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The controllability issues for linear discrete-time systems with delay in state are addressed.
By introducing a new concept, the minimum controllability realization index (MinCRI), the
characteristic of controllability is revealed. It is proved that theMinCRI of a systemwith state delay
exists and is finite. Based on this result, a necessary and sufficient condition for the controllability
of discrete-time linear systems with state delay is established.

1. Introduction

The concept of controllability of dynamical systems was first proposed by Kalman in
1960s [1]. Since then, controllability of dynamical systems has been studied by many
authors in various contexts [2–11], because controllability turns out to be a fundamental
concept in modern control theory and has dose connections with pole assignment, structure
decomposition, quadratic control, and so forth [12, 13]. On the other hand, time delay
phenomena are very common in practical systems, for instance, in economic, biological, and
physiological systems. Studying the time delay phenomena in control systems has become
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an important topic in control theory. Chyung studied the controllability for linear time-
invariant systems with constant time delay in the control functions. Simple algebraic-type
necessary and sufficient criteria are established [3, 4]. However, once the time delay appears
in state, the problem becomes much more complex. There are some preliminary results in
[5, 6]. However, all these results are not suitable for verification and application.

In this paper, we consider the discrete-time case, the system model described as
follows:

x(k + 1) = Ax(k) +Dx(k − h) + Bu(k), (1.1)

where x(k) ∈ R
n is the state, u(k) ∈ R

p is the input, A, D ∈ R
n×n, B ∈ R

n×p are constant
matrices, and positive integer h is the length of the steps of time delay. The initial states
x(−h), x(−h + 1), . . . , x(0) are given arbitrarily.

The controllability discussed here refers to the unconstrained controllability, or say
completely controllability.

Definition 1.1 (controllability). System (1.1) is said to be (completely) controllable, if for any
initial state x(−h), x(−h + 1), . . . , x(0) and any final state xf , there exist a positive integer k
and input u(0), . . . , u(k − 1) such that x(k) = xf .

Definition 1.2 (controllability realization index, (CRI)). For system (1.1), if there exists a
positive integerK such that for any initial state x(−h), x(1−h), . . . , x(0) and any terminal state
xf , there exist input u(0), . . . , u(K−1) such that x(K) = xf ; then one callsK the controllability
realization index (CRI) of system (1.1). Obviously, if exists, suchK is not unique, so one calls
the smallest K among them the minimum controllability realization index (MinCRI).

In this paper, our main concern is the following. Can the controllability of system (1.1) be
realized completely in finite steps, or say can the MinCRI of the system be finite?

Here we demonstrate that the answer to this question is yes. And in the case of planar
systems, the exact value of the controllability realization index is obtained, and we will prove
it is independent of the choices of A and D.

This paper is organized as follows. In Section 2 some concepts are introduced, which
will be used in the later discussion. Section 3 contains the main results. Finally, the conclusion
is provided in Section 4.

2. Preliminaries

Denote by N the nonnegative integer set, R the real number set, respectively. The matrices
A1, . . . , AN ∈ R

n×n are said to be linearly dependent in R
n×n, if there exist scalars c1, . . . , cN ∈

R, not all zero, such that
∑N

i=1 ciAi = 0. In what follows, span{A1, . . . , AN} will be used to
denote the linear subspace constructed by the linear combinations of matrices {A1, . . . , AN}.



Abstract and Applied Analysis 3

Definition 2.1 (symmetrical subspace). Given matrices A,D ∈ R
n×n, one defines a subset of

R
n×n as follows:

P[A,D] : =

{

f(A,D) | f(A,D) =
M∑

m=1

cmA
im,1Djm,1 · · ·Aim,nmDjm,nm ,

nm ∈ N, im,1, jm,1, . . . , im,nm , jm,nm ∈ N, 0 ≤ im,1, jm,1, . . . , im,nm , jm,nm ≤ n,

cm ∈ R, m = 1, . . . ,M; M ∈ N

}

.

(2.1)

Then a one-to-one mapping Θ : P[A,D] → P[A,D] is constructed as follows:

give any f(A,D) ∈ P[A,D], supposing f(A,D) =
∑M

m=1 cmA
im,1Djm,1 , . . . , Aim,nmDjm,nm ,

one defines

Θ
(
f(A,D)

)
:=

M∑

m=1

cm
(
Aim,1Djm,1 · · ·Aim,nmDjm,nm +Djm,nmAim,nm · · ·Djm,1Aim,1

)
. (2.2)

Then we get a subspace of P[A,D] by

PSym[A,D] :=
{
Θ
(
f(A,D)

) | ∀f(A,D) ∈ P[A,D]
}
. (2.3)

We call PSym[A,D] the symmetrical subspace of P[A,D].
By Definition 2.1, it is easy to verify that I,A,D,AD +DA,ADA,DAD ∈ PSym[A,D],

where I is the identity matrix in R
n×n.

Now, we introduce a matrix sequence {Gk}∞k=0 ∈ R
n×n as follows:

Gk =

{
Ak, if k = 0, 1, . . . , h,
Gk−1A +Gk−1−hD, if k = h + 1, h + 2, . . .

(2.4)

Then the solution of system (1.1) can be expressed as

x(k + 1) = Ψk(x(0), . . . , x(−h)) +
k∑

i=0

Gk−iBu(i), k > 0, (2.5)

where Ψk(x(0), . . . , x(−h)) is the part of the solution with zero input.

Lemma 2.2. Given the matrix sequence {Gk}∞k=0 in (2.3), the following statements hold:

(a) there are no similar terms between GkA and Gk−hD;

(b) for any Gk, it can be expressed as

Gk =
∑

∀f(A,D)∈Qk[A,D]

f(A,D), (2.6)
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where Qk[A,D] is a subset of R
n×n defined as follows:

Qk[A,D] =

{

f(A,D) | f(A,D) = Ai1Dj1 · · ·AikDjk ,

∀i1, j1, . . . , ik, jk ∈ N,
k∑

m=1

im + (h + 1)
k∑

m=1

jm = k

}

;

(2.7)

(c) for all k ∈ N, Gk ∈ PSym[A,D].

Proof. Statement (a) is nearly self-evident because any term fromGkA is ended byA, whereas
any term from Gk−hD is ended by D.

To prove the result of statement (b), mathematical induction is invoked.

(I) The first h + 1 terms of {Gk}∞k=0 are I,A, . . . , Ah, and it is obvious that Qk[A,D] =
{Ak}, for k = 0, 1, . . . , h. Thus, for k = 0, 1, . . . , h, (2.5) holds.

(II) Assume that, for l = k, k + 1, . . . , k + h, Gl is expressed in form (2.5). We will prove
that Gk+h+1 can be expressed in form (2.5) as well.

First, we prove that, for any k, we have

Qk+1[A,D] = Qk[A,D]A
⋃

Qk−h[A,D]D, (2.8)

where the sets Qk[A,D]A, Qk−h[A,D]D are defined as

Qk[A,D]A =
{
f(A,D)A | f(A,D) ∈ Qk[A,D]

}
,

Qk−h[A,D]D =
{
f(A,D)D | f(A,D) ∈ Qk−h[A,D]

}
.

(2.9)

By the assumption, we have

Qk[A,D]A

=
{
f(A,D)A | f(A,D) ∈ Qk[A,D]

}

=

{

f(A,D)A | f(A,D) = Ai1Dj1 · · ·AikDjk , i1, j1, . . . , ik, jk ∈ N,

k∑

m=1

im + (h + 1)
k∑

m=1

jm = k

}

,
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=

{

g(A,D) | g(A,D) = Ai1Dj1 · · ·Aik+1Djk+1 , i1, j1, . . . , ik, jk ∈ N,

ik+1 = 1, jk+1 = 0,
k+1∑

m=1

im + (h + 1)
k+1∑

m=1

jm = k + 1

}

⊆ Qk+1[A,D],

Qk−h[A,D]D,

=
{
f(A,D)D | f(A,D) ∈ Qk−h[A,D]

}

=

{

f(A,D)D | f(A,D) = Ai1Dj1 · · ·Aik−hDjk−h , i1, j1, . . . , ik−h, jk−h ∈ N,

k−h∑

m=1

im + (h + 1)
k−h∑

m=1

jm = k − h

}

=

{

g(A,D) | g(A,D) = Ai1Dj1 · · ·Aik+1Djk+1 , i1, j1, . . . , ik−h, jk−h ∈ N,

ik−h+1 = · · · = ik+1 = 0, jk−h+1 = · · · = jk = 0, jk+1 = 1,

k+1∑

m=1

im + (h + 1)
k+1∑

m=1

jm = k + 1

}

⊆ Qk+1[A,D].

(2.10)

Thus, we have Qk[A,D]A
⋃
Qk−h[A,D]D ⊆ Qk+1[A,D].

On the contrary, given any f(A,D) ∈ Qk+1[A,D], suppose that

f(A,D) = Ai1Di1 · · ·Aik+1Djk+1 , (2.11)

where i1, j1, . . . , ik+1, jk+1 ∈ N,
∑k+1

m=1 im + (h + 1)
∑k+1

m=1 jm = k + 1.
There are two cases: (i) the final term of f(A,D) is Aim , im > 0, 1 ≤ m ≤ k + 1, then

there exists a matrix polynomial g(A,D) such that f(A,D) = g(A,D)A, then it is easy to
verify that g(A,D) ∈ Qk[A,D], and it follows that f(A,D) ∈ Qk[A,D]A; (ii) the final term
of f(A,D) is Djm , jm > 0, 1 ≤ m ≤ k + 1, then there exists a matrix polynomial g(A,D) such
that f(A,D) = g(A,D)D, then it is easy to verify that g(A,D) ∈ Qk−h[A,D], and it follows
that f(A,D) ∈ Qk−h[A,D]D.

Thus, we have Qk[A,D]A
⋃
Qk−h[A,D]D ⊇ Qk+1[A,D]. Hence, we know that (2.7)

holds.
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Secondly, since Gk+h+1 = Gk+hA +GkD, we have

Gk+1+h =
∑

f(A,D)∈Qk+h[A,D]

f(A,D)A +
∑

f(A,D)∈Qk[A,D]

f(A,D)D

=
∑

g(A,D)∈Qk+h[A,D]A
⋃
Qk[A,D]D

g(A,D)

=
∑

g(A,D)∈Qk+h+1[A,D]

g(A,D).

(2.12)

Thus, (2.5) holds for k + h + 1. Hence, statement (b) holds.
As for statement (c), it can be deduced naturally from statement (b). Note that if

Ai1Dj1 · · ·AikDjk ∈ Qk[A,D], then Ai1Dj1 · · ·AikDjk ∈ Qk[A,D] as well. So they must appear
in Gk. By Definition 2.1, Gk ∈ PSym[A,D].

3. Main Results

First, we consider the general case.

Theorem 3.1. System (1.1) is controllable if and only if rank[G0B,G1B, . . . , GkB, . . .] = n.

Proof. From (2.4) and Definition 1.1, this theorem holds naturally.

Theorem 3.2. For system (1.1), there exists K ∈ N such that

rank[G0B,G1B, . . . , GkB, . . .] = rank[G0B,G1B, . . . , GKB]. (3.1)

Proof. It is obvious that rank[G0B,G1B, . . . , GKB] = dim(span{G0B,G1B, . . . , GKB}). Con-
sider an auxiliary scalar sequence {dk}∞k=0, where dk = dim(Span{G0B,G1B, . . . , GkB}). By
definition, dk ≤ dk+1 ≤ n2 for any k. Hence, there exists a constant d∗ such that, limk→∞ dk =
d∗. Then for ε = 0.5, there existsK > 0 such that for all k > K, we have d∗ − 0.5 < dk < d∗ + 0.5.
It implies that dk = d∗.

Remark 3.3. From Theorem 3.2, it is clear that the controllability of the system (1.1) can be
realized completely within first K steps during the evolving process, which means K is just
a CRI of system (1.1), so the existence of MinCRI of linear discrete-time delay systems is
ensured and the value of MinCRI is finite. Moreover, K is dependent on A, D, and h.

Now we consider the second-order case, that is, n = 2.

Theorem 3.4. If n = 2, then 2h + 4 is a CRI of system (1.1).

Before giving the proof of Theorem 3.4, we first give some lemmas.

Lemma 3.5. Given A,D ∈ R
2 × 2, for any k ∈ N, one has (AD)kA, (DA)kD, (AD)k + (DA)k ∈

span{I,A,D,DA +AD,ADA,DAD}.
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Proof. According to the different cases, we formulate the proof into two cases.
(a) I,A,D are linearly dependent. Without loss of generality, suppose that

A = λ1I + λ2D. (3.2)

Then we have

(AD)kA = [(λ1I + λ2D)D]k(λ1I + λ2D)

(DA)kD = [D(λ1I + λ2D)]kD

(AD)k + (DA)k = [D(λ1I + λ2D)D]k + [D(λ1I + λ2D)]k.

(3.3)

It is obvious that (AD)kA, (DA)kD, (AD)k + (DA)k ∈ span{I,D}.
(b) I,A,D are linearly independent. If span{I,A,D,DA + AD,ADA,DAD} = R

2 × 2,
the proof is completed. Otherwise, suppose that DA +AD,ADA,DAD ∈ span{I,A,D}. We
use mathematical induction.

(i) For k = 1, by the assumption, (AD)1A, (DA)1D,AD +DA ∈ span{I,A,D}.
(ii) Suppose that for k, (AD)kA, (DA)kD ∈ span{I,A,D}. Assume

(AD)kA = λ1 + λ2A + λ3D

(DA)kD = λ4 + λ5A + λ6D.
(3.4)

For k + 1, we have

(AD)k+1A = A
[
(DA)kD

]
A = A(λ4 + λ5A + λ6D)A = λ4A

2 + λ5A
3 + λ6ADA

(DA)k+1D = D(λ1 + λ2A + λ3D)D = λ1D
2 + λ2DAD + λ3D

3

(AD)k+1 + (DA)k+1 = (AD)k−1ADAD + (DA)k−1DADA

= (AD)k−1A(λ4 + λ5A + λ6D) + (DA)k−1(λ4 + λ5A + λ6D)A

= λ6(AD)k + λ6(DA)k + (AD)k−1A(λ4 + λ5A) + (DA)k−1(λ4 + λ5A)A.

(3.5)

It is obvious that (AD)k+1A, (DA)k+1D, (AD)k+1 + (DA)k+1 ∈ span{I,A,D}.

Lemma 3.6. Given A,D ∈ R
2 × 2, one has span{I,A,D,DA +AD,ADA,DAD} = PSym[A,D].

Proof. First, it is obvious that

span{I,A,D,DA +AD,ADA,DAD} ⊆ PSym[A,D]. (3.6)

Now we prove that span{I,A,D,DA +AD,ADA,DAD} ⊇ PSym[A,D].
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For any f(A,D) ∈ PSym[A,D], assume that

f(A,D) =
M∑

m=1

cm
(
Aim,1Djm,1 · · ·Aim,nmDjm,nm +Djm,nmAim,nm · · ·Djm,1Aim,1

)
, (3.7)

where nm ∈ N, im,1, jm,1, . . . , im,nm , jm,nm ∈ {0, 1}, cm ∈ R, m = 1, . . . ,M; M ∈ N.
It is easy to see that if we could prove that each

Aim,1Djm,1 · · ·Aim,nmDjm,nm +Djm,nmAim,nm · · ·Djm,1Aim,1

∈ span{I,A,D,DA +AD,ADA,DAD},
(3.8)

then we would have proved that

f(A,D) ∈ span{I,A,D,DA +AD,ADA,DAD}. (3.9)

It is easy to verify that

Aim,1Djm,1 · · ·Aim,nmDjm,nm +Djm,nmAim,nm · · ·Djm,1 (3.10)

can only be rewritten in three different forms:

(a) (AD)kA, where k ∈ N;

(b) (DA)kD, where k ∈ N;

(c) (AD)k + (DA)k, where k ∈ N.

By Lemma 3.5, we know that (3.8) holds. Thus, we have

f(A,D) ∈ span{I,A,D,DA +AD,ADA,DAD}. (3.11)

It follows that

PSym[A,D] ⊆ span{I,A,D,DA +AD,ADA,DAD}. (3.12)

Now we are in a position to prove Theorem 3.4.

Proof of Theorem 3.4. By the definition of CRI, we only need to prove that

span{G0B,G1B, . . . , GkB, . . .} = span{G0B,G1B, . . . , G2h+3B}. (3.13)

By Lemmas 2.2 and 3.6, we have

span{G0, G1, . . . , Gk, . . .} ⊆ span{I,A,D,AD +DA,ADA,DAD}. (3.14)
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Now we prove that

span{G0, G1, . . . , G2h+3} = span{I,A,D,AD +DA,ADA,DAD}. (3.15)

By the definition of Gk, we have Gk = Ak, k = 0, 1, . . . , h, Gh+1 = Ah+1 +D, Gh+2 = Ah+2 +DA+
AD, Gh+3 = Ah+3 + DA2 + ADA + A2D. Note that DA2 + A2D can be linearly expressed by
I,A,D,AD +DA; then, we have

span{G0, G1, . . . , Gh+3} = span{I,A,D,AD +DA,ADA}. (3.16)

Consider the term DAD; it first appears in G2h+3. It is easy to verify that all other terms in
G2h+3 can be linearly expressed by I,A,D,AD +DA,ADA. Thus, we know that (3.14) holds.
This implies that (3.8) holds.

Without proof, we can get the following corollaries directly.

Corollary 3.7. Assuming n = 2, system (1.1) is controllable if and only if

rank[B,AB,DB, (AD +DA)B,ADAB,DADB] = 2. (3.17)

Corollary 3.8. Assuming n = 2, if system (1.1) is controllable, then the controllability can be realized
in 2h+ 4 steps; that is, one can select appropriate u(0), u(1), . . . , u(2h+ 3) such that system (1.1) can
be driven from any initial state to any terminal state.

Remark 3.9. Note that the parameter h does not appear in Corollary 3.7. This implies that the
specific number of the delay steps has nothing to do with the controllability of the system.

Remark 3.10. Lemma 3.6 plays a key role in the proof of Theorem 3.4. When n > 2, it is difficult
to build up a similar result like Lemma 3.6 for n > 2. Thus the CRI problem for more general
case is still open.

4. Examples

In this section, we present some numerical examples to illustrate the validity of our theoretic
results.

Example 4.1. Consider the system (1.1)with n = 2, h = 2, and

A =
[
0 0
0 0

]

, D =
[
0 0
1 0

]

, B =
[
1
0

]

. (4.1)
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By simple calculation, we have rank[B,AB,DB, (AD + DA)B,ADAB,DADB] = 2. By
Corollary 3.7, the system should be controllable. In fact, we have

x(4) = Φ(x(0), x(−1), x(−2)) +
[
I,A,A2, D

]

⎡

⎢
⎢
⎣

u(3)
u(2)
u(1)
u(0)

⎤

⎥
⎥
⎦. (4.2)

Leting u(2) = u(1) = 0, we can select suitable u(3) and u(0) such that x(4) be any state in R
2.

Thus, the system is controllable indeed.

Example 4.2. Consider the system (1.1)with n = 2, h = 2, and

A =
[
1 0
0 1

]

, D = A, B =
[
1
0

]

. (4.3)

By simple calculation, we have rank[B,AB,DB, (AD + DA)B,ADAB,DADB] = 1. By
Corollary 3.7, the system should not be controllable. In fact, it is easy to see that the second
element of the state x(k) is not affected by any input u(k). Thus, the system is not controllable
indeed.

5. Conclusion

This paper discussed the controllability of linear discrete-time systems with delay in state.
After introducing a new concept calledMinCRI to describe the controllability feature of delay
systems, we proved the existence and finiteness of MinCRI. Based on this, a necessary and
sufficient condition for the controllability of linear delay systems has been derived.
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