain

wΔ(t) = zΔ(t)

[
r(t)

(
xΔ(t)

)γ
xγ(t)

]σ

+ z(t)

[
r(t)

(
xΔ(t)

)γ
xγ(t)

]Δ

=
zΔ(t)
zσ(t)

wσ(t) + z(t)

⎡
⎢⎣

(
r(t)

(
xΔ(t)

)γ)Δ
xγ(t) − r(t)

(
xΔ(t)

)γ(xγ(t))Δ

xγ(t)(xσ(t))γ

⎤
⎥⎦

=
zΔ(t)
zσ(t)

wσ(t) + z(t)

⎡
⎢⎣

(
r(t)

(
xΔ(t)

)γ)Δ
(xσ(t))γ − rσ(t)

((
xΔ(t)

)σ)γ
(xγ(t))Δ

xγ(t)(xσ(t))γ

⎤
⎥⎦.

(3.36)

By Lemma 2.4, σ(t) ≥ t, and (3.5)–(3.13), for all t ≥ T we obtain

wΔ(t) < −Q1(t) +wσ(t)
zΔ(t)
zσ(t)

− z(t)
rσ(t)

(
xΔ(σ(t))

)γ
γxγ−1(t)xΔ(t)

xγ(t)(xσ(t))γ

= −Q1(t) +wσ(t)
zΔ(t)
zσ(t)

− γz(t)rσ(t)

[(
xΔ(σ(t))

)γ
(xσ(t))γ

]2
(xσ(t))γxΔ(t)

x(t)
(
xΔ(σ(t))

)γ

< −Q1(t) +wσ(t)
zΔ(t)
zσ(t)

− γz(t)
(
wσ(t)
zσ(t)

)2 xγ−1(t)
(
xΔ(t)

)γ−1
r(t)

< −Q1(t) +wσ(t)
zΔ(t)
zσ(t)

− γz(t)
1

r(t)

(
wσ(t)
zσ(t)

)2(
RT (t)r1/γ(t)

)γ−1
.

(3.37)

It follows that

wΔ(t) < −Q1(t) +
zΔ(t)
zσ(t)

wσ(t) − γz(t)(RT (t))γ−1

r1/γ(t)(zσ(t))2
(wσ(t))2. (3.38)

By completing the square, we have

wΔ(t) < −Q1(t) +
r1/γ(t)

(
zΔ(t)

)2

4γ(RT (t))γ−1z(t)
. (3.39)

Integrating the above inequality from T to t(≥ T), we get

∫ t

T

[
Q1(s) −

r1/γ(s)
(
zΔ(s)

)2

4γ(RT (s))γ−1z(s)

]
Δs < w(T) −w(t) < w(T). (3.40)



14 Abstract and Applied Analysis

Taking lim sup on both sides of the above inequality as t → ∞, we obtain a contradiction to
condition (3.35). The proof is complete.

Theorem 3.5. Assume that (h1)–(h3) and γ ≥ 1 hold. Furthermore, assume that there exist a
positive rd-continuous Δ-differentiable function z(t) and a function H ∈ H∗ such that for
all sufficiently large T ∈ T,

lim sup
t→∞

1
H(t, T)

∫ t

T

[
H(t, s)Q1(s) − H(t, s)A2(s)r1/γ(s)(zσ)2(s)

4γ(RT (s))γ−1z(s)

]
Δs = ∞, (3.41)

then (1.3) is oscillatory.

Proof. By (3.39), the proof is similar to Theorems 3.2 and 3.4, so we omit it.

Theorem 3.6. Assume that (h1)–(h3) hold and γ ≥ 1. Furthermore, assume that there exists a rd-
continuous Δ-differentiable function z(t) such that for all sufficiently large T ∈ T,

lim sup
t→∞

∫ t

T

[
Q2(s) − 1

γ

(
zΔ(s)

)2
r1/γ(s)(RT (s))1−γ

]
Δs = ∞, (3.42)

then (1.3) is oscillatory.

Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of (1.3). Without loss of
generality, we may assume that y(t) is eventually positive. Then, by (h1)–(h3) there exists
T ≥ t0 sufficiently large such that y(t) > 0, y(τ(t)) > 0, y(δ1,2(t)) > 0, and Lemma 2.4 holds
for t ≥ T , where x(t) is defined by (2.8). Define the function v(t) by the Riccati substitution

v(t) :=
z2(t)r(t)

(
xΔ(t)

)γ
xγ(t)

, for t ≥ T, (3.43)

then v(t) > 0. From (3.5) and (3.10), it follows that for all t ≥ T

vΔ(t) =
[
r(t)

(
xΔ(t)

)γ]Δ(z2(t)
xγ(t)

)σ

+ r(t)
(
xΔ(t)

)γ
(

z2(t)
xγ(t)

)Δ

≤ −Q2(t) +
r(t)

(
xΔ(t)

)γ

(xγ(t))Δ
(xγ(t))Δ

(
z2(t)
xγ(t)

)Δ

.

(3.44)

By (3.12) and Lemma 2.7, we obtain

vΔ(t) ≤ −Q2(t) +
r(t)

(
xΔ(t)

)γ

(xγ(t))Δ

⎡
⎣
(
zΔ(t)

)2 − xγ(t)(xσ(t))γ
((

z(t)
xγ(t)

)Δ
)2

⎤
⎦

< −Q2(t) +
r(t)

(
xΔ(t)

)γ(
zΔ(t)

)2

(xγ(t))Δ
< −Q2(t) +

r(t)
(
xΔ(t)

)γ(
zΔ(t)

)2
γxγ−1(t)xΔ(t)

.

(3.45)
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It follows from Lemma 2.4 that

vΔ(t) < −Q2(t) +
1
γ

(
zΔ(t)

)2
r1/γ(t)(RT (t))1−γ . (3.46)

Integrating the above inequality from T to t (≥ T), we get

∫ t

T

[
Q2(s) − 1

γ

(
zΔ(s)

)2
r1/γ(s)(RT (s))1−γ

]
Δs < v(T) − v(t) < v(T). (3.47)

Taking lim sup on both sides of the above inequality as t → ∞, we obtain a contradiction to
condition (3.42). The proof is complete.

From Theorem 3.6, we can establish different sufficient conditions for the oscillation
of (1.3) by using different choices of z(t). For instance, if z(t) = 1 or z(t) =

√
t, we have the

following results.

Corollary 3.7. Assume that (h1)–(h3) hold and γ ≥ 1. Then (1.3) is oscillatory if for all sufficiently
large T ∈ T,

lim sup
t→∞

∫ t

T

(
RT (s)r1/γ(s)

RT (s)r1/γ(s) + μ(s)

)γ

Q(s)Δs = ∞. (3.48)

Corollary 3.8. Assume that (h1)–(h3) hold and γ ≥ 1. Then (1.3) is oscillatory if for all sufficiently
large T ∈ T,

lim sup
t→∞

∫ t

T

⎡
⎣Q3(s) −

(
1√

s +
√
σ(s)

)2

r1/γ(s)
1
γ
(RT (s))1−γ

⎤
⎦Δs = ∞, (3.49)

where Q3(s) = (RT (s)r1/γ(s)/(RT (s)r1/γ(s) + μ(s)))γσ(s)Q(s).
(II) 0 < γ < 1.

Theorem 3.1′. Assume that (h1)–(h3) hold and 0 < γ < 1. Furthermore, assume that there exists a
positive rd-continuous Δ-differentiable function z(t) such that for all sufficiently large T ∈ T,

lim sup
t→∞

∫ t

T

⎡
⎣Q1(s) − 1

(
γ + 1

)γ+1
r(s)

(
zΔ(s)

)γ+1
zγ(s)

⎤
⎦Δs = ∞, (3.50)

then (1.3) is oscillatory.

Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of (1.3). Without loss of
generality, we may assume that y(t) is eventually positive. Then, by (h1)–(h3) there exists
T ≥ t0 sufficiently large such that y(t) > 0, y(τ(t)) > 0, y(δ1,2(t)) > 0 and Lemma 2.4 holds
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for t ≥ T , where x(t) is defined by (2.8). Define w(t) as in (3.3). Proceeding as in the proof of
Theorem 3.1, we get

wΔ(t) =
(
r(t)

(
xΔ(t)

)γ)Δ
(

z(t)
xγ(t)

)
+
(
r(t)

(
xΔ(t)

)γ)σ
[
zΔ(t)xγ(t) − z(t)(xγ(t))Δ

xγ(t)(xσ(t))γ

]
.

(3.51)

Using 0 < γ < 1, Lemma 2.4 and the Keller’s chain rule, we get

(xγ(t))Δ = γ

[∫1

0

(
x(t) + hμ(t)xΔ(t)

)γ−1
dh

]
xΔ(t)

≥ γxΔ(t)
∫1

0
((1 − h)xσ(t) + hxσ(t))γ−1dh

= γ(xσ(t))γ−1xΔ(t).

(3.52)

By (3.10), (3.51), and (3.52), we get

wΔ(t) < −Q1(t) +wσ(t)
zΔ(t)
zσ(t)

−
(
r(t)

(
xΔ(t)

)γ)σ z(t)γ(xσ(t))γ−1xΔ(t)
xγ(t)(xσ(t))γ

. (3.53)

Since

−
(
r(t)

(
xΔ(t)

)γ)σ
z(t)γ(xσ(t))γ−1xΔ(t)

xγ(t)(xσ(t))γ
= −

(rσ(t))(γ+1)/γ
((

xΔ(t)
)σ)γ+1

z(t)γxΔ(t)

xγ(t)xσ(t)(rσ(t))1/γ
(
xΔ(t)

)σ

(For (3.13)) ≤ −
(rσ(t))(γ+1)/γ

((
xΔ(t)

)σ)γ+1
z(t)γxΔ(t)

xγ(t)xσ(t)r1/γ(t)xΔ(t)

< − z(t)γ

r1/γ(t)(zσ(t))(γ+1)/γ
(wσ(t))(γ+1)/γ ,

(3.54)

it follows that

wΔ(t) < −Q1(t) +wσ(t)
zΔ(t)
zσ(t)

− z(t)γ

r(1/γ)(t)(zσ(t))(γ+1)/γ
(wσ(t))(γ+1)/γ . (3.55)

It is easy to see (3.55) is of the same form as (3.14). The following is similar to the proof of
Theorem 3.1 and hence omitted.

For γ ∈ (0, 1), Theorem 3.2 also holds. Its proof is similar to those of Theorems 3.1′ and
3.2.



Abstract and Applied Analysis 17

Theorem 3.2′. Assume that (h1)–(h3) hold and 0 < γ < 1. Furthermore, assume that there exist
a positive rd-continuous Δ-differentiable function z(t) and a function H ∈ H∗ such that for all
sufficiently large T ∈ T,

lim sup
t→∞

1
H(t, T)

∫ t

T

[
H(t, s)Q1(s) − Cγ+1(t, s)r(s)(z(σ(s)))γ+1

Hγ(t, s)
(
γ + 1

)γ+1
zγ(s)

]
Δs = ∞, (3.56)

then (1.3) is oscillatory.

Theorem 3.3′. Assume that (h1)–(h3) hold and 0 < γ < 1. Then (1.3) is oscillatory if for all suffi-
ciently large T ∈ T,

lim sup
t→∞

∫ t

T

Q(s)Rγ

T (s)Δs = ∞. (3.57)

Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of (1.3). Without loss of
generality, we may assume that y(t) is eventually positive. Then, by (h1)–(h3) there exists
T ≥ t0 sufficiently large such that y(t) > 0, y(τ(t)) > 0, y(δ1,2(t)) > 0, and Lemma 2.4 holds
for t ≥ T , where x(t) is defined by (2.8), φ is defined as in Theorem 3.3. Similar to the proof of
Theorem 3.3, we get

0 ≥
(
φγ(t)

)Δ
φγ(t)

+Q(t)

(
xδ1(t)
φ(t)

)(αβ−αγ)/(β−α)
·
(

xδ2(t)
φ(t)

)(βγ−βα)/(β−α)
. (3.58)

Using the Keller’s chain rule, 0 < γ < 1, and φΔ(t) < 0, we get

(
φγ(t)

)Δ = γ

[∫1

0

(
φ(t) + hμ(t)φΔ(t)

)γ−1
dh

]
φΔ(t)

≥ γ

[∫1

0

(
(1 − h)φ(t) + hφ(t)

)γ−1
dh

]
φΔ(t)

= γφγ−1(t)φΔ(t).

(3.59)

From δ1,2(t) ≥ t and xΔ(t) > 0, it follows that

0 ≥ γφΔ(t)
L

+Q(t)
(
x(t)
φ(t)

)γ

. (3.60)

It is easy to see (3.31) is of the same form as (3.60). The following is similar to the proof of
Theorem 3.3 and hence omitted.

Last, we give a theorem which holds for all γ > 0, a quotient of add positive integers.
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Theorem 3.9. Assume that (h1)–(h3) hold. Furthermore, assume that there exists a positive rd-
continuous Δ-differentiable function z(t) such that for all sufficiently large T ∈ T,

lim sup
t→∞

∫ t

T

[
Q1(s) − zΔ

R
γ

T (s)

]
Δs = ∞, (3.61)

then (1.3) is oscillatory.

Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of (1.3). Without loss of
generality, we may assume that y(t) is eventually positive. Then, by (h1)–(h3) there exists
T ≥ t0 sufficiently large such that y(t) > 0, y(τ(t)) > 0, y(δ1,2(t)) > 0, and Lemma 2.4 holds
for t ≥ T , where x(t) is defined by (2.8). Define w(t) as in (3.3). Then, w(t) > 0 and because
(1/xγ)Δ = −((xγ)Δ/xγ(xγ)σ) < 0 we get

wΔ(t) =
[
z(t) · r(t)

(
xΔ(t)

)γ]Δ 1
xγ(t)

+
[
z(t) · r(t)

(
xΔ(t)

)γ]σ( 1
xγ(t)

)Δ

<

[
zΔ(t) ·

(
r(t)

(
xΔ(t)

)γ)σ

+ z(t)
(
r(t)

(
xΔ(t)

)γ)Δ
]

1
xγ(t)

.

(3.62)

From (3.5), (3.10), and (3.13), we obtain

wΔ(t) <
[
zΔ(t) · r(t)

(
xΔ(t)

)γ
+ z(t)

(
r(t)

(
xΔ(t)

)γ)Δ
]

1
xγ(t)

< zΔ(t)r(t)

(
xΔ(t)
x(t)

)γ

−Q1(t) <
zΔ(t)

R
γ

T (t)
−Q1(t).

(3.63)

Integrating the above inequality from T to t(≥ T), we get

∫ t

T

[
Q1(s) − zΔ(s)

R
γ

T (s)

]
Δs < w(T) −w(t) < w(T). (3.64)

Taking lim sup on both sides of the above inequality as t → ∞, we obtain a contradiction to
condition (3.61). The proof is complete.

4. Examples

In this section, we give two examples to illustrate our main results. To obtain the conditions
for oscillation we will use the following facts:

∫∞

1

Δs

sγ
= ∞ if 0 ≤ γ ≤ 1,

∫∞

1

Δs

sγ
< ∞, if γ > 1. (4.1)

We first give an example to show Theorems 3.1 and 3.1′.
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Example 4.1. Consider the equation

(
1

(t + σ(t))γ
((

y(t) + p(t)y(τ(t))
)Δ)γ

)Δ

+
(σ(t))2γ(

1 − p(δ1(t))
)α
t2γ+1

yα(δ1(t))

+
(σ(t))2γ

(
1 − p(δ2(t))

)β
t2γ+1

yβ(δ2(t)) = 0, t ∈ T,

(4.2)

where T = [1,∞) is a time scale, p(t) satisfies (h2), τ(t) and δ1,2(t) satisfy (h1), r(t) = 1/(t +
σ(t))γ , and γ is a quotient of odd positive integers.

We choose q1(t) = (σ(t))2γ/((1 − p(δ1(t)))
αt2γ+1), q2(t) = (σ(t))2γ/((1 − p(δ2(t)))

βt2γ+1),
and z = 1, then zΔ = 0,

∫
(s + σ(s))Δs = t2 + c, and

∫∞
1 (Δt/r1/γ(t)) = ∞. For any sufficiently

large T ∈ T and s > T , there exists a constant k > 0 sufficiently large such that

(
RT (s)r1/γ(s)

RT (s)r1/γ(s) + μ(s)

)γ

=

( (
s2 − T2)(1/(s + σ(s)))

(s2 − T2)(1/(s + σ(s))) + σ(s) − s

)γ

>

(
s2

kσ2(s)

)γ

,

lim sup
t→∞

∫ t

T

⎡
⎣Q1(s) − 1

(
γ + 1

)γ+1
r(s)

(
zΔ(s)

)γ+1
zγ(s)

⎤
⎦Δs ≥ lim sup

t→∞
k−γ

∫ t

T

1
s
Δs = ∞.

(4.3)

Hence, by Theorems 3.1 and 3.1′, (4.2) is oscillatory.

The second example illustrates Corollary 3.7.

Example 4.2. Consider the equation

(
y(t) +

y(τ(t))
δ−1(t)

)ΔΔ

+
σ(t)
t2

y1/3(δ(t)) +
σ(t)
t2

y5/3(δ(t)) = 0, t ∈ T, (4.4)

where T = [1,∞) is a time scale, γ = 1,α = 1/3, β = 5/3, δ(t), and τ(t) satisfy (h1), δ(t) has an
inverse function δ−1(t), and p(t) = 1/δ−1(t) satisfies (h2).

We choose q1(t) = q2(t) = σ(t)/t2 and z = 1. For any sufficiently large T ∈ T and s > T ,
there exists a constant k > 0 sufficiently large such that

RT (s)r1/γ(s)
RT (s)r1/γ(s) + μ(s)

=
s − T

s − T + σ(s) − s
>

s

kσ(s)
,

lim sup
t→∞

∫ t

T

(
RT (s)r1/γ(s)

RT (s)r1/γ(s) + μ(s)

)γ

Q(s)Δs ≥ lim sup
t→∞

∫ t

T

1
ks

(
1 − 1

s

)2

Δs

= lim sup
t→∞

1
k

∫ t

T

[
1
s
− 2
s2

+
1
s3

]
Δs = ∞.

(4.5)

Hence, by Corollary 3.7, (4.4) is oscillatory.



20 Abstract and Applied Analysis

Acknowledgment

This project was supported by the NNSF of China (nos. 10971231, 11071238, and 11271379).

References

[1] H.-W. Wu, R.-K. Zhuang, and R. M. Mathsen, “Oscillation criteria for second-order nonlinear neutral
variable delay dynamic equations,” Applied Mathematics and Computation, vol. 178, no. 2, pp. 321–331,
2006.

[2] S. H. Saker, R. P. Agarwal, and D. O’Regan, “Oscillation results for second-order nonlinear neutral
delay dynamic equations on time scales,” Applicable Analysis, vol. 86, no. 1, pp. 1–17, 2007.

[3] S.-Y. Zhang and Q.-R. Wang, “Oscillation of second-order nonlinear neutral dynamic equations on
time scales,” Applied Mathematics and Computation, vol. 216, no. 10, pp. 2837–2848, 2010.

[4] S. H. Saker, “Oscillation criteria for a second-order quasilinear neutral functional dynamic equation
on time scales,” Nonlinear Oscillations, vol. 13, no. 3, pp. 407–428, 2011.

[5] Y. B. Sun, Z. L. Han, T. X. Li, and G. R. Zhang, “Oscillation criteria for secondorder quasilinear neutral
delay dynamic equations on time scales,”Advances in Difference Equations, Article ID 512437, 14 pages,
2010.

[6] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications,
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