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This paper expands the application of reproducing kernel method to a class of third-order
boundary value problems with mixed nonlinear boundary conditions. The analytical solution is
represented in the form of series in the reproducing kernel space. The n-term approximation is
obtained and is proved to converge to the analytical solution. The numerical examples are given to
demonstrate the computation efficiency of the presented method. Results obtained by the method
indicate that the method is simple and effective.

1. Introduction

Third-order differential equations arise in a variety of different areas of applied mathematics
and physics, for example, in the deflection of a curved beam having a constant or varying
cross section, a three layer beam, electromagnetic waves, or gravity driven flows. Third-order
boundary value problems were discussed inmany papers in recent years, for instance, see [1–
6] and references therein. In [1–3], the authors used the spline functions to solve boundary
value problems. In [4], the authors developed a second-order method for solving third-order
three-point boundary value problems based on Padé approximant in a recurrence relation.
In [5], the authors introduced Adomian decomposition method for multipoint boundary
value problems (BVPs). In this paper, we use reproducing kernel to solve singular third-order
boundary value problems with mixed boundary conditions. Recently, the reproducing kernel
methods [7–10] emerge one after another. Using the reproducing kernel methods, the authors
discussed two-point boundary value problems and periodic boundary value problems. For
third-order boundary value problems with mixed nonlinear boundary conditions, however,
this method has not yet been applied. In previous work, the reproducing kernel method
cannot be used directly to solve third-order boundary value problems with nonlinear
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boundary conditions. Our work is to present a numerical algorithm for solving a class of
singular third-order boundary value problems. By using this method, the analytical solution
and approximate solution are given and uniformly converge to the exact solution and
its corresponding derivatives. The algorithms are efficiently applied to solve some model
problems.

Let us consider the following singular problems of third-order ordinary differential
equations:

u′′′(x) + p1(x)u′′(x) + p2(x)u′(x) + p3(x)u(x) = F(x), x ∈ (0, 1),

λiu = ri, (i = 1, 2, 3),
(1.1)

where pj(x), f(x) ∈ L2[0, 1], (j = 1, 2, 3) are known functions. λiu, (i = 1, 2, 3) are linear
independence conditions of determining the solution. We assume that (1.1) has a unique
solution which belongs to W4

2 [0, 1], where W4
2 [0, 1] which is a reproducing kernel space is

defined in the second section.
In order to solve (1.1), let Lu = u′′′(x) + p1(x)u′′(x) + p2(x)u′(x) + p3(x)u(x). It

is easy to prove that L : W4
2 [0, 1] → L2[0, 1] is bounded linear operator.On the other

hand, we assume that the conditions of determining the solution can be homogenized; after
homogenization of these conditions, we put the conditions into the reproducing kernel space
W4

2 [0, 1] constructed in the following section. Equation (1.1) can be transformed into the
following form inW4

2 [0, 1]:

(Lu)(x) = F(x). (1.2)

To solve problem (1.2), we give a spaceW4
2 [0, 1] = {u | u ∈W4

2[0, 1] and λiu = 0, i = 1, 2, 3}.
The inner product inW4

2 [0, 1] is given by 〈u(x), v(x)〉 =
∑3

i=0 u
(i)(0)v(i)(0)+

∫1
0 u

(4)(t)v(4)(t)dt.
Like in [8], we can get the following reproducing kernel space.

Theorem 1.1. The spaceW4
2 [0, 1] is a reproducing kernel space and its reproducing kernel isK(x, y),

and

K
(
x, y

)
= Ry(x) −

h1(x)h1
(
y
)

‖h1(x)‖2
− h2(x)h2

(
y
)

‖h2(x)‖2
− h3(x)h3

(
y
)

‖h3(x)‖2
, (1.3)

where

Ry(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

5040 − y7 + 35x3y3(4 + y
) − 21x2y2(−60 + y3) + 7xy

(
720 + y5)

5040
, x < y

5040 − x7 + 5040xy + 7x6y + 1260x2y2 − 21x5y2 + 140x3y3 + 35x4y3

5040
, y < x,

(1.4)

h1(x) = λ1yRy(x), h2(x) = λ2y(R(x, y) − (h1(x)h1(y)/‖h1(x)‖2)), h3(x) = λ3y(R(x, y) −
(h1(x)h1(y)/‖h1(x)‖2) − (h2(x)h2(y)/‖h2(x)‖2)), the symbol λiy indicates that the operator λi
applies to the function of y.
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2. The Reproducing Kernel Method

Let ψi(x) = (LyKx(y))(xi), i = 1, 2, . . ., Practise Gram-Schmidt orthonomalization for
{ψi(x)}∞i=1, we get

ψi(x) =
i∑

k=1

βikψk(x), (2.1)

where βik are coefficients of Gram-Schmidt orthonormalization.

Theorem 2.1. If {xi}∞i=1 is distinct points dense in [0, 1] and L−1 is existent, then

u(x) =
∞∑

i=1

i∑

k=1

βikF(xk)ψi(x) (2.2)

is an analytical solution of the problem (1.2).

Proof. Since {ψi(x)}∞i=1 is an orthonormal systems, u(x) is expressed as

u(x) =
∞∑

i=1

〈
u(x), ψi(x)

〉
ψi(x)

=
∞∑

i=1

i∑

k=1

βik〈u(x), (LsKx(s))(xk)〉ψi(x)

=
∞∑

i=1

i∑

k=1

βik(Ls〈u(x), Kx(s)〉)(xk)ψi(x)

=
∞∑

i=1

i∑

k=1

βik(Lsu(s))(xk)ψi(x)

=
∞∑

i=1

i∑

k=1

βikF(xk)ψi(x).

(2.3)

We denote the approximate solution of un(x) by

un(x) =
n∑

i=1

i∑

k=1

βikF(xk)ψi(x). (2.4)

Theorem 2.2. Let ε2n = ‖u(x) − un(x)‖2 where u(x), un(x) are given by (2.2) and (2.4), then the
sequence of number εn(x) is monotone decreasing and εn(x) → 0.
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Proof. Because

ε2n = ‖u(x) − un(x)‖2 =
∞∑

i=n+1

〈
u(x), ψi(x)

〉
ψi(x) =

∞∑

i=n+1

(〈
u(x), ψi(x)

〉)2
, (2.5)

clearly εn−1 ≥ εn and consequently {εn} is monotone decreasing in the sense of ‖ · ‖W4
2
. By

Theorem 2.1, we know
∑∞

i=1〈u(x), ψi(x)〉ψi(x) is convergent in the norm of ‖ · ‖W4
2
, then we

have

ε2n = ‖u(x) − un(x)‖2 −→ 0. (2.6)

Hence, εn → 0.

Theorem 2.3 (convergence analysis). If u(x), un(x) are given by (2.2) and (2.4), then un(x) and
u
(k)
n (x) uniformly convergent to u(x) and u(k)(x), where k = 0, 1, 2, 3.

Proof. For any x ∈ [0, 1], k = 0, 1, 2, 3

∣
∣
∣u

(k)
n (x) − u(k)(x)

∣
∣
∣ =

∣
∣
∣
∣
∣

〈

un(t) − u(t), ∂
kK(x, t)
∂xk

〉∣
∣
∣
∣
∣
≤ ‖un(t) − u(t)‖ ·

∥
∥
∥
∥
∥

∂kK(x, t)
∂xk

∥
∥
∥
∥
∥
, (2.7)

then there exists Ck > 0 such that, |u(k)n (x) − u(k)(x)| ≤ Ck‖un(t) − u(t)‖ = Ckεn → 0.

Theorem 2.4. If {xk}∞k=1 is distinct points dense in [0, 1] and u(x), un(x) are given by (2.2) and
(2.4), then Lu(xk) = Lun(xk).

Proof. We may set projective operator Pn :W4
2 [0, 1] → {∑n

m=1 cmψm(x), cm ∈ R}. Hence,

Lun(xk) = 〈un(ξ), LxkKxk(ξ)〉 =
〈
un(ξ), ψk(ξ)

〉
=
〈
Pnu(ξ), ψk(ξ)

〉

=
〈
u(ξ), Pnψk(ξ)

〉
=
〈
u(ξ), ψk(ξ)

〉
= 〈u(ξ), LxkKxk(ξ)〉

= Lxk〈u(ξ), Kxk(ξ)〉 = Lxku(xk) = Lu(xk).

(2.8)

Theorem 2.5 (error estimate). If {xk}∞k=1 is distinct points dense in [0, 1] and u(x), un(x) are
given by (2.2) and (2.4), then |u(x) − un(x)| < (M/n), whereM = ‖∑∞

i=n+1
∑i

k=1 βikF(xk)ψi(x)‖ ·
‖∂Kη(ξ)/∂η‖.

Proof. For every given x ∈ [0, 1], there is always xi ∈ {xk}∞k=1 satisfying xi < x and x − xi =
1/n. By Theorem 2.5 and xi ∈ {xk}∞k=1 implying Lu(xi) = Lun(xi), so we obtain

|Lu(x) − Lun(x)| = |Lu(x) − Lu(xi) − [Lun(x) − Lun(xi)]|. (2.9)
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For application reproducing kernel property, we have

u(x) = 〈u(ξ), Kx(ξ)〉, Lu(x) = 〈u(ξ), LKx(ξ)〉. (2.10)

We also have

Lu(x) − Lun(x) = Lu(x) − Lu(xi) − [Lun(x) − Lun(xi)]
= 〈u(ξ), LKx(ξ) − LKxi(ξ)〉 − 〈un(ξ), LKx(ξ) − LKxi(ξ)〉
= 〈u(ξ) − un(ξ), LKx(ξ) − LKxi(ξ)〉.

(2.11)

Moreover,

|u(x) − un(x)| =
∣
∣
∣L−1[Lu(x) − Lun(x)]

∣
∣
∣

≤
∣
∣
∣
〈
u(ξ) − un(ξ), L−1LKx(ξ) − L−1LKxi(ξ)

〉∣
∣
∣

= |〈u(ξ) − un(ξ), Kx(ξ) −Kxi(ξ)〉|
≤ ‖u − un‖‖Kx(ξ) −Kxi(ξ)‖.

(2.12)

It is noted that we take norm of ‖Kx(ξ) −Kxi(ξ)‖ for variable ξ. The function kx(ξ) is derived
on x in the interval of [0, 1], so we have Kx (ξ) −Kxi (ξ) = (∂Kη (ξ)/∂η)(x − xi). Hence,

|u(x) − un(x)| ≤ ‖u − un‖
∥
∥
∥
∥
∥

∂Kη(ξ)
∂η

(x − xi)
∥
∥
∥
∥
∥

=‖u − un‖
∥
∥
∥
∥
∥

∂Kη(ξ)
∂η

∥
∥
∥
∥
∥
(x − xi) =

∥
∥
∥
∥
∥

∞∑

i=n+1

i∑

k=1

βikF(xk)ψi(x)

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

∂Kη(ξ)
∂η

∥
∥
∥
∥
∥
(x − xi) ≤ M

n
.

(2.13)

3. Numerical Experiment

For showing the effectiveness of our method, we consider the following problems.

Example 3.1 (see [2, 3]). Considering the following third-order boundary values problem

u′′′(x) − xu(x) =
(
x3 − 2x2 − 5x − 3

)
ex, 0 ≤ x ≤ 1,

u(0) = u(1) = 0, u′(0) = 1,
(3.1)
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where the exact solution is uT (x) = x(1 − x)ex. By the homogeneous process of the boundary
condition, let v(x) = u(x) − x(1 − x), problem (3.8) can be transformed into the equivalent
form

v′′′(x) − xv(x) = (1 − x)x2 +
(
x3 − 2x2 − 5x − 3

)
ex, 0 ≤ x ≤ 1,

v(0) = v(1) = 0, v′(0) = 0.
(3.2)

The numerical results are presented in Tables 1, 2, and 3.

Example 3.2 (see [11, 14]). Considering the following third-order obstacle problems:

u′′′(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ x ≤ 1
4
,
1
4
≤ x ≤ 1

4
,

u(x) − 1,
3π
4

≤ x ≤ 1,
(3.3)

where u(0) = u′(0) = u′(1) = 0, the exact solution is

uT (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
a1x

2, 0 ≤ x ≤ 1
4
,

1 + a2ex + e−x/2
[

a3 cos
√
3x
2

+ a4 sin
√
3x
2

]

,
1
4
≤ x ≤ 3

4
1
2
a5x(x − 2) + a6,

3
4
≤ x ≤ 1,

(3.4)

where

a1 = 0.24391096222648, a2 = −0.17847234452746, a3 = −0.81893573565615,
a4 = −0.30266818001866, a5 = −0.24213890868443, a6 = −0.06537630092111.

(3.5)

The numerical results are presented in Table 4.

Example 3.3. Considering the following boundary value problems with nonclassical condi-
tion:

u′′′(x) +
1

x
√
1 − x

u′′(x) +
1

x
√
x(1 − x)

u′(x) +
1

x2
√
1 − x

u(x) = f(x), 0 < x < 1,

u(0) = 0, u′(0) =
∫1

0
u(x)dx, 2u(1) = u′(1).

(3.6)

We determine f(x) to get the true solution, given by uT (x) = xex. The numerical results are
presented in Table 5.
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Table 2: The numerical results of Example 3.1.

x u
′
T (x) u

′
500(x) |u′

T (x) − u
′
500(x)| u

′′
T (x) u

′′
500(x) |u′′

T (x) − u
′′
500(x)|

0 1 1 0 0 0.0000123873 0.0000123873

0.1 0.983602 0.983602 2.217025 × 10−7 −0.342603 −0.342601 1.904429 × 10−6

0.3 0.823414 0.823414 4.842037 × 10−7 −1.33636 −1.33636 6.462399 × 10−7

0.5 0.41218 0.412181 4.459369 × 10−7 −2.88526 −2.88526 1.127018 × 10−6

0.7 −0.382613 −0.382613 1.172353 × 10−8 −5.21562 −5.21562 3.578872 × 10−6

0.9 −1.74632 −1.74632 1.0452710 × 10−6 −8.63321 −8.63321 6.928269 × 10−6

1. −2.71828 −2.71828 1.8404898 × 10−6 −10.8731 −10.8731 9.029439 × 10−6

Table 3: The numerical results of Example 3.1.

x u
(3)
T (x) u

(3)
500(x) |u(3)T (x) − u(3)500(x)| u

(4)
T (x) u

(4)
500(x) |u(4)T (x) − u(4)500(x)|

0 −3 −3.01001 0.010006 −8 −3.01001 4.98999

0.2 −4.93447 −4.93447 8.518423 × 10−9 −11.53 −11.5489 0.0188419

0.4 −7.69782 −7.69782 5.477735 × 10−8 −16.3504 −16.3771 0.0266921

0.6 −11.5887 −11.5887 1.335948 × 10−8 −22.8858 −22.9229 0.0370827

0.8 −17.0031 −17.0031 1.724353 × 10−8 −31.6917 −31.7423 0.050624

1. −24.4645 −24.4645 2.771117 × 10−13 −43.4925 3.021444 × 10−16 43.4925

Table 4: The observed maximum errors of Example 3.2.

Method n = 16 n = 32 n = 64 n = 128

Our method 1.18 × 10−3 5.47 × 10−4 2.62 × 10−4 1.29 × 10−4

Nonpolynomial spline [11] 7.12 × 10−4 4.05 × 10−4 2.22 × 10−4 1.15 × 10−4

Quartic spline [12] 1.15 × 10−3 5.32 × 10−4 2.56 × 10−4 1.26 × 10−4

Finite difference [13] 1.96 × 10−4 4.89 × 10−5 1.22 × 10−5 3.06 × 10−6

Cubic spline [14] 1.23 × 10−3 5.53 × 10−4 2.61 × 10−4 1.27 × 10−4

Colloc. quantic spline [15] 1.26 × 10−3 5.60 × 10−4 3.10 × 10−4 1.67 × 10−4

Finite difference [16] 6.89 × 10−3 7.11 × 10−3 7.27 × 10−3 7.36 × 10−3

Quartic B spline [17] 1.13 × 10−3 5.30 × 10−4 5.52 × 10−4 1.23 × 10−4

Table 5: The numerical results of Example 3.3.

x uT (x) u100(x) |uT (x) − u100(x)| |u′
T (x) − u

′
100(x)| |u′′

T (x) − u
′′
100(x)| |u′′′

T (x) − u
′′′
100(x)|

0 0 0 0 2.11892 × 10−5 5.34582 × 10−5 2.49157 × 10−2

0.1 0.110517 0.110518 1.06299 × 10−6 6.59012 × 10−6 4.42396 × 10−6 2.85088 × 10−4

0.3 0.404958 0.404962 4.25342 × 10−6 3.27006 × 10−5 2.16465 × 10−4 1.15677 × 10−3

0.5 0.824361 0.824376 1.51582 × 10−5 7.46045 × 10−5 1.67531 × 10−4 8.58014 × 10−4

0.7 1.40963 1.40966 3.24736 × 10−5 9.40379 × 10−5 3.75442 × 10−5 5.12073 × 10−4

0.8 1.78043 1.78047 4.20348 × 10−5 9.71987 × 10−5 3.89027 × 10−5 5.59346 × 10−4

0.9 2.21364 2.21369 5.20699 × 10−5 1.05201 × 10−4 1.40742 × 10−4 1.08743 × 10−3

1. 2.71828 2.71835 6.36065 × 10−5 1.27213 × 10−4 1.9082 × 10−4 1.07270 × 10−2
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Table 6: The numerical results of Example 3.4, p = q = β = 1, α = 2, k = 2, n = 20.

x uT u20 |uT − u20| u
′
T u

′
20 |u′

T − u
′
20| |u′′

T − u′′
20|

0.08 −0.0286650 −0.0286650 5.20529 × 10−9 0.0273871 0.0273873 2.32501 × 10−7 7.75366 × 10−6

0.16 −0.0255710 −0.0255710 6.94285 × 10−9 0.0490631 0.0490632 7.15527 × 10−8 2.10654 × 10−6

0.24 −0.0209523 −0.0209523 9.70246 × 10−9 0.0655842 0.0655842 1.41703 × 10−8 5.37958 × 10−7

0.32 −0.0152036 −0.0152035 9.39437 × 10−9 0.0773741 0.0773741 1.84526 × 10−8 3.37592 × 10−7

0.48 −0.0017588 −0.0017588 1.71495 × 10−9 0.0878568 0.0878567 8.12846 × 10−8 4.48111 × 10−7

0.56 0.00525584 0.00525583 6.04974 × 10−9 0.0868185 0.0868184 1.11842 × 10−7 4.02874 × 10−7

0.64 0.0120206 0.0120205 1.65310 × 10−8 0.0815939 0.0815937 1.53109 × 10−7 6.25311 × 10−7

0.72 0.0181958 0.0181957 3.10494 × 10−8 0.0720489 0.0720486 2.13478 × 10−7 9.11482 × 10−7

0.88 0.0273346 0.0273346 8.10037 × 10−8 0.0389010 0.0389005 4.47861 × 10−7 1.32613 × 10−6

0.96 0.0295066 0.0295065 1.25247 × 10−7 0.0144477 0.0144469 8.40832 × 10−7 9.84025 × 10−6

Table 7: The numerical results of Example 3.5.

x uT u20 |uT − u20| u
′
T u

′
20 |u′

T − u′
20| |u′′

T − u′′
20|

0.08 0.000256 0.00025618 1.87335 × 10−7 0.0096 0.009597 3.13184 × 10−6 1.14007 × 10−5

0.16 0.002048 0.0020481 1.72967 × 10−7 0.0384 0.038399 8.39162 × 10−7 2.89347 × 10−5

0.24 0.006912 0.0069121 1.38265 × 10−7 0.0864 0.0864 1.89713 × 10−7 1.24163 × 10−5

0.32 0.016384 0.0163841 1.13116 × 10−7 0.1536 0.1536 2.05885 × 10−7 5.02804 × 10−7

0.4 0.032000 0.0320001 9.39829 × 10−8 0.2400 0.2400 2.21979 × 10−7 1.40284 × 10−6

0.48 0.055296 0.0552961 7.77508 × 10−8 0.3456 0.3456 1.93052 × 10−7 5.56607 × 10−7

0.56 0.087808 0.0878081 6.38527 × 10−8 0.4704 0.4704 1.60088 × 10−7 3.15123 × 10−7

0.64 0.131072 0.131072 5.21361 × 10−8 0.6144 0.6144 1.33773 × 10−7 3.10240 × 10−7

0.72 0.186624 0.186624 4.23781 × 10−8 0.7776 0.7776 1.13440 × 10−7 1.75032 × 10−7

0.8 0.256000 0.256000 3.44071 × 10−8 0.9600 0.9600 9.20785 × 10−8 3.49872 × 10−7

0.88 0.340736 0.340736 2.78679 × 10−8 1.1616 1.1616 4.41977 × 10−8 3.00596 × 10−8

0.96 0.442368 0.442368 2.08726 × 10−8 1.3824 1.3824 2.08167 × 10−8 9.08609 × 10−6

Example 3.4. Considering the following singular third-order three points boundary value
problems with nonlinear condition

u′′′(x) +
p

xα
u′′(x) − k2

xα(1 − x)β
u′(x) +

q sin(x)

xα(1 − x)β
u(x) = f(x), 0 < x < 1,

u′(1) = 0, 2u′(0) =
(
u′′(0)

)2
, u

(
1
2

)

= 0.

(3.7)

We determine f(x) to get the true solution, given by uT (x) = r(k(2x − 1) − 2 sinh(kx) +
2(cosh(kx)) tanh(k/2))/2k3. The numerical results are presented in Table 6.
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Example 3.5. Considering the following boundary value problems with nonlinear condition:

u′′′(x) − 1√
1 + x

u′(x) + 2u(x) = f(x),

u(0) = u′(0) = 0,
(
u′(1)

)2 = 2
∫1

0
u(x)dx.

(3.8)

We determine f(x) to get the true solution, given by uT (x) = (1/2)x3. The numerical results
are presented in Table 7.

4. Conclusions and Remarks

In this work, we present an algorithm for solving third-order mixed boundary value
problems (BVPs) based on the reproducing kernel method. The method can be generalized
to get reproducing kernel of problem with linear conditions. All computations are performed
by the Mathematica 7.0 software package.
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