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This work deals with the analysis of a delayed diffusive predator-prey system under Neumann
boundary conditions. The dynamics are investigated in terms of the stability of the nonnegative
equilibria and the existence of Hopf bifurcation by analyzing the characteristic equations. The
direction of Hopf bifurcation and the stability of bifurcating periodic solution are also discussed by
employing the normal form theory and the center manifold reduction. Furthermore, we prove that
the positive equilibrium is asymptotically stable when the delay is less than a certain critical value
and unstable when the delay is greater than the critical value.

1. Introduction

The study on the dynamics of predator-prey systems is one of the dominant subjects in
ecology andmathematical ecology due to its universal existence and importance [1]. A proto-
typical predator-prey interaction model is of the following form:

du
dt

= a(u) − f(u)g(v),

dv
dt

= σf(u)g(v) − z(v),
(1.1)

where u(t) and v(t) are the densities of the prey and predator at time t > 0, respectively.



2 Abstract and Applied Analysis

Furthermore, the function a(u) is growth rate of the prey in the absence of predation,
which is given by

a(u) = αumin
{
1,
K − u
K − ε

}
, α > 0, ε ≥ 0, K > 0. (1.2)

If ε = 0, this reduces to the traditional logistic form a(u) = αu(1 − u/K), see [2] and the
references therein. Here, the parameter α stands for the specific growth rate of the prey u,
and K for carrying capacity of the prey in the absence of predators.

The product f(u)g(v) gives the rate at which prey is consumed, and f(u)g(v)/v is
termed as the functional response [3]. In particular, these functions can be defined by

f(u) = cu, g(v) =
v

mv + 1
, c > 0, m ≥ 0, (1.3)

where c denotes the capture rate, andm the half capturing saturation constant.
The proportionality constant σ is the rate of prey consumption. And the function z(v)

is given by

z(v) = γv + lv2, γ > 0, l ≥ 0, (1.4)

where γ denotes the natural death rate of the predators, and l > 0 can be used to model
predator in traspecific competition that is not direct competition for food, such as some type
of territoriality, see [2]. In this paper, we discuss the case of l = 0, which is used in a much
more traditional case. Based on the above discussions, we can obtain the following model:

du
dt

= αu
(
1 − u

K

)
− cuv

mv + 1
,

dv
dt

= v
(
−γ + cσu

mv + 1

)
.

(1.5)

Setting β = α/K, b = cσ, model (1.5) leads to the following dimensionless equation:

du
dt

= u
(
α − βu) − cuv

mv + 1
,

dv
dt

= v
(
−γ + bu

mv + 1

)
,

(1.6)

where b > 0 denotes conversion rate.
In recent years, the models involving time delay and spatial diffusion have been exten-

sively studied by many authors and many interesting results have been obtained, including
the stability, the existence of Hopf bifurcation, and direction of bifurcating periodic solutions,
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see [1, 4–18]. In this paper, we mainly focus on the effects of both spatial diffusion and time
delay factors on system (1.6)with Neumann boundary conditions as follows:

∂u

∂t
= u

(
α − βu) − cuv

mv + 1
+ d1Δu, x ∈ Ω, t > 0,

∂v

∂t
= v

(
−γ + bu(t − τ)

mv(t − τ) + 1

)
+ d2Δv, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.7)

where Ω is a bounded open domain in R with a smooth boundary ∂Ω, and Δ = ∂2/∂x2

denotes the Laplacian operator in R. d1 > 0 and d2 > 0 denote the diffusion coefficients of the
prey u and predator v, respectively. ν is the outward unit normal vector on ∂Ω. τ > 0 can be
regarded as the gestation of the predator. System (1.7) includes not only the dispersal pro-
cesses, but also some of the past states of the system.

Throughout this paper, we restrict ourselves to the one-dimensional spatial domain
Ω = (0, π) for the sake of convenience.

The remaining parts of the paper are structured in the following way. In Section 2, we
analyze the distribution of the roots of the characteristic equation and give various conditions
on the stability of a unique positive equilibrium and the existence of Hopf bifurcation with
time delay. In Section 3, applying the normal form theory [19, 20] and the center manifold
reduction of partial functional differential equations [21], we derive the explicit algorithm in
order to determine the direction of the Hopf bifurcation, the stability, and other properties on
bifurcating periodic solutions. Finally, a brief discussion is given.

2. Stability of Positive Equilibrium and Existence of Hopf Bifurcation

In this section, by analyzing the associated characteristic equation of system (1.7) at the
positive equilibrium, we investigate the stability of the positive equilibria of system (1.7).

It is straightforward to see that system (1.7) has the following two boundary equilibria:

(i) E1 = (0, 0) (total extinct) which is saddle point, hence it is unstable;

(ii) E2 = (α/β, 0) (extinct of the predator) which is saddle point if bα > βγ , or stable if
bα < βγ .

To find the positive equilibrium, we set

u
(
α − βu) − cuv

mv + 1
= 0, v

(
−γ + bu

mv + 1

)
= 0, (2.1)

which yields

mbβu2 + (c −mα)bu − cγ = 0. (2.2)
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Obviously, system (1.7) has a unique positive equilibrium E∗ = (u∗, v∗) with bα > βγ ,
where

u∗ =
mbα − bc +

√
4mbcβγ + b2(mα − c)2
2mbβ

, v∗ =
bu∗ − γ
mγ

. (2.3)

Set u = u − u∗, v = v − v∗ and drop the bars for simplicity of notations, then system
(1.7) can be transformed into the following equivalent system:

∂u

∂t
= (u + u∗)

(
α − β(u + u∗)

) − c(u + u∗)v
m(v + v∗) + 1

+ d1Δu, x ∈ Ω, t > 0,

∂v

∂t
= (v + v∗)

(
−γ + b(u(t − τ) + u∗)

m(v(t − τ) + v∗) + 1

)
+ d2Δv, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) − u∗ ≥ 0, v(x, 0) = v0(x) − v∗ ≥ 0, x ∈ Ω.

(2.4)

Assume that u0(x), v0(x) ∈ C([−τ, 0];X) and X is defined by

X =
{
(u, v) : u, v ∈W2,2(Ω) :

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω

}
(2.5)

with the inner product 〈·, ·〉.
Denote (u(t), v(t)) = (u(t, x), v(t, x)) andU(t) = (u(t), v(t))T . Then system (2.4) can be

rewritten as an abstract differential equation in the phase space C([−τ, 0];X) as follows:

∂U(t)
∂t

= dΔU(t) + L(Ut) + F(Ut), (2.6)

where d = diag(d1, d2), Ut(θ) = U(t + θ), −τ ≤ θ ≤ 0, and L : C([−τ, 0];X) → X, F :
C([−τ, 0];X) → X are given by

L
(
φ
)
=

⎛
⎜⎜⎜⎝

−βu∗φ1(0) − cu∗

(mv∗ + 1)2
φ2(0)

bv∗

(mv∗ + 1)
φ1(−τ) − mbu∗v∗

(mv∗ + 1)2
φ2(−τ)

⎞
⎟⎟⎟⎠, (2.7)

F
(
φ
)
=

⎛
⎜⎜⎜⎜⎜⎝

−βφ2
1(0) −

c

(mv∗ + 1)2
φ1(0)φ2(0) +

cmu∗

(cm + 1)3
φ2
2(0)

(
φ2(0) +

mv∗

mv∗ + 1
φ2(−τ)

)(
b

mv∗ + 1
φ1(−τ) − bmu∗

(mv∗ + 1)2
φ2(−τ)

)

⎞
⎟⎟⎟⎟⎟⎠
, (2.8)

respectively, where φ(θ) = Ut(θ), φ = (φ1, φ2)
T ∈ C([−τ, 0];X).



Abstract and Applied Analysis 5

The linearization of (2.6) is given by

∂U(t)
∂t

= dΔU(t) + L(Ut), (2.9)

and its characteristic equation is

λy − dΔy − L
(
eλ·y

)
= 0, (2.10)

where y ∈ dom(Δ) and y /= 0, dom(Δ) ⊂ X.
It is well known that the eigenvalue problem

−Δψ = μψ, x ∈ (0, π),

∂ψ

∂x

∣∣∣∣
x=0

=
∂ψ

∂x

∣∣∣∣
x=π

= 0,
(2.11)

has eigenvalues 0 = μ0 ≤ μ1 ≤ μ2 ≤ · · · ≤ μn ≤ μn+1 ≤ · · · , with the corresponding eigenfunc-
tions ψn(x). Substituting

y =
∞∑
n=0

ψn(x)
(
y1n
y2n

)
(2.12)

into characteristic equation (2.10), we obtain

⎛
⎜⎜⎜⎝

−βu∗ − d1μn − cu∗

(mv∗ + 1)2

bv∗

mv∗ + 1
e−λτ − bmu∗v∗

(mv∗ + 1)2
e−λτ − d2μn

⎞
⎟⎟⎟⎠
(
y1n
y2n

)
= λ
(
y1n
y2n

)
. (2.13)

Hence, we can conclude that the characteristic equation (2.10) is equivalent to the
sequence of the following characteristic equations:

λ2 +
(
An +De−λτ

)
λ + Bn + Cne

−λτ = 0 (n = 0, 1, 2, . . .), (2.14)

where

An = βu∗ + (d1 + d2)μn,

Bn = βu∗d2μn + d1d2μ2
n,

Cn =
bd1mμnβu

∗v∗

(mv∗ + 1)2
+
bmβ(u∗)2v∗

(mv∗ + 1)2
+

bcu∗v∗

(mv∗ + 1)3
,

D =
bmu∗v∗

(mv∗ + 1)2
.

(2.15)
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The stability of the positive equilibrium E∗ = (u∗, v∗) can be determined by the distribution
of the roots of (2.14) (n = 0, 1, 2, . . .), that is, the equilibrium E∗ = (u∗, v∗) is locally asympto-
tically stable if all the roots of (2.14) (n = 0, 1, 2, . . .) have negative real parts. Note that λ = 0
is not a root of (2.14) for any n = 0, 1, 2, . . .. Next, we analyze the behaviour of system (1.7) in
two situations: with/without delay effect.

2.1. Case τ = 0

Equation (2.14) with τ = 0 is equivalent to the following quadratic equation:

λ2 + (An +D)λ + Bn + Cn = 0, (2.16)

where An, Bn, Cn, and D are defined as (2.15).
Let λ1 and λ2 be two roots of (2.16), then for any n = 0, 1, 2, . . ., we have

λ1 + λ2 = −(An +D) < 0,

λ1λ2 = Bn + Cn > 0.
(2.17)

Then we can get the following theorem.

Theorem 2.1. If bα > βγ holds, the positive equilibrium E∗ = (u∗, v∗) of system (1.7) with τ = 0 is
asymptotically stable.

In the following, we prove that E∗ = (u∗, v∗) of system (1.7) is globally stable with
τ = 0.

Theorem 2.2. If bα > βγ holds, the positive equilibrium E∗ = (u∗, v∗) of system (1.7) with τ = 0 is
globally asymptotically stable.

Proof. To prove our statement, we need to construct a Lyapunov function. To this end, we
define

V (t) =
∫
Ω
V1(u, v)dx, (2.18)

where

V1(u, v) =
∫u
u∗

ξ − u∗
ξ

dξ +
c

b(1 +mv∗)

∫v
v∗

η − v∗

η
dη. (2.19)

We claim that V1(u, v) is positive definite. In fact, set

∂V1

∂u
= 1 − u∗

u
= 0,

∂V1

∂v
=

c

b(1 +mv∗)

(
1 − v∗

v

)
= 0, (2.20)
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we can obtain (u, v) = (u∗, v∗). And the Hessian Matrix at (u∗, v∗) is given by

H(E)|(u∗,v∗) =

⎛
⎜⎜⎝

1
u∗

0

0
c

bv∗(1 +mv∗)

⎞
⎟⎟⎠, (2.21)

HenceH(E)|(u∗,v∗) is positive definite, which follows that

min(V1(u, v)) = V1(u∗, v∗) = 0. (2.22)

The time derivative of V along the solutions of system (1.7) with τ = 0, we have

dV
dt

=
∫
Ω

(
u − u∗
u

∂u

∂t
+

c

b(1 +mv∗)
(v − v∗)

v

∂v

∂t

)
dx

=
∫
Ω

dV1

dt
dx +

∫
Ω

{
(d1Δu)

∂V

∂u
+ (d2Δv)

∂V

∂v

}
dx

=
∫
Ω

(
−β(u − u∗)2 − cmu∗

(mv + 1)(mv∗ + 1)2
(v − v∗)2

)
dx

− d1u
∗

u2

∫
Ω

(
∂u

∂x

)2

dx − d2v
∗

v2

∫
Ω

(
∂v

∂x

)2

dx,

(2.23)

then, we obtain dV/dt < 0.
It is enough to see that dV/dt satisfies Lyapunov’s asymptotic stability theorem, hence

the positive equilibrium E∗ = (u∗, v∗) of system (1.7) with τ = 0 is globally asymptotically
stable.

2.2. Case τ /= 0

In the following, we prove the stability of the positive equilibrium E∗ = (u∗, v∗) of system
(1.7) and the existence of Hopf bifurcation at the positive equilibrium E∗ = (u∗, v∗).

Theorem 2.3. Assume that > βγ , A2
n −D2 − 2B2

n < 0 and B2
n − C2

n > 0 hold, then the positive equi-
librium E∗ = (u∗, v∗) is asymptotically stable for all τ ≥ 0.

Proof. Let λ = μ(τ) + iω(τ) be a root of the characteristic equation (2.14), then we have

μ2 −ω2 +Anμ + Bn +
(
Dω sinωτ +

(
Cn +Dμ

)
cosωτ

)
e−μτ = 0,

2μω +Anω − ((Cn +D) sinωτ +Dω cosωτ)e−μτ = 0,
(2.24)
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where λ, μ, ω are functions of τ . A necessary condition for the stability of E∗ = (u∗, v∗) is that
the characteristic equation has a purely imaginary solution λ = iω. Let μ(τ) = 0 and ω(τ)/= 0,
then we can reduce (2.24) to

−ω2 +Dω sinωτ + Cn cosωτ + Bn = 0,

Anω +Dω cosωτ − Cn sinωτ = 0,
(2.25)

which lead to

ω4 +
(
A2
n −D2 − 2Bn

)
ω2 +

(
B2
n − C2

n

)
= 0. (2.26)

Since B2
n − C2

n > 0 and (A2
n −D2 − 2Bn) < 0, these imply that (2.26) has no positive roots, that

is, all roots of (2.14) have negative real parts.

Theorem 2.4. Assume that bα > βγ , B2
n − C2

n < 0, then there exists a sequence

τ0j = τ00 +
2jπ
ω0

(
j = 0, 1, 2, . . .

)
, (2.27)

where τ00 is defined as (2.32), such that, for system (1.7), the following statements are true.

(i) If τ ∈ [0, τ00 ), then the positive equilibrium E∗ = (u∗, v∗) is asymptotically stable.

(ii) If τ > τ00 , then the positive equilibrium E∗ = (u∗, v∗) is unstable.

(iii) τ = τ
j

0 (n = 0, 1, 2, . . .) are Hopf bifurcation values of system (1.7) and these Hopf
bifurcations are all spatially homogeneous.

Proof. Let λ = iω(τ) be a root of the characteristic equation (2.14). By the same way in
Theorem 2.3, then ω satisfies the following equation:

ω4 +
(
A2
n −D2 − 2Bn

)
ω2 +

(
B2
n − C2

n

)
= 0. (2.28)

Since B2
n − C2

n < 0, (2.28) has a unique positive root ω0 satisfying

ω0 =

√√√√−(A2
n −D2 − 2Bn

)
+
√(

A2
n −D2 − 2Bn

)2 − 4
(
B2
n − C2

n

)
2

(2.29)

and from (2.25) we obtain

sinω0τ =
Dω3

0 +AnCnω0 − BnDω0

D2ω2
0 + C

2
n

� G(ω0),

cosω0τ =
Cnω

2
0 − BnCn −AnDω

2
0

D2ω2
0 + C

2
n

� E(ω0),

(2.30)
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then (2.16) has one imaginary root iω0 when

τ0j = τ00 +
2jπ
ω0

,
(
j = 0, 1, 2, . . .

)
, (2.31)

where τ00 satisfies

τ00 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arc cos(E(ω0))
ωn

, if G(ω0) > 0,

arc cos(2π − E(ω0))
ω0

, if G(ω0) < 0,
(2.32)

Let λ(τ) = α(τ) + iω(τ) be the root of (2.14) satisfying α(τ0j ) = 0 and ω(τ0j ) = ω0 when
τ is close to τ0j . Now by some simple calculations we obtain

[
dα
dτ

∣∣∣∣
τ=τ0j

]−1
= Re

⎡
⎣
(

2λ +An +De−λτ − (Cn +Dλ)τe−λτ

(Cn +Dλ)λe−λτ

)∣∣∣∣∣
τ=τ0j

⎤
⎦

=
2Cn cosω0τ +Dω0 sinω0τ

C2
n +D2ω2

0

− D2ω2
n

C2
nω

2
0 +D

2ω4
0

+
Anω0(−Dωn cosω0τ + Cn sinω0τ)

C2
nω

2
0 +D

2ω4
0

,

(2.33)

since ω2
0 = Dωn sinω0τ + Cn cosω0τ and Anω0 = −Dω0 cosω0τ + Cn sinω0τ , and from the

expression of ω2
0 in (2.29), we immediately see that

[
dα
dτ

∣∣∣∣
τ=τ0j

]−1
=

2ω2
0

C2
n +D2ω2

0

+
A2
n −D2

C2
n +D2ω2

0

=

√(
D2 −A2

n

)2 + 4C2
n

C2
n +D2ω2

0

. (2.34)

Therefore, sign [dα/dτ |τ=τ0j ]
−1 = 1, that is, dα/dτ |τ=τ0j > 0. This implies that all the roots that

cross the imaginary axis at iω cross from left to right as τ increases.
Hence the transversality condition holds and accordingly Hopf bifurcation occurs at

τ = τ00 , and τ = τ0j (j = 0, 1, 2, . . .) are Hopf bifurcation values of system (1.7) and these Hopf
bifurcations are all spatially homogeneous. This completes the proof.

3. Direction and Stability of Hopf Bifurcation

In the previous section, we have already obtained that system (1.7) undergoes Hopf bifurca-
tion at the positive equilibrium E∗ = (u∗, v∗) when τ crosses through the critical value τ0j (j =
0, 1, 2, . . .). In this section, we will study the direction of the Hopf bifurcation and the stability
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of the bifurcating periodic solutions by employing the normal formmethod [19, 20] as well as
center manifold theorem [21] for partial differential equations with delay. Then we compute
the direction and stability of the Hopf bifurcation when τ0 = τ0j for fixed j ∈ {0, 1, 2, . . .}.

Without loss of generality, we denote the critical value of τ by τ0 and set τ = τ0 + μ,
then μ = 0 is the Hopf bifurcation value of system (2.6). Rescaling the time by t → t/τ to
normalize the delay, system (2.6) can be written in the following form:

∂U(t)
∂t

= τ0dΔU(t) + τ0L(Ut) +G
(
Ut, μ

)
, (3.1)

where

L
(
φ
)
=

⎛
⎜⎜⎜⎝

−βu∗φ1(0) − cu∗

(mv∗ + 1)2
φ1(0)

bv∗

(mv∗ + 1)
φ2(−1) − bmu∗v∗

(mv∗ + 1)2
φ2(−1)

⎞
⎟⎟⎟⎠,

G
(
φ, μ

)
= μdΔφ(0) + μL

(
φ
)
+
(
τ0 + μ

)
F
(
φ, μ

)
,

F
(
φ, μ

)
=

⎛
⎜⎜⎜⎜⎝

−βφ2
1(0) −

c

(mv∗ + 1)2
φ1(0)φ2(0) +

cmu∗

(cm + 1)3
φ2
2(0)

(
φ2(0) − mv∗

mv∗ + 1
φ2(−1)

)(
b

mv∗ + 1
φ1(−1) − bmu∗

(mv∗ + 1)2
φ2(−1)

)

⎞
⎟⎟⎟⎟⎠

(3.2)

for φ ∈ C([−τ, 0];X).
From Section 2, we know that ±iω0τ0 are a pair of simple purely imaginary eigenvalues

of the liner system

∂U(t)
∂t

= τ0dΔU(t) + τ0L(Ut), (3.3)

and the following liner functional differential equation:

U̇(t) = τ0L(Ut). (3.4)

By the Riesz representation theorem, there exists a 2 × 2 matrix function η(θ, τ0) of
bounded variation for θ ∈ [−1, 0], such that

(
τ0 + μ

)
L(τ0)

(
φ
)
=
∫0

−1
dη(θ, τ0)φ(θ) for φ ∈ C

(
[−1, 0],R2

)
. (3.5)

In fact, we can choose

η(θ, τ0) =
(
τ0 + μ

)
H1δ(θ) +

(
τ0 + μ

)
H2δ(θ + 1), (3.6)
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where

H1 =

⎛
⎜⎝−βu∗ − cu∗

(mv∗ + 1)2

0 0

⎞
⎟⎠, H2 =

⎛
⎜⎜⎝

0 0

bv∗

mv∗ + 1
− bmu∗v∗

(mv∗ + 1)2

⎞
⎟⎟⎠, (3.7)

and δ is the Dirac delta function.
For φ ∈ C1([−1, 0],R2), we define A(0) as

A(0)φ(θ) =

⎧⎪⎪⎨
⎪⎪⎩

d

dθ
φ(θ), θ ∈ [−1, 0),

∫0
−1 dη(θ, τ0)φ(θ), θ = 0,

R(0)φ(θ) =

⎧⎪⎨
⎪⎩
0, θ ∈ [−1, 0),

F
(
φ, μ

)
, θ = 0.

(3.8)

For ψ = (ψ1, ψ2) ∈ C1([−1, 0], (R2)∗), we define

A∗(ψ(s)) =
⎧⎪⎪⎨
⎪⎪⎩
− d

ds
ψ(s), s ∈ (0, 1],

∫0
−1 ψ(−ξ)dη(θ, 0), s = 0.

(3.9)

Then A(0) and A∗ are adjoint operators under the following bilinear form:

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0) −

∫0

−1

∫θ
ξ=0

ψ(ξ − θ)dη(0, θ)φ(ξ)dξ, (3.10)

where η(θ) = η(0, θ).
We note that ±iω0τ0 are the eigenvalues of A(0). Since A(0) and A∗ are two adjoint

operators, ±iω0τ0 are also eigenvalues of A∗. We will first try to obtain eigenvector of A(0)
and A∗ corresponding to the eigenvalue iω0τ0 and −iω0τ0, respectively.

Let q(θ) = (1, ρ)Teiω0τ0θ, (θ ∈ [−1, 0]) be the eigenvector of A(0) corresponding to
the eigenvalue iω0τ0. Then we have A(0)q(θ) = iω0τ0q(θ) by the definition of eigenvector.
Therefore, from (3.6), (3.10), and the definition of A(0), we can get

τ0

⎛
⎜⎜⎜⎝

−βu∗ − iω0 − cu∗

(mv∗ + 1)2

bv∗

mv∗ + 1
e−iω0τ0 − bmu∗v∗

(mv∗ + 1)2
e−iω0τ0 − iω0

⎞
⎟⎟⎟⎠
(
1
ρ

)
=
(
0
0

)
, (3.11)
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here,

ρ = − (mv
∗ + 1)2

(
βu∗ + iω0

)
cu∗

. (3.12)

On the other hand, suppose that q∗(S) = D(1, r)eiω0τ0S is the eigenvector of A∗ cor-
responding to the eigenvalue −iω0τ0. By the definition of A∗, we have

τ0

⎛
⎜⎜⎜⎝

−βu∗ + iω0
bv∗

mv∗ + 1
e−iω0τ0

− cu∗

(mv∗ + 1)2
− bmu∗v∗

(mv∗ + 1)2
e−iω0τ0 + iω0

⎞
⎟⎟⎟⎠
(
D
Dr

)
=
(
0
0

)
, (3.13)

where

r = − mv∗

mv∗ + 1
− mβu∗v∗(mv∗ + 1) + cu∗

ω0(mv∗ + 1)2
i, (3.14)

and we also assume that 〈q∗(S), q(θ)〉 = 1. To obtain the value of D, from (3.10)we have

〈
q∗(S), q(θ)

〉
= D

{
(1, r)

(
1, ρ

)T −
∫0

−1

∫θ
ξ=0

(1, r)e−i(ξ−θ)ω0τ0dη(θ)
(
1, ρ

)T
eiξω0τ0dξ

}

= D

{
1 + ρr −

∫0

−1
(1, r)θeiθω0τ0dη(θ)

(
1, ρ

)T}

= D
{
1 + ρr +

brτ0v
∗

mv∗ + 1

(
mρu∗

mv∗ + 1
− 1
)
e−iω0τ0

}
.

(3.15)

Thus, we can choose

D =
(
1 + ρr +

brτ0v
∗

mv∗ + 1

(
mρu∗

mv∗ + 1
− 1
))−1

eiω0τ0 , (3.16)

such that 〈q∗(S), q(θ)〉 = 0 and 〈q∗(S), q(θ)〉 = 1, that is to say that let φ = (q(θ), q(θ)), ψ =
(q∗(S), q∗(S))T , then (ψ, φ) = I, where I is the unit matrix. Then the center subspace of system
(3.4) is P = span{q(θ), q(θ)}, and the adjoint subspace P ∗ = span{q∗(S), q∗(S)}. Let f0 =
(f1

0 , f
2
0 ), where

f1
0 =

(
1
0

)
, f2

0 =
(
0
1

)
, (3.17)
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by using the notation from [20], we also define

cf0 = c1f1
0 + c2f2

0 , (3.18)

for c = ( c1c2 ) ∈ C = C([−1, 0], X).
And the center subspace of linear system (3.4) is given by PCNC, where

PCNφ = φ
(
ψ,
〈
φ, f0

〉)
0 · f0, φ ∈ C,

PCNC =
(
q(θ)z + q(θ)z

) · f0, z ∈ C,
(3.19)

and C = PCNC ⊕ PSC, where PSC is the stable subspace.
FollowingWu [20], we know that the infinitesimal generatorAU of linear system (3.4)

satisfies

U̇(t) = A
U
U (3.20)

moreover,U ∈ dom(AU) if and only if

U̇(t) ∈ C, U(0) ∈ dom(Δ), U̇(0) = τ0ΔU(0) + τ0L(U(0)). (3.21)

As the formulas to be developed for the bifurcation direction and stability are all
relative to μ = 0 only, we set μ = 0 in system (3.4) and can obtain the center manifold

W(z, z) =W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+ · · · (3.22)

with the range in PSC. The flow of system (3.4) in the center manifold can be written as fol-
lows:

Ut = φ(z(t), z(t))
T · f0 +W(z(t), z(t)), (3.23)

where

ż(t) = iω0τ0z(t) + q∗(0)
〈
G(φ(z(t), z(t)))T · f0 +W(z, z, 0), f0

〉
. (3.24)

We rewrite (3.24) as

ż(t) = iω0τ0z(t) + g(z(t), z(t)), (3.25)
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with

g(z(t), z(t)) = q∗(0)
〈
G(φ(z(t), z(t))T · f0 +ω(z, z, 0), f0

〉

= g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
.

(3.26)

Denote G(φ, 0) = τ0(G1, G2)
T , and let

f1(u, v) = (u + u∗)
(
α − β(u + u∗)

) − c(u + u∗)v
m(v + v∗) + 1

,

f2(u, v) = (v + v∗)
(
−r + b(u(t − τ) + u∗)

m(v(t − τ) + v∗) + 1

)
.

(3.27)

Afterwards, from Taylor formula, we have

G1 = −βφ2
1(0) −

c

(mv∗ + 1)2
φ1(0)φ2(0) +

cmu∗

(mv∗ + 1)3
φ2
2(0)

+
cm

(mv∗ + 1)3
φ1(0)φ2

2(0) −
cm2u∗

(mv∗ + 1)4
φ3
2(0),

G2 =
b

mv∗ + 1

(
φ2(0) − mv∗

mv∗ + 1
φ2(−1)

)(
φ1(−1) − mu∗

mv∗ + 1
φ2(−1)

)(
1 − m

mv∗ + 1
φ2(−1)

)
.

(3.28)

From (3.26) and (3.28), we have

g20 = 2Dτ0

[
−β − cρ

(mv∗ + 1)2
+

cmρ2u∗

(mv∗ + 1)3

]

+ 2Drτ0

[
bρ

mv∗ + 1
e−iω0τ0 +

bmρv∗

(mv∗ + 1)2

(
mρu∗

mv∗ + 1
− 1
)
e−2iω0τ0

]
,

g11 = Dτ0

[
−2β +

(
2mρρu∗

(mv∗ + 1)3
− ρ + ρ

(mv∗ + 1)2

)
(c + bmv∗)

]

+Dτ0
[

br

mv∗ + 1

(
ρe−iω0τ0 + ρeiω0τ0

)]
,

g02 = 2Dτ0

[
−β − cρ

(mv∗ + 1)2
+

cmρ2u∗

(mv∗ + 1)3

]

+ 2Drτ0

[
bm2ρ2u∗v∗

(mv∗ + 1)3
e2iω0τ0 − mbρv∗

(mv∗ + 1)2
e2iω0τ0 +

bρ

mv∗ + 1
eiω0τ0

]
,
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g21 = 2Dτ0
[
−β
(
2W1

11(0) +W
2
20(0)

)]

+ 2Dτ0

[
− c

(mv∗ + 1)2

(
ρW1

11(0) +
1
2
ρW1

20(0) +
1
2
W2

20(0) +W
2
11(0)

)]

+ 2Dτ0

[
cmu∗

(mv∗ + 1)3
(
2ρW2

11(0) + ρW
2
20(0)

)]

+ 2Dτ0
[

br

mv∗ + 1

(
ρW1

11(−1) +
1
2
ρW1

20(−1)
)]

+ 2Dτ0
[

br

mv∗ + 1

(
1
2
W2

20(0)e
iω0τ0 +W2

11(0)e
−iω0τ0

)]

+ 2Dτ0

[
− mbv∗r

(mv∗ + 1)2
e−iω0τ0

(
W2

11(−1) + ρW1
11(−1)

)]

+ 2Dτ0

[
− mbv∗r

2(mv∗ + 1)2
eiω0τ0

(
W2

20(−1) + ρW1
20(−1)

)]

+ 2Dτ0

[
m2bu∗v∗r

(mv∗ + 1)3
(
2W2

11(−1)ρe−iω0τ0 +W2
20(−1)ρeiω0τ0

)]
.

(3.29)

Since W11(θ) and W20(θ) for θ ∈ [−1, 0] appear in g21, we need to compute them. It
follows from (3.26) that

Ẇ(z, z) =W20zż +W11żz +W11zż +W20z ż+, . . . ,

AUW = AUW20
z2

2
+AUW11zz +AUW20

z2

2
+ · · · .

(3.30)

In addition,W(z, z) satisfies

Ẇ = AUW +H(z, z), (3.31)

where

H(z, z) = H20
z2

2
+H11zz +H02

z2

2
+ · · ·

= X0G(Ut, 0) − φ
(
ψ,
〈
X0G(Ut, 0), f0

〉) · f0.
(3.32)
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Thus, from (3.24) and (2.18), we can get

[2iω0τ0 −AU]W20 = H20,

−AUW11 = H11,

[−2iω0τ0 −AU]W02 = H02.

(3.33)

Note thatAU has only two eigenvalues ±iω0τ0, therefore, (3.33) has unique solutionWij inQ
given by

W20 = [2iω0τ0 −AU]−1H20,

W11 = −A−1
U H11,

W02 = [−2iω0τ0 −AU]−1H02.

(3.34)

From (2.18), we know that for θ ∈ [−1, 0)

H(z, z) = −φ(θ)ψ(0)〈G(Ut, f0
)〉 · f0

= −[q(θ)q∗(0) + q(θ)q∗(0)]〈G(Ut, f0
)〉 · f0

= −[q(θ)g(z, z) + q(θ)g(z, z)] · f0.
(3.35)

Therefore, for θ ∈ [−1, 0)

H20(θ) = −[g20q(θ) + g02q(θ)
] · f0, (3.36)

H11(θ) = −[g11q(θ) + g11q(θ)
] · f0. (3.37)

From (3.34), (3.36), and the definition of AU, it follows that

Ẇ20(θ) = 2iω0τ0W20(θ) +
[
g20q(θ) + g02q(θ)

] · f0. (3.38)

Noting that q(θ) = q(0)eiω0τ0θ, θ ∈ [−1, 0), we have

W20(θ) =
ig20
ω0τ0

q(0)eiω0τ0θ · f0 +
ig20

3ω0τ0
q(0)e−iω0τ0θ · f0 + E′

1e
2iω0τ0θ. (3.39)

Similarly, from (3.34) and (3.37), we obtain

W11(θ) = − ig11
ω0τ0

q(0)eiω0τ0θ · f0 +
ig11

ω0τ0
q(0)e−iω0τ0θ · f0 + E′

2. (3.40)
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In what follows, we will seek appropriate E′
1 and E′

2 in (3.39) and (3.40). From the
definition of AU and (3.33), we have

∫0

−1
η(θ)W20(θ) = 2iω0τ0W20(θ) −H20(θ), (3.41)

∫0

−1
η(θ)W11(θ) = −H11(0), (3.42)

where η(θ) = η(0, θ), then

H20 = −[g20q(0) + g02q(0)
] · f0

+ 2τ0

⎛
⎜⎜⎜⎜⎝

−β − cρ

(mv∗ + 1)2
+

cmρ2u∗

(mv∗ + 1)3

bρ

mv∗ + 1
e−iω0τ0 +

bmρv∗

(mv∗ + 1)2

(
mρu∗

mv∗ + 1
− 1
)
e−2iω0τ0

⎞
⎟⎟⎟⎟⎠.

(3.43)

Substituting (3.43) into (3.41), note that

(
iω0τ0 −

∫0

−1
eiω0τ0dη(θ)

)
q(0) = 0,

(
−iω0τ0 −

∫0

−1
eiω0τ0dη(θ)

)
q(0) = 0,

(3.44)

then we deduce

2τ0

⎛
⎜⎜⎜⎜⎝

−β − cρ

(mv∗ + 1)2
+

cmρ2u∗

(mv∗ + 1)3

bρ

mv∗ + 1
e−iω0τ0 +

bmρv∗

(mv∗ + 1)2

(
mρu∗

mv∗ + 1
− 1
)
e−2iω0τ0

⎞
⎟⎟⎟⎟⎠

= g20q(θ) + g02q(θ) + 2iω0τ0W20(θ) −
∫0

−1
dη(θ)W20(θ)

= −g20q(0) +
g02q(0)

3
+ 2iω0τ0E

−
∫0

−1
dη(θ)

[
ig20
ω0τ0

q(0)eiω0τ0θ +
ig20

3ω0τ0
q(0)eiω0τ0θ + Ee2iω0τ0

]

=

(
2iω0τ0I −

∫0

−1
dη(θ)e2iω0τ0θ

)
E
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=

⎡
⎢⎢⎢⎣2iω0τ0

(
1 0
0 1

)
− τ0

⎛
⎜⎜⎜⎝

−βu∗ − cu∗

(mv∗ + 1)2

bv∗

(mv∗ + 1)
e−2iω0τ0 − bmu∗v∗

(mv∗ + 1)2
e−2iω0τ0

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦E

= τ0

⎛
⎜⎜⎜⎜⎝

2iω0 + βu∗
cu∗

(mv∗ + 1)2

− bv∗

(mv∗ + 1)
e−2iω0τ0 2iω0 +

bmu∗v∗

(mv∗ + 1)2
e−2iω0τ0

⎞
⎟⎟⎟⎟⎠E.

(3.45)

Finally, we arrive at

E = 2E′
1

⎛
⎜⎜⎜⎜⎝

−β − cρ

(mv∗ + 1)2
+

cmρ2u∗

(mv∗ + 1)3

bρ

mv∗ + 1
e−iω0τ0 +

bmρv∗

(mv∗ + 1)2

(
mρu∗

mv∗ + 1
− 1
)
e−2iω0τ0

⎞
⎟⎟⎟⎟⎠, (3.46)

where

E′
1 =

⎛
⎜⎜⎜⎝

2iω0 + βu∗
cu∗

(mv∗ + 1)2

− bv∗

(mv∗ + 1)
e−2iω0τ0 2iω0 +

bmu∗v∗

(mv∗ + 1)2
e−2iω0τ0

⎞
⎟⎟⎟⎠

−1

, (3.47)

and from the above equation we can find the value of E1 and E2.
Following the similar steps, we also get

H11 = −[g20q(0) + g02q(0)
] · f0

+ τ0

⎛
⎜⎜⎜⎝

−2β +
(

2mρρu∗

(mv∗ + 1)3
− ρ + ρ

(mv∗ + 1)2

)
(c + bmv∗)

br

mv∗ + 1
(
ρe−iω0τ0 + ρeiω0τ0

)

⎞
⎟⎟⎟⎠,

(3.48)

then

τ0

⎛
⎜⎜⎜⎜⎝

−2β +
(

2mρρu∗

(mv∗ + 1)3
− ρ + ρ

(mv∗ + 1)2

)
(c + bmv∗)

br

mv∗ + 1
(
ρe−iω0τ0 + ρeiω0τ0

)

⎞
⎟⎟⎟⎟⎠

= g11q(0) + g11q(0) −
∫0

−1
dη(θ)W11(θ)
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= g11q(0) + g11q(0) −
∫0

−1
dη(θ)

[
ig11
ω0τ0

q(0)eiω0τ0θ +
ig11

ω0τ0
q(0)eiω0τ0θ + E′

]

=
∫0

−1
dη(θ)E′ = τ0

⎛
⎜⎜⎜⎜⎝

βu∗
cu∗

(mv∗ + 1)2

− bv∗

mv∗ + 1
bmu∗v∗

(mv∗ + 1)2

⎞
⎟⎟⎟⎟⎠E′.

(3.49)

Finally, we arrive at

E′ = E′
2

⎛
⎜⎜⎜⎝

−2β +
(

2mρρu∗

(mv∗ + 1)3
− ρ + ρ

(mv∗ + 1)2

)
(c + bmv∗)

br

mv∗ + 1
(
ρe−iω0τ0 + ρeiω0τ0

)

⎞
⎟⎟⎟⎠, (3.50)

where

E′
2 =

⎛
⎜⎜⎜⎝

βu∗
cu∗

(mv∗ + 1)2

− bv∗

mv∗ + 1
bmu∗v∗

(mv∗ + 1)2

⎞
⎟⎟⎟⎠

−1

. (3.51)

In a similar manner, we can calculate E
′1 and E

′2. Then g21 can be expressed. Based on
the above analysis, it is enough to see that each gij is determined by the parameters. Thus, we
can compute the following valueswhich determine the direction and stability of the following
bifurcating periodic orbits:

C1(0) =
i

2ω0τ0

(
g11g22 − 2

∣∣g11∣∣2 −
∣∣g02∣∣2
3

)
+
g21
2
,

μ2 = −Re(C1(0))
Re(λ′(τ0))

,

β2 = 2Re(C1(0)),

T2 = − Im(C1(0)) + μ2 Im(λ′(τ0))
ω0τ0

.

(3.52)

Theorem 3.1. For system (1.7),

(i) μ2 determines the directions of the Hopf bifurcation: if μ2 > 0 (< 0), the direction of the
Hopf bifurcation is forward (backward), that is, the bifurcating periodic solutions exist for
τ > τ0 = τ0j (τ < τ0 = τ0j );



20 Abstract and Applied Analysis

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

u

v

E1 E2

E∗

Figure 1: The phase portrait of model (1.7)without the diffusion and delay effects, that is, τ = 0, d1 = d2 =
0. The other parameters are taken as α = 2, β = 0.2, γ = 0.5, b = 2, and c = 3, m = 1. In this case, E1 =
(0, 0) and E2 = (10, 0) are saddle points; the unique positive equilibrium E∗ = (0.6623, 1.6491) is globally
asymptotically stable. The dashed curve is the u-nullcline u(α − βu) − cuv/(mv + 1) = 0, and the dotted
curve is the v-nullcline v(−r + bu/(mv + 1)) = 0.

(ii) β2 determines the stability of the bifurcating periodic solutions on the center manifold:
if β2 < 0 (> 0), the bifurcating periodic solutions are orbitally asymptotically stable
(unstable);

(iii) T2 determines the period of the bifurcating periodic solutions: the period increases
(decreases) if T2 > 0 (< 0).

4. Conclusions and Remarks

In this paper, under homogeneous Neumann boundary conditions, we have analyzed
dynamical behaviors of the diffusion predator-prey system (1.7)with and without delay. The
value of this study lies in two aspects. First, it presents the stability of positive equilibrium
E∗ = (u∗, v∗) of system (1.7) with and without delay, and the existence of Hopf bifurcation,
which indicates that the dynamical behaviors become rich and complex with delay. Second,
it shows the analysis of stability of Hopf bifurcation, from which one can find that small
sufficiently delays cannot change the stability of the positive equilibrium and large delays
cannot only destabilize the positive equilibrium but also induce an oscillation near the posi-
tive equilibrium.

Next, numerical simulations are performed to illustrate results with respect to the
theoretical facts under the special example. When τ and di (i = 1, 2) are all equal 0, we
demonstrate that the positive equilibrium E∗ is globally asymptotically stable (see, Figure 1),
which means that if the intraspecific competitions of the prey and the predator dominate
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Figure 2: The solution of system (1.7) tends to the positive equilibrium E∗. The parameters are taken as
α = 2, β = 0.2, γ = 0.5, b = 2, c = 3, m = 1, d1 = 0.01, d2 = 0.1, τ = 0.9, and the initial values u(x, t) =
0.662 + 0.01t cosx, v(x, t) = 1.649 + 0.01t sinx, t ∈ [−0.9, 0], x ∈ [0, π]. In this case, τ < τ00 = 1.0289.

the inter-specific interaction between the prey and the predator, then both the prey and the
predator populations are permanent [14].

In addition, we consider the dynamics of system (1.7) affecting by both spatial
diffusion and time-delay factors with fixed parameters d1 = 0.01 and d2 = 0.1. In this case,
τ00 = 1.0289, Re(C1(0)) = −0.6689 < 0. If τ < τ00 , the positive equilibrium E∗ is remain stability
(see Figure 2), which indicates that the predators and preys can coexist in stable conditions.

While if τ > τ00 , the positive equilibrium E∗ losses its stability and Hopf bifurcation
occurs, which means that a family of stable periodic solutions bifurcate from E∗ since μ2 =
0.5515 > 0, β2 = −0.1338 < 0 (see Figure 3). The numerical result indicates that the predator
coexists with the prey with oscillatory behaviors.

In the present paper, we incorporate time delay into biological system due to the
gestation of the predator, which causes stable equilibrium to become unstable and causes
the populations to oscillate via Hopf bifurcation. That is to say that the effect of delay for
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Figure 3: The solution of system (1.7) tends to aperiodic orbit. The parameters are taken as α = 2, β = 0.2,
γ = 0.5, b = 2, c = 3, m = 1, d1 = 0.01, d2 = 0.1, τ = 1.3, and the initial values u(x, t) = 0.662 + 0.01t cosx,
v(x, t) = 1.649 + 0.01t sinx, and t ∈ [−1.3, 0], x ∈ [0, π]. In this case, τ > τ00 = 1.0289.

the population dynamics is tremendous. From a biological perspective, the time delay of
species may be related to the gestation of the predator, mature stage from juvenile to adult,
the interaction time between prey and predator and others. In these cases, the methods and
results in the present paper may provide a favorable value on controlling ecological popu-
lation. It would be more accurate to describe the growth rate of population.
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