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The global well-posedness of rough solutions to the Cauchy problem for the Davey-Stewartson
system is obtained. It reads that if the initial data is in Hs with s > 2/5, then there exists a global
solution in time, and the Hs norm of the solution obeys polynomial-in-time bounds. The new
ingredient in this paper is an interaction Morawetz estimate, which generates a new space-time
L4
t,x estimate for nonlinear equation with the relatively general defocusing power nonlinearity.

1. Introduction

The Davey-Stewartson system has their origin in fluid mechanics, where it appears as math-
ematical models for the evolution of weakly nonlinear water waves having one predominant
direction of travel, but in which the wave amplitude is modulated slowly in two horizon-
tal directions (see [1]). In dimensionless they read as the following system for the (complex)
amplitude u(t, x, y) and the (real) mean velocity potential v(t, x, y)

iut + uxx + μuyy = a|u|2u + buvx,

cvxx + vyy =
(
|u|2
)
x
,

(1.1)

where i =
√−1, u = u(t, x, y) : [0, T) × R × R → C and 0 < T ≤ +∞; the parameters μ, a, b, c

are real constants. According to signs of the μ and c, these systems may be classified as

elliptic-elliptic : μ > 0, c > 0, (1.2)
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elliptic-hyperbolic : μ > 0, c < 0, (1.3)

hyperbolic-ellipti : μ < 0, c > 0, (1.4)

hyperbolic-hyperbolic : μ < 0, c < 0. (1.5)

In the last two decades, the Cauchy problem for the Davey-Stewartson system (1.1)
has focused on intense mathematical research. In 1990, Ghidaglia and Saut [2] established the
local well-posedness for the Cauchy problem of (1.1) in the cases of (1.2)–(1.4). It reads that
for u0 ∈ H1(R2), the systems (1.1) have a local solution in time. Hayashi and Hirata [3]
studied the initial value problem to the Davey-Stewartson system for the elliptic-hyperbolic
case (1.3) in the usual Sobolev space, they proved local existence and uniqueness for the
initial data in H5/2 (R2) whose L2 norm is sufficiently small. Tsutsumi [4] obtained the Lp-
decay estimates of solutions to the systems (1.1) in the elliptic-hyperbolic case (1.3). Hayashi
and Saut [5] and Linares and Ponce [6] studied some generalized Davey-Stewartson systems
in different spaces, and their main tools are Lp−Lq estimates of solutions to linear Schrödinger
equations. These estimates are usually named generalized Strchartz inequality. Guo and
Wang [7] studied the Cauchy problem for a generalized Davey-Stewartson system in the
elliptic-elliptic case (1.2), and they proved the global well-posedness results for initial data
u0 inHs(1 ≤ s ≤ 2). Recently, Shu and Zhang [8] and Gan and Zhang [9] obtained the sharp
conditions of global existence for Davey-Stewartson system in the elliptic-elliptic case (1.2)
by constructing a type of cross-constrained variational problem and establishing so-called
cross-invariant manifolds generated by the evolution flow. Zhang and Zhu [10] obtained
a more precisely sharp criteria of blow-up and global existence. C. Sulem and P. L. Sulem
[11] obtained some numerical observations on blow-up solutions. Richards [12] showed the
mass concentration phenomenon of blow-up solutions. Li et al. [13] obtained some dynamical
properties of blow-up solutions. Recently, Babaoglu and Erbay [14] proposed a generalized
Davey-Stewartson system, which was studied in [15–17].

In this paper, we consider the Cauchy problem of (1.1) in the elliptic-elliptic case
(without loss of generality, we may take λ = μ = c = 1 for simplify),

iut + uxx + uyy = a|u|2u + buvx, (1.6)

vxx + vyy =
(
|u|2
)
x
, (1.7)

u(0, x) = u0(x). (1.8)

As is well known, the system (1.6)–(1.8) enjoys two useful conservation laws: one is the
energy conservation law:

H(u, v) =
∫

R2

⎛
⎜⎝

|ux|2 +
∣∣uy
∣∣2 + a|u|4 + b

(
v2
x + v

2
y

)

2

⎞
⎟⎠dx dy, (1.9)

and the other is the mass conservation law:

M(u) =
∫

R2
|u|2dx dy. (1.10)
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For details one can see Ghidaglia and Saut [2]. Moreover, one can easily establishes

‖u(T)‖Hs ≤ C(s, ‖u0‖Hs, T) (1.11)

for s = 1 (with bounds uniformly in T), and with some additional arguments one can deduce
the same claim for s > 1. The mass conservation law (1.10) also gives (1.11) for s = 0, but
unfortunately this does not immediately imply any results for s > 0 except in the small mass
case.

To make the statement more precise, we denote u, v as the solutions of (1.7)–(1.9). It
follows from (1.8) that

vx = F−1 ξ
2
1

|ξ|2
F|u|2, (1.12)

where F and F−1 denote the Fourier transform and its inversion. For brevity we denote

E
(
ψ
)
= F−1 ξ

2
1

|ξ|2
Fψ. (1.13)

Combining (1.8) and (1.9), (1.6)–(1.8) are changed to

iut + Δu = a|u|2u + bE
(
|u|2
)
u, (1.14)

u(0, x) = u0(x). (1.15)

It is conjectured that the system (1.14)-(1.15) is globally well posed inHs for all s ≥ 0
and in particular (1.11) holds for all s > 0. This conjecture remains open now. In this paper
we aim to prove that the Cauchy problem for (1.1) is globally well posed below the energy
norms. That is, we will prove the global well-posedness for initial data u0 ∈ Hs(R2) with
s < 1 sufficiently close to one, then we meet the obstacle that there is no conservation law.
Indeed, if the initial data is in H1(R2) then it is bounded in H1(R2) for all time and hence
the Hs (s > 1) norm is similarly bounded, but if the initial data is only in Hs (s < 1) then
theH1(R2) norm may be infinite, and also the conservation of the Hamiltonian appears to be
useless. Conservation of the L2 norm also appears to be unhelpful for this particular problem.

For solutions below the energy threshold the first result was established by Bourgain
for nonlinear Schrödinger equation with critical nonlinearity in space dimension two (see
[18]). Bourgain came up with the idea of introducing a large frequency parameter N by
dividing the solution into the low-frequency portion ulow (when |ξ| ≤ N) and the high
frequency portion uhigh (when |ξ| ≥ N). The main tool is an extrasmoothing estimate, which
shows that if the high frequencies would bemerely inHs(R2) for some s < 1, then interactions
arising from high frequencies were significantly smooth. In fact, they were in the energy class
H1. Moreover, if we denote St as the nonlinear flow and S(t) = eitΔu0 is the linear group,
Bourgain’s method shows addition that (St −S(t))u0 ∈ H1(R2) for all time provided u0 ∈ Hs,
s > 3/5. Thus, he showed that the solution is globally well posed with initial data inHs(R2)
for any s > 3/5. Recently, Kenig, Ponce, Fonseca, Ginibre, Molinet, Pecher [19–23], and Miao
and Zhang [24] have developed this methods to study different evolution systems.
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Another improvement was given by Colliander et al. in [25, 26], where the authors
used the “I-method” that we state below. If s < 1, then the energy is infinite and one cannot
compare theHs norm of the solution u(t)with the energy. In order to overcome this difficulty,
we introduce the following multiplier IN :

ÎNf(ξ) := m(ξ)f(ξ), (1.16)

where m(ξ) := η(ξ/N), η is a smooth, radial, nonincreasing in |ξ| such that: η(ξ) = 1, |ξ| ≤ 1;
η(ξ) = (1/|ξ|)1−s, |ξ| ≥ 2, andN 	 1 is a dyadic number playing the role of a parameter to be
chosen. Then we plug this multiplier into the energy which generates to so-called modified
energy:

H(INu) =
∫

R2

⎛
⎜⎝|INux|2 +

∣∣INuy
∣∣2 +

(
a|INu|4 + bE

(
|INu|2

)
INu

2
)

2

⎞
⎟⎠dx dy. (1.17)

Note that if u(t) ∈ Hs(R2) then H(INu) < ∞. Note also that asN goes to infinity, the multi-
plier I “approaches” the identity operator. Therefore the variant of this smoothed energy is
expected to be slow as N goes to infinity. This is the “I-method”, originally invented by
Colliander et al. [25] to prove global existence for semilinear Schrödinger equations with
rough data.

In this paper we design it for the Davey-Stewartson system. The main purpose of this
paper is to study that we can lower the value of s to what extent which can also grantees the
global existence. In this paper we will prove the following.

Theorem 1.1. The Cauchy problem (1.14)-(1.15) is globally well posed for all u0 ∈ Hs(R2), s > 2/5
and a + b > 0. Moreover, the solution satisfies the following estimate:

sup
t∈[0,T]

‖u(t)‖Hs ≤ C(1 + T)(3s(1−s))/(2(5s−2))+, (1.18)

where the constant C depends only on the index s and ‖u0‖L2 .

Remark 1.2. We view this result as an incremental step towards the conjecture that (1.14)-
(1.15) is globally well posed inHs(R2) for all s ≥ 0.

Remark 1.3. We improve the results obtained by Shen and Guo [27], in which they demon-
strated the global existence for s > 4/7 for the Cauchy problem (1.14)-(1.15). The technique in
their proof mainly depends on the Fourier restriction norm method of Bourgain by showing
a generalized estimates of Strichartz type and splitting the data into low- and high-frequency
parts. The new ingredient in our proof is a priori interaction Morawetz-type estimate, which
generates a new space-time L4

x,t estimates for the “approximate solution” Iu to the nonlinear
equation with the relatively general defocusing power nonlinearity, and this technique is
motivated by the work given by Colliander et al. in [26].

Remark 1.4. It is worth to remark that Dodson [28–30] proves a frequency-localized inter-
action Morawetz estimate similar to the estimate made in [31] for considering an L2-critical



Abstract and Applied Analysis 5

initial value problem for cubic nonlinear Schrodinger equation. The major difference between
the cubic nonlinear Schrodinger equation and the elliptic-elliptic Davey-Stewartson system
(1.14) is the singular integral operator E(|u|2) in (1.14), which may result in some new diffi-
culties to establish the corresponding frequency localized interaction Morawetz estimate. We
hope to solve this problem in a forthcoming paper from the arguments derived by Dodson.

2. Notations and Preliminaries

In this paper, we will often use the notation A � B whenever there exist some constants K
such that A ≤ KB. Similarly, we will use A ∼ B if A � B � A. We use A � B if A ≤ cB for
some small constant c > 0. We use k± to denote the real number k±ε for any sufficiently small
ε > 0. �z and z are the real part and imaginary part of the complex number z, respectively.

We use S(R4) to denote the Schwartz space and S′(R4) to denote its topological dual
space. We use Lrx(R

2) to denote the usual Lebesgue space of functions f : R
2 → C whose

norm

∥∥f∥∥Lrx :=
(∫

R2

∣∣f∣∣rdx
)1/r

(2.1)

is finite, with the usual modification in the case r = ∞. We also define the space-time space
L
q
t L

r
x by

‖u‖Lqt∈JLrx :=
(∫

J

‖u‖qLrxdt
)1/q

(2.2)

for any space-time slab J × R
2, with the usual modification when either q or r are infinity.

When q = r we abbreviate Lqt L
q
x by L

q
t,x.

Definition 2.1. A pair of exponent (q, r) is called admissible in R
2 if

1
q
+
1
r
=

1
2
, 2 ≤ q, r ≤ ∞. (2.3)

We recall the known Strichartz estimates [21] (and the reference therein).

Proposition 2.2. Let (q, r) and (q̃, r̃) be any two admissible pairs

iut + Δu − f(x, t) = 0, (t, x) ∈ J × R
2

u(x, 0) = u0(x).
(2.4)

Then one has the estimate

‖u‖Lqt Lrx(J×R2) � ‖u0‖L2(R2) +
∥∥f∥∥

L
q̃′
t L

r̃′
x (J×R2) (2.5)

with the prime exponents denoting Hölder dual exponents.
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We also define the fractional differential operator |∇|α for any real α by

̂|∇|αu(ξ) := |ξ|αû(ξ) (2.6)

and analogously

〈̂∇〉αu(ξ) := 〈ξ〉αû(ξ), (2.7)

where 〈a〉 :=
√
1 + |a|2. We then define the homogeneous Sobolev space Ḣs and the inhomo-

geneous Sobolev spaceHs by

‖u‖Ḣs = ‖|∇|su‖L2
x
; ‖u‖Hs =

∥∥〈∇〉su∥∥L2
x
. (2.8)

We also need some Littlewood-Paley theory. Specifically, let ϕ(ξ) be a smooth bump
supported in |ξ| ≤ 2 and equalling one on |ξ| ≤ 1. For each number N ∈ 2Z we define the
Littlewood-Paley operators:

P̂≤Nf(ξ) := ϕ
(
ξ

N

)
f̂(ξ),

P̂>Nf(ξ) :=
[
1 − ϕ

(
ξ

N

)]
f̂(ξ),

P̂Nf(ξ) :=
[
ϕ

(
ξ

N

)
− ϕ
(
2ξ
N

)]
f̂(ξ).

(2.9)

Similarly, we can define P<N, P≥N , and PM<·≤N := P≤N − P≤M, wheneverM andN are dyadic
numbers. We will frequently write f≤N for P≤Nf and similarly for the other operators. We
recall the following standard Bernstein and Sobolev type inequalities.

Lemma 2.3. For any 1 ≤ 2 ≤ q ≤ ∞ and s > 0, one has

∥∥P≥Nf
∥∥
L
p
x

� N−s∥∥|∇|sP≥Nf
∥∥
L
p
x
,

∥∥|∇|sP≤Nf
∥∥
L
p
x

� Ns
∥∥P≤Nf

∥∥
L
p
x
,

∥∥|∇|±sPNf
∥∥
L
p
x
∼N±s∥∥PNf

∥∥
L
p
x
,

∥∥P≤Nf
∥∥
L
q
x

� N1/p−1/q∥∥P≤Nf
∥∥
L
p
x
,

∥∥PNf
∥∥
L
q
x

� N1/p−1/q∥∥PNf
∥∥
L
p
x
.

(2.10)

We collect the basic properties of IN into the following.
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Lemma 2.4. Let 1 < p <∞ and 0 ≤ s < 1. Then

∥∥INf
∥∥
Lp �

∥∥f∥∥Lp , (2.11)
∥∥|∇|sP>Nf

∥∥
Lp � Ns−1∥∥∇INf

∥∥
Lp , (2.12)

∥∥f∥∥Hs
x

�
∥∥INf

∥∥
H1

x
� N1−s∥∥f∥∥Hs

x
. (2.13)

Proof. For the proof one can see Colliander et al. [25].

Now we define the Strichartz norm of functions u

‖u‖S0
T
:= sup

(q,r) admissible
‖u‖Lq

t∈[0,T]L
r
x
. (2.14)

Then we introduce the following bilinear smoothing property due to Bourgain [18].

Lemma 2.5. Let ψ ∈ L2(R2) such that

ψ1 = PNjψ, ψ2 = PNkψ. (2.15)

Then, forNj ≤Nk, the following inequality holds:

∥∥∥eitΔψ1 · eitΔψ2

∥∥∥
L2
t,x(R2×R)

≤ C
(
Nj

Nk

)(1/2)−∥∥ψ1
∥∥
2

∥∥ψ2
∥∥
2. (2.16)

That is to say, suppose u solves (1.15)–(1.18) on the time interval [0, T]. Let uj = PNju, for j = 1, 2
withN1 > N2. Then

‖u1u2‖L2
TL

2
x
≤ C

(
N2

N1

)(1/2)−
‖u‖2

S0
T
. (2.17)

The estimate (2.17) will be also valid if uj is replaced by uj .

We also have the local well posedness result.

Proposition 2.6. Let us define quantity

μ([0, T]) :=
∫T
0

∫

R2
|INu|4dx dt. (2.18)

If μ([0, T]) < μ0, where μ0 is some universal constant then for any s > 0 the initial value problem
(1.15)–(1.18) is locally well-posed and the following estimate is true:

ZI([0, T]) := sup
(q,r) admissible

‖〈∇〉INu‖Lqt Lrx([0,t]×R2) � ‖〈∇〉INu0‖L2 . (2.19)
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Proof. The proof is standard, see for example [25, 26].

Remark 2.7. A modification (2.17) follows using the space-time estimate (2.19): ForN1 > N2,
and for solution u of (1.15)–(1.18) satisfies

‖〈∇〉IuN1〈∇〉IuN2‖L2
TL

2
x
≤ C

(
N2

N1

)(1/2)−
‖〈∇〉Iu‖2

S0
T
. (2.20)

3. Almost Conservation Laws

In this section we prove the almost conservation of the modified energyH(INu(t)).

Proposition 3.1. If the initial data u0 ∈ Hs with s > 1/4, and u(t, x) solves (1.14)-(1.15) for all
t ∈ [0, T] where T is the time that Proposition 2.6 applies, then

sup
t∈[0,T]

|H(INu(t))| ≤ |H(INu(0))| + CN−(3/2)−‖IN〈∇〉u(0)‖4
L2
x
+ CN−2−‖IN〈∇〉u(0)‖6

L2
x
. (3.1)

In particular when ‖IN〈∇〉u(0)‖L2
x

� 1 one has

sup
t∈[0,T]

|H(INu(t))| � N−(3/2)−. (3.2)

Proof. In light of (2.19), it suffices to control the energy increment |H(INu(t)) −H(INu(0))|
for t ∈ [0, T] in terms of ZI([0, T]). Applying the IN operator to the system (1.14)-(1.15):

iINut + ΔINu = aIN
(
|u|2u

)
+ bIN

(
E
(
|u|2
)
u
)
,

INu(0, x) = INu0(x).
(3.3)

From now on, we abbreviate IN as I for simplicity. An elementary calculation shows that
|H(Iu(t)) −H(Iu(0))| is controlled by the sum of the space-time integrals:

H1 =

∣∣∣∣∣
∫ t
0

∫

ξ1+ξ2+ξ3+ξ4=0

(
1 − m(ξ2 + ξ3 + ξ4)

m(ξ2)m(ξ3)m(ξ4)

)
Δ̂Iu(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4)

∣∣∣∣∣, (3.4)

H2 =

∣∣∣∣∣(a + b)
∫ t
0

∫

ξ′1+ξ4+ξ5+ξ6=0

(
1 − m

(
ξ′1
)

m(ξ4)m(ξ5)m(ξ6)

)
̂

I
(
|u|2u

)(
ξ′1
)
Îu(ξ4)Îu(ξ5)Îu(ξ6)

∣∣∣∣∣.

(3.5)

Here we used the properties of operator E for 1 < p < ∞: (i) E ∈ L(Lp, Lp), where L(Lp, Lp)
denotes the space of bounded linear operators from Lp to Lp; (ii) if u ∈ Hs, then E(u) ∈
Hs, s ∈ R.
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We estimate H1 first. We use uNj to denote PNju. When ξj is dyadically localized to
{|ξ| ∼ Nj} and we will write m(ξj) by mj . The analysis will not rely upon the complex con-
jugate structure in the left side of (3.4). Thus, there is symmetry under the interchange of the
indices 2–4, and We may assume thatN2 ≥N3 ≥N4.

Case I. (N 	 N2). Since the convolution hypersurface is ξ1 + ξ2 + ξ3 + ξ4 = 0, we have
N1 � N as well. Hence we get m(ξ2 + ξ3 + ξ4)/m(ξ2)m(ξ3)m(ξ4) = 1, and the bound holds
trivially.

Case II.N2 � N 	 N3 > N4, for ξ1 + ξ2 + ξ3 + ξ4 = 0, we haveN1 ∼ N2. Applying the
mean value theorem, we deduce that

1 − m(ξ2 + ξ3 + ξ4)
m(ξ2)m(ξ3)m(ξ4)

=
m(ξ2) −m(ξ2 + ξ3 + ξ4)

m(ξ2)

≤ ∇m(ξ2)(ξ3 + ξ4)
m(ξ2)

≤ N3

N2
.

(3.6)

Moreover,H1 is controlled by

N3

N2

(
N3

N1

)1/2(N4

N2

)1/2 〈N1〉
〈N2〉〈N3〉〈N4〉‖Iu‖

4
ZI([0,T])

≤N−(3/2)−(N1N2〈N3〉〈N4〉)0−ZI([0, T])4.

(3.7)

Case III: (N2 ≥N3 ≥N). We have the bound on the symbol:

∣∣∣∣1 −
m(ξ2 + ξ3 + ξ4)
m(ξ2)m(ξ3)m(ξ4)

∣∣∣∣ ≤
m(ξ1)

m(ξ2)m(ξ3)m(ξ4)
. (3.8)

IfN1 ∼N2 ≥N3 � N, then we boundedH1 by renormalizing the derivatives and multiplier,
paring uN1uN3 and uN2uN4 and using Lemma 2.5:

m1

m2m3m4

(
N3

N1

)1/2(N4

N2

)1/2 〈N1〉
〈N2〉〈N3〉〈N4〉ZI([0, T])4. (3.9)

We write this bound as

m1

m2N
1/2
2 m3N

1/2
3 m4N

1/2
4 N1/2

1

ZI([0, T])4. (3.10)

Since m(x) is bounded from above by 1 and m(x)〈x〉p for p > 1 − s is nondecreasing and
bounded from above by 1, for s ≥ 1/2, we bound

m1

m2N
1/2
2 m3N

1/2
3 m4N

1/2
4 N1/2

1

≤ 1
N(3/2)+

, (3.11)



10 Abstract and Applied Analysis

here we used the fact that miN
1/2
i ≥ m(N)N1/2 = N1/2 for i = 2, 3. For s < 1/2, by using the

definition ofm(ξ):

m1

m2N
1/2
2 m3N

1/2
3 m4N

1/2
4 N1/2

1

≤ N1/2−s
2 N1/2−s

3 N1/2−s
4

N2−2sN1/2
1 N1−s

1

≤ N1/2−2s
1

N2−2sN1/2
1

. (3.12)

Using the facts 1/2 > s > 1/4 andN2 ≥N3 ≥N,

N1/2−2s
1

N2−2sN1/2
1

≤N−(3/2)−. (3.13)

Hence

H1 ≤N−(3/2)−(N1N2N3〈N4〉)0−ZI([0, T])4. (3.14)

IfN2 ∼N3 ≥N, then paring uN1uN2 and uN3uN4 and using Lemma 2.5 again, a similar
analysis leads to the bound:

m1

m2m3m4

(
N1

N2

)1/2(N4

N3

)1/2 〈N1〉
〈N2〉〈N3〉〈N4〉ZI([0, T])4

≤N−3/2−(N1N2N3〈N4〉)0−ZI([0, T])4.

(3.15)

Now we turn to give the bound for the termH2. it required 6-linear estimate for (3.5).
We writem123 to denotem(ξ1 + ξ2 + ξ3) and useN123 to denote the size of ξ1 + ξ2 + ξ3. By sym-
metry, we may assumeN4 ≥N5 ≥N6. We carry out a case by case analysis.

Case I. (N 	 N4). On ξ′1 + ξ4 + ξ5 + ξ6 = 0, this forces N123 ∼ N4 as well. In this case,
m(ξ2 + ξ3 + ξ4)/m(ξ2)m(ξ3)m(ξ4) = 1, and the bound holds trivially.

Case II. (N4 � N ≥ N5). On ξ′1 + ξ4 + ξ5 + ξ6 = 0, N123 ∼ N4 in this case. By the mean
value theorem,

∣∣∣∣
[
1 − m123

m4m5m6

]∣∣∣∣ =
∣∣∣∣
m4 −m456

m4

∣∣∣∣ ≤
N5

N4
. (3.16)

Applying the Cauchy-Schwartz inequality and the above multiplier bound to (3.5), we
deduce that

(N4〈N5〉)−1N5

N4
‖P123I(uN1uN2uN3)IuN6‖L2

t,x
‖I〈∇〉uN4I〈∇〉uN5‖L2

tx
. (3.17)

By Hölder inequality and Lemma 2.5, we control the above expression by

(N4〈N5〉)−1
(
N5

N4

)3/2

‖P123I(uN1uN2uN3)‖L2
t,x
‖IuN6‖L∞

t,x
ZI([0, t])2. (3.18)
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By the Sobolev’s inequality, we have

‖IuN6‖L∞
t,x
≤ ZI([0, t]). (3.19)

It follows from Colliander et al. in [26] that

‖P123I(uN1uN2uN3)‖L2
t,x
≤ 〈N1〉−1/2ZI([0, t])3. (3.20)

We use (3.7)–(3.15) to complete the Case II analysis.H2 is bounded by

(N4〈N5〉)−1
(
N5

N4

)3/2

〈N1〉−1/2ZI([0, t])6

≤N−2−
(

6∏
i=1

〈Ni〉
)0−

ZI([0, t])6.

(3.21)

Case III (N4 ≥N5 ≥N). We have the bound on the symbol

∣∣∣∣1 −
m123

m4m5m6

∣∣∣∣ ≤
m123

m4m5m6
. (3.22)

Similar steps leads to the bound

H2 ≤N−2−
(

6∏
i=1

〈Ni〉
)0−

ZI([0, t])6. (3.23)

Combine the estimates forH1 andH2, we can complete the proof of Proposition 3.1.

Remark 3.2. One can see that the proof of Proposition 3.1 closely follows the proof from Col-
liander [32]. However, the proof in this paper provides some clarity to the final stages of the
proof in [32] and the necessary restrictions on s.

4. The Interaction Morawetz Inequality

In this section we develop a prior two-particle interaction Morawetz inequality of solutions
to the Cauchy problem (1.14)-(1.15). This prior control will be fundamental to our analysis.

We first recall the generalized viriel identity [33].

Proposition 4.1. If β is convex and real valued, and u is a smooth solution to (1.14)-(1.15) on [0, T]×
R

4, then the following inequality holds:

∫ t
0

∫

R4

(−ΔΔβ
)|u(x, t)|2dx dt +

∫ t
0

∫

R4

(
Δβ
)|u(x, t)|4dx dt � sup

t∈[0,T]

∣∣Mβ(t)
∣∣, (4.1)



12 Abstract and Applied Analysis

whereMa(t) is the Morawetz action given by

Mβ(t) = 2
∫

R2
∇β(x) · J(u∇u)dx. (4.2)

Proof. Since β is convex and real valued and a+b > 0, by the fundamental theorem of calculus
we can easily deduce the result. In the case of a solution to an equation with a nonlinearity
which is not associated to a defocusing potential, the following corollary holds.

Corollary 4.2. Let β : R
4 → R be convex and u be a smooth solution to the equation:

iut + Δu = N. (4.3)

Then, the following inequality holds:

∫ t
0

∫

R4

(−ΔΔβ
)|u(x, t)|2dx dt + 2

∫ t
0

∫

R4
∇β · {N, u}pdx dt � sup

t∈[0,T]

∣∣Mβ(T) −Mβ(t)
∣∣, (4.4)

whereMβ(t) is the Morawetz action corresponding to u and {·}p is the momentum bracket defined by

{
f, g

}
p = R

(
f∇g − g∇f

)
. (4.5)

Nowwe give the interaction Morawetz inequality, although the results presented here
are well known to experts, it seems to us that simple, self-contained proofs are often difficult
to locate, so we present them for the convenience of the reader.

Proposition 4.3. Let u be solution to the Cauchy problem of (1.14)-(1.15), then the following L4
x,t

space-time estimate holds

‖u‖4
L4
TL

4
x

� T1/3 sup
t∈[0,T]

‖u‖3
L∞
t L

2
x
‖u‖L∞

t Ḣ
1
x
+ T1/3‖u‖4

L∞
t L

2
x
. (4.6)

Proof. The proof of the Proposition 4.3 is similar to that in Colliander et al. [26]. Now we
choose β(x1, x2) = (1/2M)x2(1 − log(x/M)) if |x| < M/

√
e; β(x1, x2) = 50x if |x| > M; then,

β(x1, x2) is smooth and convex for all x ∈ R
2. We apply the generalized viriel identity with the

weight β(x1, x2) and the tensor product u(x1, x2, t) = u1(x1, t) ⊗ u2(x2, t) = u1(x1, t)u2(x2, t),
where u1(x1, t), u2(x2, t) are solutions with (x1, x2) ∈ R

2 × R
2 to (1.14)-(1.15). It is not hard to

see that the tensor product satisfies the equation:

iut + Δ4u = f(u), (t, x) ∈ [0, T] × R
4, (4.7)

here

f(u) = a|u1|2u + bE
(
|u1|2

)
u + a|u2|2u + bE

(
|u2|2

)
u, (4.8)

and Δ4 is the Laplace in R
4 = R

2 × R
2.
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Then we conclude that

∫T
0

∫

R2×R2

(−ΔΔβ(x1, x2)
)|u1(x1, t)|2|u2(x2, t)|2dx1 dx2 dt � 2sup

[0,T]

∣∣∣M⊗2
β (t)

∣∣∣, (4.9)

where

M⊗2
β (t) = 2

∫

R2⊗R2
∇β(x) · J

(
u1
⊗

u2(x)∇u1
⊗

u2(x)
)
dx. (4.10)

Note that the definition of β(x1, x2) implies

−ΔΔβ(x1, x2) =
2
M

δx1=x2 +O
(

1
M3

)
. (4.11)

Thus

∫T
0

∫

R2×R2

(−ΔΔβ(x1, x2)
)|u(x1, t)|2|u(x2, t)|2dx1 dx2 dt

=
2
M

∫T
0

∫

R4
|u(x, t)|4dx dt +O

(
1
M3

)∫T
0

∫

R2×R2
|u(x1, t)|2|u(x2, t)|2dx1 dx2 dt.

(4.12)

It follows from the Fubuni’s theorem that

C

M3

∫T
0

∫

R2×R2
|u(x1, t)|2|u(x2, t)|2dx1 dx2 dt � CT

M3 ‖u‖
4
L∞
t L

2
x
. (4.13)

On the other hand,

sup
[0,T]

∣∣∣M
⊗

2
β (t)

∣∣∣ � sup
t∈[0,T]

‖u‖3
L∞
t L

2
x
‖u‖L∞

t Ḣ1
x
. (4.14)

PickingM ∼ T1/3, we get

‖u‖4
L4
TL

4
x

� T1/3 sup
t∈[0,T]

‖u‖3
L∞
t L

2
x
‖u‖L∞

t Ḣ
1
x
+ T1/3‖u‖4

L∞
t L

2
x
. (4.15)

Remark 4.4. For the common Morawetz inequality, the nonlinear term (the second term in
(4.1)) has played the central role in the scattering theory for the nonlinear Schrödinger
equation, and the first term in (4.1) did not play a big role in these works. But now by taking
advantage of the first term, we can obtain a global prior estimate for defocusing nonlinearity,
and we mention that the heart of the matter is that

−ΔΔβ(x1, x2) =
2
M

δx1=x2 +O
(

1
M3

)
. (4.16)
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This idea first appeared in [31].

Now, we consider the solution Iu of

iIut + ΔIu = aI
(
|u|2u

)
+ bI

(
E
(
|u|2
)
u
)
. (4.17)

If Iu does not solve (4.7) but the following equation:

iIut + ΔIu = a|Iu|2Iu + bE
(
|Iu|2

)
Iu, (4.18)

then the calculations that we have done above would reveal that

‖Iu‖4
L4
TL

4
x

� T1/3sup
[0,T]

‖Iu‖3
L∞
t L

2
x
‖Iu‖L∞

t Ḣ
1
x
+ T1/3‖Iu‖4

L∞
t L

2
x
, (4.19)

of course this is not the case. We may rewrite (4.17) as

iIut + ΔIu = a
(
|Iu|2Iu

)
+ b
(
E
(
|Iu|2

)
Iu
)
+ I
(
a|u|2u + b

(
E
(
|u|2
)
u
))

− a
(
|Iu|2Iu

)
− b
(
E
(
|Iu|2

)
Iu
)
= G(Iu) + (IG(u) −G(Iu)).

(4.20)

For what follows we abbreviate ui = u(xi)where ui is the solution of

iut + Δu = a|u|2u + bE
(
|u|2
)
u, (t, xi) ∈ [0, T] × R

2. (4.21)

We aim to prove the following theorem.

Theorem 4.5. Let Iu be a solution to (4.7), then

‖Iu‖4
L4
TL

4
x

� T1/3sup
[0,T]

‖Iu‖3
L2
x
‖Iu‖Ḣ1

x
+ T1/3‖u0‖4L2

x

+ T1/3
∫T
0

∫

R2×R2
∇β · {Nbad, Iu(x1, t)Iu(x2, t)}pdx1 dx2 dt,

(4.22)

where

Nbad =
2∑
i−1

(IG(ui) −G(Iui))
2∏

j=1,i /= j

Iuj . (4.23)

In particular, on a time interval Tk where the local well-posedness Proposition 2.6 holds one has that

∫

Tk

∫

R2×R2
∇β · {Nbad, Iu(x1, t)Iu(x2, t)}pdx1 dx2 dt � 1

N1−Z
6
I (Jk). (4.24)
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Proof. According to Corollary 4.2,

∫T
0

∫

R2

(−ΔΔβ
)|Iu(x, t)|2dx dt � 2sup

[0,T]

∣∣∣∣
∫

R2
∇β · J

(
Iu(x)∇Iu

)
dx

∣∣∣∣

+

∣∣∣∣∣
∫T
0

∫

R2
∇β · {IG(ui) −G(Iui)}pdx dt

∣∣∣∣∣.
(4.25)

Set

IU = I
⊗

I
(
u(x1, t)

⊗
u(x2, t)

)
=

2∏
j=1

Iu
(
xj , t

)
. (4.26)

If u solves (4.3) for n = 2, then IU solves (4.3) for n = 4, with right-hand side NI given by

NI =
2∑
i=1

⎛
⎝I(Ni)

2∏
j=1,i /= j

Iuj

⎞
⎠. (4.27)

Nowwe decomposeNI as good part and bad part. The good part creates a positive term that
we ignore. The bad term produces the error term. Now we have the bound:

‖Iu‖4
L4
TL

4
x

� T1/3sup
[0,T]

‖Iu‖3
L2
x
‖Iu‖Ḣ1

x
+ T1/3‖u0‖4L2

x

+ T1/3
∫T
0

∫

R2×R2
∇β · {Nbad, Iu(x1, t)Iu(x2, t)}pdx1 dx2 dt,

(4.28)

where we have used the fact that ‖Iu‖L2 � ‖u‖L2 = ‖u0‖L2 . Remark that ∇β is a real valued,
thus

∇β · R
(
f∇g − g∇f

)
= R

(
∇β ·

(
f∇g − g∇f

))
(4.29)

and that∇ = (∇x1 ,∇x2). We now compute the dot product under the integral in (4.20), that is,

R
{

2∑
i=1

∇xiβ
(
Nbad

(
∇xi

(
Iu1Iu2

))
− Iu1Iu2∇xiNbad

)}
. (4.30)

Recall that

Nbad =
2∑
i−1

(IG(ui) −G(Iui))
2∏

j=1,i /= j

Iuj . (4.31)
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Using the definition of Nbad and the fact that ∇x1 acts only on Iu1, we have

Nbad

(
∇xi

(
Iu1Iu2

))
− Iu1Iu2

(
∇xiNbad

)

=
[
(I(N1) −N(Iu1))∇x1Iu1 − ∇x1

(
IN1 −N(Iu1)

)
Iu1
]
|Iu2|2.

(4.32)

Analogously, we can see that the second part is given by

R
{
∇x2β

[
(I(N2) −N(Iu2))∇x2Iu2 − ∇x2

(
IN2 −N(Iu2)

)
Iu2
]
|Iu1|2

}
. (4.33)

We have

∫T
0

∫

R4

∣∣∇x1β
∣∣|I(N1) −N(Iu1)||∇x1Iu1||Iu2|2dx1 dx2 dt

≤
∫T
0

∫

R2
|I(N1) −N(Iu1)||∇x1Iu1|dx1 dt‖Iu‖2L∞

t L
2
x

≤
(∫T

0

∫

R2
|I(N1) −N(Iu1)||∇x1Iu1|dx dt

)
Z2
I

≤ ‖I(N1) −N(Iu1)‖L1
t L

2
x
‖∇Iu‖L∞

t L
2
x
Z2
I

≤ ‖I(N1) −N(Iu1)‖L1
t L

2
x
Z3
I .

(4.34)

Here we used the fact that the pair (∞, 2) is admissible and |∇x1β| � 1. By a similar way we
can deduce that

∫T
0

∫

R4

∣∣∇x1β
∣∣|∇x1I(N1) −N(Iu1)||Iu1||Iu2|2dx1 dx2 dt ≤ ‖∇x(I(N) −N(Iu)‖L1

t L
2
x
Z3
I .

(4.35)

Hence, we only need to estimate ‖∇x(I(N) − N(Iu)‖L1
t L

2
x
. Observe that N = a(|u|2u) +

b(E(|u|2)u), and

∣∣∣∇x

(
̂I(N) −N(Iu)(ξ)

)∣∣∣ ≤ C
∫

ξ=ξ1+ξ2+ξ3
|ξ||m(ξ) −m(ξ1)m(ξ2)m(ξ3)|û(ξ1)û(ξ2)û(ξ3)dξ1 dξ2 dξ3.

(4.36)
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Using the fact that a + b > 0 and the properties of operator E, we have

‖∇x(I(N) −N(Iu))‖L1
t L

2
x
= ‖∇x(I(N) −N(Iu))‖L1

t L
2
ξ

≤ C
∑

N1,N2,N3

∥∥∥∥∥
∫

ξ=ξ1+ξ2+ξ3
|ξ||m(ξ) −m(ξ1)m(ξ2)m(ξ3)|û(ξ1)û(ξ2)û(ξ3)dξ1 dξ2 dξ3

∥∥∥∥∥
L1
t L

2
ξ

= C
∑

N1,N2,N3

∥∥∥∥∥
∫

ξ=ξ1+ξ2+ξ3
|ξ| |m(ξ) −m(ξ1)m(ξ2)m(ξ3)|

m(ξ1)m(ξ2)m(ξ3)
Îu(ξ1)Îu(ξ2)Îu(ξ3)dξ1 dξ2 dξ3

∥∥∥∥∥
L1
t L

2
ξ

.

(4.37)

There is symmetry under interchange of the indices 1, 2, 3. We may assume that

N1 ≥N2 ≥N3. (4.38)

Let

σ(ξ1, ξ2, ξ3) = |ξ| |m(ξ) −m(ξ1)m(ξ2)m(ξ3)|
m(ξ1)m(ξ2)m(ξ3)

. (4.39)

We carry out a case by case analysis for (4.28).
Case I.N1 �N, this force σ(ξ1, ξ2, ξ3) = 0, then there no contribution to (4.25).
Case II.N1 � N 	N2, we have

∥∥∥∥∥
∫

ξ=ξ1+ξ2+ξ3
σ(ξ1, ξ2, ξ3)Îu(ξ1)Îu(ξ2)Îu(ξ3)dξ1 dξ2 dξ3

∥∥∥∥∥
L1
t L

2
ξ

=
1
N

∥∥∥∥∥
∫

ξ=ξ1+ξ2+ξ3

N

ξ1ξ2
σ(ξ1, ξ2, ξ3)∇̂Iu(ξ1)∇̂Iu(ξ2)Îu(ξ3)dξ1 dξ2 dξ3

∥∥∥∥∥
L1
t L

2
ξ

� 1
N

‖∇Iu1‖L3
t L

6
x
‖∇Iu2‖L3

t L
6
x
‖Iu1‖L3

t L
6
x
,

(4.40)

where we have used the fact that |ξ| ∼N1 and by mean value theorem that

|m(ξ) −m(ξ1)m(ξ2)m(ξ3)|
m(ξ1)m(ξ2)m(ξ3)

� N3

N2
. (4.41)

Therefore,

N

ξ1ξ2
σ(ξ1, ξ2, ξ3) � N

ξ1ξ2

N2

N1
ξ ≤ 1. (4.42)
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Case III (N1 ≥N2 � N 	N3). We also have

∥∥∥∥∥
∫

ξ=ξ1+ξ2+ξ3
σ(ξ1, ξ2, ξ3)Îu(ξ1)Îu(ξ2)Îu(ξ3)dξ1 dξ2 dξ3

∥∥∥∥∥
L1
t L

2
ξ

=
1
N

∥∥∥∥∥
∫

ξ=ξ1+ξ2+ξ3

N

ξ1ξ2
σ(ξ1, ξ2, ξ3)∇̂Iu(ξ1)∇̂Iu(ξ2)Îu(ξ3)dξ1 dξ2 dξ3

∥∥∥∥∥
L1
t L

2
ξ

� 1
N

‖∇Iu1‖L3
t L

6
x
‖∇Iu2‖L3

t L
6
x
‖Iu1‖L3

t L
6
x
.

(4.43)

Case IV (N1 ≥N2 ≥N3 � N). We estimate as follows:
∥∥∥∥∥
∫

ξ=ξ1+ξ2+ξ3
σ(ξ1, ξ2, ξ3)Îu(ξ1)Îu(ξ2)Îu(ξ3)dξ1 dξ2 dξ3

∥∥∥∥∥
L1
t L

2
ξ

� 1
N2

3∏
j=1

∥∥∇Iuj
∥∥
L3
t L

6
x
, (4.44)

where we have used the estimate

σ(ξ1, ξ2, ξ3)
N2

ξ1ξ2ξ3
≤N−1+3s(N1N2N3)−s ≤ 1. (4.45)

Finally, since the pair (3, 6) is admissible, we can get

‖∇x(I(N) −N(Iu))‖L1
t L

2
x

� 1
N
Z3
I . (4.46)

Combining (4.22), (4.24), and (4.40), we complete the proof Theorem 4.5.

5. The Proof of Theorem 1.1

The idea is followed from [26, 34]. The first observation is the fact that if u(t, x) is a solution
of the Cauchy problem (1.14)-(1.15), we can scale it and obtain a new solution, namely, the
scale function

uλ(x) =
1
λ
u

(
x

λ
,
t

λ2

)
(5.1)

satisfies the same equation with initial data uλ0 = (1/λ)u0(x/λ). This scaling preserves the L2

norms of u(t) as well as the L4
t,x space-time norm. From estimate (2.13), we have
∥∥∥Iuλ0

∥∥∥
H1

� N1−s
∥∥∥uλ0

∥∥∥
Hs

� N1−sλ−s. (5.2)

We can choose the parameter λ in the manner

λ ∼N(1−s)/s, (5.3)

so that ‖Iuλ0‖H1 = O(1).
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Then, for any T0 (arbitrarily large), define

Γ =
{
0 < t < λ2T0 :

∥∥∥Iuλ
∥∥∥
L4
t L

4
x([0,t]×R2)

≤ δN1/8t1/12
}
, (5.4)

where δ is a constant to be chosen later. We claim that Γ is the whole interval [0, λ2T0]. Indeed,
if Γ is not the whole interval [0, λ2T0], then using the fact that

∥∥∥Iuλ
∥∥∥
L4
t L

4
x([0,t]×R2)

(5.5)

is a continuous function of time, there exist some T ∈ [0, λ2T0] with the properties,

∥∥∥Iuλ
∥∥∥
L4
t L

4
x([0,T]×R2)

≥ δN1/8t1/12, (5.6)

∥∥∥Iuλ
∥∥∥
L4
t L

4
x([0,T]×R2)

≤ 2δN1/8t1/12. (5.7)

Now we divide the time interval [0, T0] into subintervals Jk, k = 1, . . . , L in such a way that

∥∥∥Iuλ
∥∥∥
4

L4
t L

4
x([0,Jk]×R2)

≤ μ0, (5.8)

where μ0 is as the same as in Proposition 2.6. This is possible because of (5.7). Then, the
number of the slices, which we will call L, is most like

L ∼
(
2δN1/8t1/12

)4
μ

∼ (2δ)4N1/2T1/3

μ
. (5.9)

According to Propositions 2.6 and 3.1, we have that, for any 1/3 < s < 1/2

sup
t∈[0,T]

H
(
Iuλ
)

� H
(
Iuλ0

)
+

L

N3/2
, (5.10)

for our choice of λ, H(Iuλ0) � 1. Noting that 2/5 > 1/4, we can apply the Proposition 3.1. In
order to guarantee that

H
(
Iuλ
)

� 1 (5.11)

for all t ∈ [0, T], we require

L � N3/2. (5.12)

Since T ≤ λ2T0, this is fulfilled as long as

(2δ)4N1/2λ2/3T1/3
0

μ0
∼N3/2, (5.13)
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note (5.3), that is to say we have

T1/3
0

(2δ)4

μ0
∼N(5s−2)/3s. (5.14)

If s > 2/5, we have that T0 is arbitrarily large if we sendN to infinity.
We use Theorem 4.5 to show that (5.6) is not true. Recall the estimates (4.22)–(4.24),

we have

∥∥∥Iuλ
∥∥∥
4

L4
t L

4
x

� T1/3 sup
t∈[0,T]

∥∥∥Iuλ
∥∥∥
2

Ḣ1

∥∥∥Iuλ
∥∥∥
2

L2
+ T1/3

∥∥∥uλ
∥∥∥
4

L2
+ T1/3L

1
N

� N1/2T1/3,

(5.15)

which implies that

∥∥∥Iuλ
∥∥∥
L4
t L

4
x([0,T]×R2)

� N1/8t1/12. (5.16)

This estimate contradicts to (5.6) for suitable choice of δ (namely, we choose δ 	 1). Therefore
Γ = [0, λ2T0], and T0 can be chosen arbitrarily large. In addition,

‖u(T0)‖Hs � ‖u0‖L2 + ‖u(T0)‖Ḣs = ‖u0‖L2 + λs
∥∥∥uλ

(
λ2T0

)∥∥∥
Ḣs

� λs
∥∥∥Iuλ

(
λ2T0

)∥∥∥
H1

� λs � N1−s � T
3s(1−s)/2(5s−2)
0 .

(5.17)

Since T0 is arbitrarily large, the priori bound on theHs norm concludes the global well-posed-
ness of the Cauchy Problem (1.14)-(1.15).
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[17] A. Eden, T. B. Gürel, and E. Kuz, “Focusing and defocusing cases of the purely elliptic generalized
Davey-Stewartson system,” IMA Journal of Applied Mathematics, vol. 74, no. 5, pp. 710–725, 2009.

[18] J. Bourgain, “Refinements of Strichartz’ inequality and applications to 2D-NLS with critical
nonlinearity,” International Mathematics Research Notices, vol. 1998, no. 5, pp. 253–283, 1998.

[19] C. E. Kenig, G. Ponce, and L. Vega, “Global well-posedness for semi-linear wave equations,” Com-
munications in Partial Differential Equations, vol. 25, no. 9-10, pp. 1741–1752, 2000.

[20] G. Fonseca, F. Linares, and G. Ponce, “Global well-posedness for the modified Korteweg-de Vries
equation,” Communications in Partial Differential Equations, vol. 24, no. 3-4, pp. 683–705, 1999.

[21] J. Ginibre, “Le problem de Cauchy pour des EDP semi-lineaires preiodiques en variabkes d’espace
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