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We study, in this paper, a generalized viscoelastic equation which includes several interesting
models considered in some recent papers. Many physically important nonlinear PDEs can be
reduced to nonlinear ODEs by means of reduction techniques. So it is significant and very inter-
esting to study, among all the closed-form solutions admitted by the model, the corresponding
kink waves. A plot of the obtained solution is performed.

1. Introduction

Nonlinear wave phenomena of dissipation, dispersion, diffusion, reaction, and convection
appear in a wide variety of scientific applications and are very important in nonlinear sci-
ences. In this paper, we report an interesting integrable equation that recently (see, e.g., [1, 2])
we have studied from the point of view of symmetries.

The integrable equation we study is

utt =
[
f(u)ux

]
x + [λ(u)ut]xx, (1.1)

where f and λ are smooth functions, u(t, x) is the dependent variable, and subscripts denote
partial derivative with respect to the independent variables t and x.

The behavior of some partial differential equations, in the case that f and λ could be
discontinuous, is investigated in [3, 4]where some regularity results of the solutions are also
considered.

When λ(u) ≡ 0, (1.1) includes the nonlinear homogeneous vibrating string equation:

utt =
[
f(u)ux

]
x (1.2)
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which was classified by Ames et al. [5] and gives rise to numerous publications on symmetry
analysis of nonlinear wave phenomena. While when λ(u) = λ0 = ε << 1 an approximate
study can be found in a recent paper [6].

In the framework of nonlinear viscoelasticity, some recent results can be found in the
paper of Pucci and Saccomandi [7] (see bibliography therein for a review).

Our aim, in this work, is to construct wave solutions of nonlinear evolution equation
(1.1).

2. Problem Formulation

Let us consider a homogeneous viscoelastic bar of uniform cross-section and assume that the
material is a nonlinear Kelvin solid. This model is described by a stress-strain relation of the
following form [8]:

τ = σ(wx) + λ(wx)wxt, (2.1)

where τ is the stress, x the position of a cross-section in the homogeneous rest configuration
of the bar,w(t, x) the displacement at time t of the section from the rest position, σ(wx) is the
elastic part of the stress, while λ(wx)wtx is the dissipative part.

The equation of linear momentumwtt = τx, in the absence of body forces, after setting
wx = u and introducing the function f(u) such that

σ(u) =
∫u

f(s) ds (2.2)

can be reduced to (1.1).
Many physically important nonlinear PDEs can be reduced to nonlinear ODEs by

means of reduction techniques. So it is significant and very interesting to study the exact
solutions of the reduced equation of (1.1). Among all the solutions admitted by our equation
we seek for travelling wave solutions.

Travelling waves are very interesting from the point of view of applications. These
types of waves will not change their shapes during propagation and are thus easy to detect.
Of particular interest are three types of travelling waves: the solitary waves, which are
localized travelling waves, asymptotically zero at large distances, the periodic waves, and
the kink waves, which rise or descend from one asymptotic state to another.

3. Solutions in Viscoelastic Medium

Motivated by a number of physical problems discussed in [9, 10], Ruggieri and Valenti, in [2],
found travelling wave solutions for (1.1) in the case of ideally hard material, the main feature
of which is that the Lagrangian speed of sound increases monotonically without bound.

Then, in order to seek for other solutions of physical interest, we apply the Lie method
analysis and we use the notion of symmetry to generate solutions. A key notion in Lie’s
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method is that of an infinitesimal generator for a symmetry group; then, we look for the one-
parameter Lie group of infinitesimal transformations in (t, x, u)-space given by

t̂ = t + a ξ1(t, x, u) +O
(
a2
)
,

x̂ = x + a ξ2(t, x, u) +O
(
a2
)
,

û = u + a η(t, x, u) +O
(
a2
)
,

(3.1)

where a is the group parameter and the associated Lie algebra L is the set of vector fields of
the form

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂u
. (3.2)

We then require that the transformation (3.1) leaves invariant the set of solutions of (1.1); in
others words, we require that the transformed equation has the same form as the original
one.

Following the well-known monographs on this argument (see, e.g., [11, 12]), we
introduce the third prolongation of the operator X which has the form

X(3) = X + ζ1
∂

∂ut
+ ζ2

∂

∂ux
+ ζ11

∂

∂utt
+ ζ22

∂

∂uxx
+ ζ221

∂

∂uxxt
, (3.3)

where we have set

ζ1 = Dt

(
η
) − utDt

(
ξ1
)
− uxDt

(
ξ2
)
,

ζ2 = Dx

(
η
) − utDx

(
ξ1
)
− uxDx

(
ξ2
)
,

ζ11 = Dt(ζ1) − uttDt

(
ξ1
)
− utxDt

(
ξ2
)
,

ζ22 = Dx(ζ2) − utxDx

(
ξ1
)
− uxxDx

(
ξ2
)
,

ζ221 = Dt(ζ22) − uxxtDt

(
ξ1
)
− uxxxDt

(
ξ2
)
,

(3.4)

where the operators Dt and Dx denote total derivatives with respect to t and x.
In order to better clarify the technique used to obtain reduced equation of (1.1), we

quickly recall the results obtained in [2].
The determining system of (1.1) arises from the following invariance condition:

X(3)(utt −
[
f(u)ux

]
x − [λ(u)ut]xx

)
= 0, (3.5)

under the constraint that the variable utt has to satisfy (1.1). This latter allows us to find
the infinitesimal generator of the symmetry transformations and, at the same time, gives the
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Table 1: Group classification of (1.1). f0, λ0, p, q, r, and s are constitutive constants with f0, λ0 > 0, and p,
s /= 0.

Case f(u) and λ(u) Extensions of LP

I f = f0e
u/p, λ = λ0e

u/s X3 = 2
(
s − p

)
t
∂

∂t
+
(
s − 2p

)
x

∂

∂x
− 2ps

∂

∂u

II f = f0
(
u + q

)1/p, λ = λ0
(
u + q

)(1+r)/p
X3 = 2rt

∂

∂t
+ (1 + 2r)x

∂

∂x
+ 2p

(
u + q

) ∂

∂u

III f = f0
(
u + q

)−4/3, λ = λ0
(
u + q

)−4/3
X3 = x

∂

∂x
− 3
2
(
u + q

) ∂

∂u

X4 = x2 ∂

∂x
− 3x

(
u + q

) ∂

∂u

functional dependence of the constitutive functions f and λ for which the equation does
admit symmetries. From (3.5)we obtain the following relations:

ξ1 = a8t + a1,

ξ2 = a9x
2 + a5x + a2,

η = (−3a9x2 + a6 − a5)u − 3a3a9x2 + a7,

a9
[
3(u + a3)f ′ + 4f

]
= 0,

a9
[
3(u + a3)λ′ + 4λ

]
= 0,

[(a6 − a5) u + a7]f ′ + 2(a8 − a5)f = 0,

[(a6 − a5)u + a7]λ′ + (a8 − 2a5)λ = 0,

(3.6)

where ai (i = 1, 2, . . . , 9) are constants and the prime denotes derivative of a function with
respect to the only variable upon which it depends.

We consider for arbitrary f and λ, the Principal Lie Algebra LP of (1.1) that is two-
dimensional and is spanned by the operators:

X1 =
∂

∂t
, X2 =

∂

∂x
. (3.7)

Otherwise the group classification is summarized in Table 1.
So, reducing (1.1) by means of Principal Lie Algebra we obtain that the similarity

variable, the similarity solution, and the reduced ODE of (1.1), respectively, are

z = x − c2t, u = φ(z), (3.8)

c22 φ′′ − (f φ′)′ + c2
(
λ φ′)′′ = 0, (3.9)

with f and λ arbitrary functions of φ and we observe that the third-order partial differential
equation (1.1) admits travelling wave solutions for arbitrary f and λ.
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Now, in order to seek new solutions which are of physical interest, let us consider the
following form for the tension function σ(u):

−σ(u) = 2γ̃2ρ0(−u)1/2, γ̃ = const (3.10)

which arises, as Bell has shown [13], in polycristalline solids during a dynamic uniaxial
compression.

Under this assumption, taking into account (2.2) and choosing for the compatibility
of the problem [2] the following expression for the function λ = λ0(−φ)−1/2 with λ0 > 0, the
reduced equation (3.9) becomes

c22 φ′′ − γ̃2ρ0
[(−φ)−1/2φ′

]′
+ c2λ0

[(−φ)−1/2φ′
]′′

= 0. (3.11)

An exact solution of (3.11) is

φ =

[
2γ̃2ρ0

e(− γ̃2ρ0/c2λ0)(z+k1) + c22

]2
, (3.12)

with k1 being an arbitrary constant of integration.
Coming back to the original variables (3.8) and taking (3.12) into account, the solution

can be written as

u =

[
2γ̃2ρ0

e(− γ̃2ρ0/c2λ0) (x−c2t+k1) + c22

]2
. (3.13)

Another solution of physical interest can be obtained when we consider the following
form of the tension:

σ(u) = −σ0

(
3T0
ρV 2

0

)3(
3T0
ρV 2

0

+ u

)−3
+ σ0, (3.14)

which models the ideal soft material whose main feature is the lagrangian speed of sound
which decreases monotonically to zero as u increases without bound.

In this case, taking into account (2.2) and choosing for the compatibility of the problem
[2] the following expression for the function λ = λ0(φ + 3T0/ρV 2

0 )
−4 with λ0 > 0, the reduced

equation (3.9) becomes

c22

(
ρV 2

0

)3
φ′′ − (3T0)4

⎡

⎣

(

φ +
3T0
ρV 2

0

)−4
φ′

⎤

⎦

′

+ c2 λ0
(
ρV 2

0

)3
⎡

⎣

(

φ +
3T0
ρV 2

0

)−4
φ′

⎤

⎦

′′

= 0. (3.15)
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Figure 1: 3D view of the solution (3.13) of (1.1) for increasing values of the wave speed.
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Figure 2: Plot 2D of the solution (3.13) of (1.1) at different times, showing u(x, t) versus position.

An exact solution of (3.15) is

φ = 3T0
[
(ρV 2

0 )
3
(
e(108T

4
0/c2λ0ρ

3V 6
0 )(z+k) − 3c22

)]−1/4 − 3T0
ρV 2

0

, (3.16)

with k being an arbitrary constant of integration. When we revert to the original variables
and take (3.16) into account, the solution can be written as

u = 3T0
[
(ρV 2

0 )
3
(
e(108T

4
0/c2λ0ρ

3V 6
0 )(x−c2t+k) − 3c22

)]−1/4 − 3T0
ρV 2

0

. (3.17)

The travelling waves solutions (3.13)–(3.17) have the form of a kink, and it is known
that kinks may propagate in a viscoelastic medium (see [10] and bibliography therein).

In order to show the trend of the obtained solutions (3.13)–(3.17), just as an example
some snapshots of the solution (3.13) are shown in Figures 1 and 2.
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