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The purpose of this paper is to present the notion of weak relatively nonexpansive multi-
valued mapping and to prove the strong convergence theorems of fixed point for weak relatively
nonexpansive multivalued mappings in Banach spaces. The weak relatively nonexpansive
multivalued mappings are more generalized than relatively nonexpansive multivalued mappings.
In this paper, an example will be given which is a weak relatively nonexpansive multivalued
mapping but not a relatively nonexpansive multivalued mapping. In order to get the strong
convergence theorems for weak relatively nonexpansive multivalued mappings, a new monotone
hybrid iteration algorithm with generalized (metric) projection is presented and is used to
approximate the fixed point of weak relatively nonexpansive multivalued mappings. In this paper,
the notion of multivalued resolvent of maximal monotone operator has been also presented which
is a weak relatively nonexpansive multivalued mapping and can be used to find the zero point of
maximal monotone operator.

1. Introduction and Preliminaries

Iterative methods for approximating fixed points of multivalued mappings in Banach spaces
have been studied by some authors, see for instance [1–4]. Let C be a nonempty closed
convex subset of a smooth Banach space E and T : C → C a multivalued mapping such
that Tx is nonempty for all x ∈ C. In [4], Homaeipour and Razani have defined the relatively
nonexpansive multivalued mapping and have proved some convergence theorems.

Theorem SA 1 (see [4]). Let E be a uniformly convex and uniformly smooth Banach space, and C
a nonempty closed convex subset of E. Suppose T : C → C is a relatively nonexpansive multivalued
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mapping. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and lim infn→∞αn(1−αn) > 0.
For a given x1 ∈ C, let {xn} be the iterative sequence defined by

xn+1 = ΠCJ
−1(αnJxn + (1 − αn)Jzn), zn ∈ Txn. (1.1)

If J is weakly sequentially continuous, then {xn} converges weakly to a fixed point of T .

Theorem SA 2 (see [4]). Let E be a uniformly convex and uniformly smooth Banach space, and C
a nonempty closed convex subset of E. Suppose T : C → C is a relatively nonexpansive multivalued
mapping. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and lim infn→∞αn(1−αn) > 0.
For a given x1 ∈ C, let {xn} be the iterative sequence defined by

xn+1 = ΠCJ
−1(αnJxn + (1 − αn)Jzn), zn ∈ Txn. (1.2)

If the interior of F(T) is nonempty, then {xn} converges strongly to a fixed point of T .

Let E be a Banach space with dual E∗. We denote by J the normalized duality mapping
from E to 2E

∗
defined by

Jx =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥∥f∥∥2

}
, (1.3)

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E∗ is uniformly
convex, then J is uniformly continuous on bounded subsets of E.

As we all know that if C is a nonempty closed convex subset of a Hilbert spaceH and
PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actually
characterizes Hilbert spaces, and consequently it is not available in more general Banach
spaces. In this connection, Alber [5] recently introduced a generalized projection operator
ΠC in a Banach space E which is an analogue of the metric projection in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional defined as
[5, 6] by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y∥∥2

, for x, y ∈ E. (1.4)

Observe that, in a Hilbert space H, (1.4) reduces to φ(x, y) = ‖x − y‖2, x, y ∈ H.
The generalized projection ΠC : E → C is a map that assigns to an arbitrary point

x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x, where x is the solution
to the following minimization problem:

φ(x, x) = min
y∈C

φ
(
y, x

)
, (1.5)

existence and uniqueness of the operator ΠC follow from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J (see, eg., [5–7]). In Hilbert space, ΠC = PC.
It is obvious from the definition of function φ that

(∥∥y∥∥ − ‖x‖)2 ≤ φ
(
y, x

) ≤ (∥∥y∥∥ + ‖x‖)2, ∀x, y ∈ E. (1.6)
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Remark 1.1. If E is a reflexive strictly convex and smooth Banach space, then for x, y ∈ E,
φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0 then x = y. From
(1.6), we have ‖x‖ = ‖y‖. This implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definitions of j, we
have Jx = Jy, that is, x = y, see [8, 9] for more details.

Let C be a nonempty closed convex subset of a smooth Banach space E and T : C → C
a multivalued mapping such that Tx is nonempty for all x ∈ C. A point p is called a fixed
point of T , if p ∈ Tp. The set of fixed points of T is represented by F(T). A point p ∈ C is called
an asymptotic fixed point of T , if there exists a sequence {xn} in Cwhich converges weakly to
p and limn→∞d(xn, Txn) = 0, where d(xn, Txn) = infu∈Txn‖xn − u‖. The set of asymptotic fixed
points of T is represented by F̂(T). Moreover, a multivalued mapping T : C → C is called
relatively nonexpansive multivalued mapping, if the following conditions are satisfied:

(1) F(T)/= ∅,
(2) φ(p, z) ≤ φ(p, x), for all p ∈ F(T), for all x ∈ C, for all z ∈ Tx,

(3) F̂(T) = F(T).

In [4], authors also give an example which is a relatively nonexpansive multivalued
mapping but not a nonexpansive multivalued mapping.

The purpose of this paper is to present the notion of weak relatively nonexpansive
multivalued mapping and to prove the strong convergence theorems for the weak relatively
nonexpansive multivalued mappings in Banach spaces. The weak relatively nonexpansive
multivalued mappings are more generalized than relatively nonexpansive multivalued
mappings. In this paper, an example will be given which is a weak relatively nonexpansive
multivaluedmapping but not a relatively nonexpansivemultivaluedmapping. In order to get
the strong convergence theorems for weak relatively nonexpansive multivalued mappings, a
new monotone hybrid iteration algorithm with generalized (metric) projection is presented
and is used to approximate the fixed point of weak relatively nonexpansive multivalued
mappings. We first give the definition of weak relatively nonexpansive multivalued mapping
as follows.

Let C be a nonempty closed convex subset of a smooth Banach space E and T : C → C
a multivalued mapping such that Tx is nonempty for all x ∈ C. A point p ∈ C is called
an strong asymptotic fixed point of T , if there exists a sequence {xn} in C which converges
strongly to p and limn→∞d(xn, Txn) = 0, where d(xn, Txn) = infu∈Txn‖xn − u‖. The set of the
strong asymptotic fixed points of T is represented by F̃(T). Moreover, a multivaluedmapping
T : C → C is called weak relatively nonexpansive multivalued mapping, if the following
conditions are satisfied:

(I) F(T)/= ∅,
(II) φ(p, z) ≤ φ(p, x), for all p ∈ F(T), for all x ∈ C, for all z ∈ Tx,

(III) F̃(T) = F(T).

We need the following Lemmas for the proof of our main results.

Lemma 1.2 (see Kamimura and Takahashi [7]). Let E be a uniformly convex and smooth Banach
space and let {xn},{yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded,
then xn − yn → 0.
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Lemma 1.3 (see Alber [5]). Let C be a nonempty closed convex subset of a smooth Banach space E
and x ∈ E. Then, x0 = ΠCx if and only if

〈
x0 − y, Jx − Jx0

〉 ≥ 0, for y ∈ C. (1.7)

Lemma 1.4 (see Alber [5]). Let E be a reflexive, strictly convex and smooth Banach space, let C be
a nonempty closed convex subset of E, and let x ∈ E. Then

φ
(
y,Πcx

)
+ φ(Πcx, x) ≤ φ

(
y, x

)
, ∀y ∈ C. (1.8)

Lemma 1.5. Let E be a uniformly convex and smooth Banach space, let C be a closed convex subset of
E, and let T : C → C be a weak relatively nonexpansive multivalued mapping. Then F(T) is closed
and convex.

Proof. First, we show F(T) is closed. Let {xn} be a sequence in F(T) such that xn → q. Since
T is weak relatively nonexpansive multivalued mapping, we have

φ(xn, z) ≤ φ
(
xn, q

)
, ∀z ∈ Tq, n = 1, 2, 3, . . . . (1.9)

Therefore

φ
(
q, z

)
= lim

n→∞
φ(xn, z) ≤ lim

n→∞
φ
(
xn, q

)
= φ

(
q, q

)
= 0. (1.10)

By Lemma 1.2, we have q = z, hence, Tq = {q}, so q ∈ F(T). Therefore F(T) is closed. Next,
we show F(T) is convex. Let x, y ∈ F(T), put z = tx + (1 − t)y for any t ∈ (0, 1). For w ∈ Tz,
we have

φ(z,w) = ‖z‖2 − 2〈z, Jw〉 + ‖w‖2

= ‖z‖2 − 2
〈
tx + (1 − t)y, Jw

〉
+ ‖w‖2

= ‖z‖2 − 2t〈x, Jw〉 − 2(1 − t)
〈
y, Jw

〉
+ ‖w‖2

= ‖z‖2 + tφ(x,w) + (1 − t)φ
(
y,w

) − t‖x‖2 − (1 − t)
∥∥y∥∥2

≤ ‖z‖2 + tφ(x, z) + (1 − t)φ
(
y, z

) − t‖x‖2 − (1 − t)
∥∥y∥∥2

= ‖z‖2 − 2
〈
tx + (1 − t)y, Jz

〉
+ ‖z‖2

= ‖z‖2 − 2〈z, Jz〉 + ‖z‖2

= φ(z, z) = 0.

(1.11)

By Lemma 1.2, we have z = w, so z ∈ Tz, that is z ∈ F(T). Therefore, F(T) is convex. This
completes the proof.
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Remark 1.6. Let E be a strictly convex and smooth Banach space, and C a nonempty closed
convex subset of E. Suppose T : C → C is a weak relatively nonexpansive multivalued
mapping. If p ∈ F(T), then T(p) = {p}.

2. An Example of Weak Relatively Nonexpansive Multivalued Mapping

Next, we give an example which is a weak relatively nonexpansive multivalued mapping but
not a relatively nonexpansive multivalued mapping.

Example 2.1. Let E = l2 and

x0 = (1, 0, 0, 0, . . .)

x1 = (1, 1, 0, 0, . . .)

x2 = (1, 0, 1, 0, 0, . . .)

x3 = (1, 0, 0, 1, 0, 0, . . .)

· · ·
xn = (1, 0, 1, 0, 0, . . . , 0, 1, 0, 0, 0, . . .)

· · ·

(2.1)

It is obvious that {xn}∞n=1 converges weakly to x0. On the other hand, we have ‖xn −xm‖ =
√
2

for any n/=m. Define a mapping T : E → 2E as follows:

T(x) =

⎧
⎨
⎩

{
y = txn :

n

n + 2
≤ t ≤ n

n + 1

}
, if x = xn(∃n ≥ 1),

−x, if x /=xn(∀n ≥ 1).
(2.2)

It is also obvious that F(T) = {0} and

∥∥0 − y
∥∥ =

∥∥y∥∥ ≤ ‖x‖ = ‖0 − x‖, ∀x ∈ E, y ∈ Tx. (2.3)

Since E = L2 is a Hilbert space, we have

φ
(
0, y

)
=
∥∥0 − y

∥∥2 =
∥∥y∥∥2 ≤ ‖x‖2 = ‖0 − x‖2 = φ(0, x), ∀x ∈ E, y ∈ Tx. (2.4)

Next, we prove F̂(T) = F(T). In fact, that for any strong convergent sequence {zn} ⊂ E such
that zn → z0 and d(zn, Tzn) → 0 as n → ∞, then there exist sufficiently large nature number
N such that zn /=xm, for any n,m > N. Then Tzn = −zn for n > N, it follows from

‖zn − Tzn‖ = d(zn, Tzn) −→ 0 (2.5)
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that 2zn → 0 and hence zn → z0 = 0, this implies z0 ∈ F(T), so that F̂(T) = F(T). Then T is a
weak relatively multivalued nonexpansive mapping.

We second claim that T is not relatively multivalued nonexpansive mapping. In fact,
that xn ⇀ x0 and

d(xn, Txn) ≤
(

n

n + 1
− n

n + 2

)
−→ 0 (2.6)

as n → ∞ hold, but x0∈F(T).

3. Strong Convergence of Monotone Hybrid Algorithm

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, and let T : C → C be a weak relatively multivalued nonexpansive mapping
such that F(T)/= ∅. Assume that {αn}∞n=0, {βn}∞n=0, {γn}∞n=0 are three sequences in [0, 1] such that
αn + βn + γn = 1, limn→∞αn = 0 and 0 < γ ≤ γn ≤ 1 for some constant γ ∈ (0, 1). Define a sequence
{xn} in C by the following algorithm:

x0 ∈ C arbitrarily,

yn = J−1
(
αnJx0 + βnJxn + γnJzn

)
, zn ∈ Txn

Cn =
{
z ∈ Cn−1 : φ

(
z, yn

) ≤ (1 − αn)φ(z, xn) + αnφ(z, x0)
}
, n ≥ 1,

C0 = C,

xn+1 = ΠCnx0,

(3.1)

then {xn} converges to q = ΠF(T)x0.

Proof. We first show that Cn is closed and convex for all n ≥ 0. From the definitions of Cn, it is
obvious that Cn is closed for all n ≥ 0. Next, we prove that Cn is convex for all n ≥ 0. Since

φ
(
z, yn

) ≤ (1 − αn)φ(z, xn) + αnφ(z, x0) (3.2)

is equivalent to

2
〈
z, (1 − αn)Jxn + αnJx0 − Jyn

〉 ≤ (1 − αn)‖xn‖2 + αn‖x0‖2. (3.3)

It is easy to get that Cn is convex for all n ≥ 0.
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Next, we show that F(T) ⊂ Cn for all n ≥ 0. Indeed, for each p ∈ F(T), we have

φ
(
p, yn

)
= φ

(
p, J−1

(
αnJx0 + βnJxn + γnJzn

))

=
∥∥p∥∥2 − 2

〈
p, αnJx0 + βnJxn + γnJzn

〉

+
∥∥αnJx0 + βnJxn + γnJzn

)∥∥2

≤ ∥∥p∥∥2 − 2αn

〈
p, Jx0

〉 − 2βn
〈
p, Jxn

〉 − 2γn
〈
p, Jzn

〉

+ αn‖x0‖2 + βn‖xn‖ + γn‖zn‖2

≤ αnφ
(
p, x0

)
+ βnφ

(
p, xn

)
+ γnφ

(
p, zn

)

≤ αnφ
(
p, x0

)
+ βnφ

(
p, xn

)
+ γnφ

(
p, xn

)

≤ αnφ
(
p, x0

)
+ (1 − αn)φ

(
p, xn

)
.

(3.4)

So, p ∈ Cn, which implies that F(T) ⊂ Cn for all n ≥ 0.
Since xn+1 = ΠCnx0 and Cn ⊂ Cn−1, then we get

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (3.5)

Therefore, {φ(xn, x0)} is nondecreasing. On the other hand, by Lemma 1.4 we have

φ(xn, x0) = φ(ΠCn−1x0, x0) ≤ φ
(
p, x0

) − φ
(
p, xn

) ≤ φ
(
p, x0

)
, (3.6)

for all p ∈ F(T) ⊂ Cn−1 and for all n ≥ 1. Therefore, φ(xn, x0) is also bounded. This together
with (3.5) implies that the limit of {φ(xn, x0)} exists. Put

lim
n→∞

φ(xn, x0) = d. (3.7)

From Lemma 1.4, we have, for any positive integer m, that

φ(xn+m, xn+1) = φ(xn+m,ΠCnx0) ≤ φ(xn+m, x0) − φ(ΠCnx0, x0)

= φ(xn+m, x0) − φ(xn+1, x0),
(3.8)

for all n ≥ 0. This together with (3.7) implies that

lim
n→∞

φ(xn+m, xn+1) = 0 (3.9)

uniformly for all m, holds. By using Lemma 1.2, we get that

lim
n→∞

‖xn+m − xn+1‖ = 0 (3.10)
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uniformly for all m, holds. Then {xn} is a Cauchy sequence, therefore there exists a point
p ∈ C such that xn → p.

Since xn+1 = ΠCnx0 ∈ Cn, from the definition of Cn, we have

φ
(
xn+1, yn

) ≤ (1 − αn)φ(xn+1, xn) + αnφ(xn+1, x0). (3.11)

This together with (3.9) and limn→∞αn = 0 implies that

lim
n→∞

φ
(
xn+1, yn

)
= 0. (3.12)

Therefore, by using Lemma 1.2, we obtain

lim
n→∞

∥∥xn+1 − yn

∥∥ = 0. (3.13)

Since j is uniformly norm-to-norm continuous on bounded sets, then we have

lim
n→∞

∥∥Jxn+1 − Jyn

∥∥ = lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (3.14)

Noticing that

∥∥Jxn+1 − Jyn

∥∥ =
∥∥Jxn+1 −

(
αnJx0 + βnJxn + γnJzn

)∥∥

=
∥∥αn(Jxn+1 − Jx0) + βn(Jxn+1 − Jxn) + γn(Jxn+1 − Jzn)

∥∥

≥ γn‖Jxn+1 − Jzn‖ − αn‖Jxn+1 − Jx0‖ − βn‖Jxn+1 − Jxn‖,
(3.15)

which leads to

‖Jxn+1 − Jzn‖ ≤ 1
γn

(∥∥Jxn+1 − Jyn

∥∥ + αn‖Jx0 − Jxn+1‖ + βn‖Jxn+1 − Jxn‖
)
. (3.16)

From (3.14) and limn→∞αn = 0, 0 < γ ≤ γn ≤ 1, we obtain

lim
n→∞

‖Jxn+1 − Jzn‖ = 0. (3.17)

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, then we obtain

lim
n→∞

‖xn+1 − zn‖ = 0. (3.18)

Observe that

‖xn − zn‖ ≤ ‖xn+1 − xn‖ + ‖xn+1 − zn‖. (3.19)
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It follows from (3.10) and (3.18) that

‖zn − xn‖ −→ 0, as n −→ ∞, (3.20)

d(xn, Txn) −→ 0, as n −→ ∞. (3.21)

Since we have proved that xn → p, which together with (3.21) and that, T is weak relatively
multivalued nonexpansive mapping, implies that p ∈ F(T).

Finally, we prove that p = ΠF(T)x0. From Lemma 1.4, we have

φ
(
p,ΠF(T)x0

)
+ φ

(
ΠF(T)x0, x0

) ≤ φ
(
p, x0

)
. (3.22)

On the other hand, since xn+1 = ΠCnx0 and F(T) ⊂ Cn, for all n. Also from Lemma 1.4, we
have

φ
(
ΠF(T)x0, xn+1

)
+ φ(xn+1, x0) ≤ φ

(
ΠF(T)x0, x0

)
. (3.23)

By the definition of φ(x, y), we know that

lim
n→∞

φ(xn+1, x0) = φ
(
p, x0

)
. (3.24)

Combining (3.22), (3.23), and (3.24), we know that φ(p, x0) = φ(ΠF(T)x0, x0). Therefore, it
follows from the uniqueness ofΠF(T)x0 that p = ΠF(T)x0. This completes the proof.

When αn ≡ 0 in Theorem 3.1, we obtain the following result.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, and let T : C → C be a weak relatively multivalued nonexpansive mapping
such that F(T)/= ∅. Assume that {αn}∞n=0 is a sequences in [0, 1] such that 0 ≤ αn ≤ α < 1 for some
constant α ∈ (0, 1). Define a sequence {xn} in C by the following algorithm:

x0 ∈ C arbitrarily,

yn = J−1(αnJxn + (1 − αn)Jzn), zn ∈ Txn

Cn =
{
z ∈ Cn−1 : φ

(
z, yn

) ≤ φ(z, xn)
}
, n ≥ 1,

C0 = C,

xn+1 = ΠCnx0,

(3.25)

then {xn} converges to q = ΠF(T)x0.

4. Applications for Maximal Monotone Operators

In this section, we apply the above results to prove some strong convergence theorem
concerning maximal monotone operators in a Banach space E.
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Let A be a multivalued operator from E to E∗ with domain D(A) = {z ∈ E : Az/= ∅}
and range R(A) = {z ∈ E : z ∈ D(A)}. An operator A is said to be monotone if

〈
x1 − x2, y1 − y2

〉 ≥ 0 (4.1)

for each x1, x2 ∈ D(A) and y1 ∈ Ax1, y2 ∈ Ax2. A monotone operator A is said to be maximal
if its graph G(A) = {(x, y) : y ∈ Ax} is not properly contained in the graph of any other
monotone operator. We know that if A is a maximal monotone operator, then A−10 is closed
and convex. The following result is also well known.

Theorem 4.1 (see Rockafellar [10]). Let E be a reflexive, strictly convex and smooth Banach space
and let A be a monotone operator from E to E∗. Then A is maximal if and only if R(J + rA) = E∗ for
all r > 0.

Let E be a reflexive, strictly convex and smooth Banach space, and let A be a maximal
monotone operator from E to E∗. Using Theorem 4.1 and strict convexity of E, we obtain that
for every r > 0 and x ∈ E, there exists a unique xr such that

Jx ∈ Jxr + rAxr. (4.2)

Then we can define a single valued mapping Jr : E → D(A) by Jr = (J + rA)−1J and such a
Jr is called the resolvent of A. We know that A−10 = F(Jr) for all r > 0, see [9, 11] for more
details. Using Theorem 3.1, we can consider the problem of strong convergence concerning
maximal monotone operators in a Banach space. Such a problem has been also studied in
[1, 7, 10–20].

Theorem 4.2. Let E be a uniformly convex and uniformly smooth Banach space, let A be a maximal
monotone operator from E to E∗ with A−10/= ∅, and let JM : E → 2E be a multivalued mapping
defined as follows:

JM : x �−→ {
y ∈ E : y = Jrx, r ∈ M

}
, x ∈ E, (4.3)

where M is a set of real numbers such that infM > 0. JM is called the multivalued resolvent of A.
Then JM is a weak relatively nonexpansive multivalued mapping.

Proof. Since

F(JM) =
{
p ∈ E : Jrp = p, r ∈ M

}

=
{
p ∈ E : p ∈ A−10, r ∈ M

}

= A−10,

(4.4)

so that F(JM)/= ∅. Next, we show

φ
(
p, z

) ≤ φ
(
p, x

)
, ∀p ∈ F(JM), ∀x ∈ E, ∀z ∈ JMx. (4.5)
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From the monotonicity of A, we have

φ
(
p, z

)
=
∥∥p∥∥2 − 2

〈
p, Jz

〉
+ ‖z‖2

=
∥∥p∥∥2 + 2

〈
p, Jx − Jz − Jx

〉
+ ‖Jrw‖2

=
∥∥p∥∥2 + 2

〈
p, Jx − Jz

〉 − 2
〈
p, Jx

〉
+ ‖z‖2

=
∥∥p∥∥2 − 2

〈
z − p − z, Jx − Jz − Jx

〉 − 2
〈
p, Jx

〉
+ ‖z‖2

=
∥∥p∥∥2 − 2

〈
z − p, Jx − Jz − Jx

〉

+ 2〈z, Jx − Jz〉 − 2
〈
p, Jx

〉
+ ‖z‖2

≤ ∥∥p∥∥2 + 2〈z, Jx − Jz〉 − 2
〈
p, Jx

〉
+ ‖z‖2

=
∥∥p∥∥2 − 2

〈
p, Jx

〉
+ ‖x‖2 − ‖z‖2 + 2〈z, Jx〉 − ‖w‖2

= φ
(
p, x

) − φ(z, x)

≤ φ
(
p, x

)
.

(4.6)

Finally, we show F̃(JM) = F(JM). Observe that F̃(JM) ⊇ F(JM) is obvious. Next, we show
F̃(JM) ⊆ F(JM). Let {zn} ⊂ E be a sequence such that zn → p and limn→∞d(zn, JMzn) = 0.
There exist sequences {yn} in E and {rn} ⊆ M such that

lim
n→∞

∥∥zn − yn

∥∥ = 0, yn = Jrnzn. (4.7)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

1
rn

(
Jzn − Jyn

) −→ 0. (4.8)

It follows from

1
rn

(
Jzn − Jyn

) ∈ AJrnzn (4.9)

and the monotonicity of A that

〈
w − Jrnzn,w

∗ − 1
rn
(Jzn − JJrnzn)

〉
≥ 0 (4.10)

for all w ∈ D(A) and w∗ ∈ Aw. Letting n → ∞, we have 〈w − p,w∗〉 ≥ 0 for all w ∈ D(A)
and w∗ ∈ Aw. Therefore, from the maximality of A, we obtain p ∈ A−10 = F(JM). Hence JM
is a weak relatively nonexpansive multivalued mapping. This completes the proof.

By using Theorems 3.1 and 4.2, we directly obtain the following result.
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Theorem 4.3. Let E be a uniformly convex and uniformly smooth Banach space, let A be a maximal
monotone operator from E to E∗ withA−10/= ∅, let JM be a multivalued resolvent ofA, where infM >
0, and let {αn}, {βn}, {γn} be three sequences of real numbers such that αn → 0 and 0 < γ ≤ γn ≤ 1
for some constant γ ∈ (0, 1). Define a sequence {xn} of C as follows:

x0 ∈ C arbitrarily,

yn = J−1
(
αnJx0 + βnJxn + γnJzn

)
, zn ∈ JMxn

Cn =
{
z ∈ Cn−1 : φ

(
z, yn

) ≤ (1 − αn)φ(z, xn) + αnφ(z, x0)
}
, n ≥ 1,

C0 = C,

xn+1 = ΠCnx0,

(4.11)

where J is the duality mapping on E. Then {xn} converges strongly to ΠA−10x0, where ΠA−10 is the
generalized projection from E onto A−10.
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