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We calculate the regularized trace formula of the infinite sequence of eigenvalues for some version
of a Dirichlet boundary value problem with turning points.

1. Introduction

The study of regularized traces of ordinary differential operators has a long history and there
are a large number of papers and books studying this issue. The trace formulae for the scalar
differential operators have been found by Gelfand and Levitan [1]. The formula obtained
there gave rise to a large and very important theory, which started from the investigation
of specific operators and further embraced the analysis of regularized traces of discrete
operators in general form. In a short time, a number of authors turned their attention to
trace theory and obtained interesting results. Dikiı̆ [2] demonstrated a technique of using the
trace of a resolvent for finding traces. Dikiı̆ provided a proof of the Gelfand-Levitan formula
in [2] on the basis of direct methods of perturbation theory, and in [3], he derived trace
formulas of all orders for the Sturm-Liouville operator by constructing the fractional powers
of the operator in closed form and by computing an analytic extension for its zeta function.
Later, Levitan [4] suggested onemoremethod for computing the traces of the Sturm-Liouville
operator: by matching the expressions for the characteristic determinant via the solution of
an appropriate Cauchy problem and via the corresponding infinite product, he found and
compared the coefficients of the asymptotic expansions of these expressions thus obtaining
trace formulas. The investigation carried out in 1957 by Faddeev [5] linked the trace theory
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to a substantially new class of problems, singular differential operators. Gasymov’s paper
[6] was the first paper in which a singular differential operator with discrete spectrum was
considered. Afterwards these investigations were continued inmany directions, such as Dirac
operators, differential operators with abstract operator-valued coefficients, and the case of
matrix-valued Sturm-Liouville operators (see, [7]).

Beyond their aesthetic appeal, trace formulas play an important role in the inverse
spectral theory [8, 9]. Equation (1.1) is called differential equation with turning points if the
weight function ρ(x), which is given by (1.3), changes sign. The turning points appear in
elasticity, optics, geophysics, and other branches of natural sciences. The inverse problems
for equations with turning points and singularities help to study blow-up solutions for
some nonlinear integrable evolution equations of mathematical physics. The turning points
cause analytical difficulties, not only in calculating the eigenvalues asymptotes, but also in
calculating the trace formula. In [10–12], the authors studied the spectral analysis of problem
(1.1)-(1.2). They investigated the asymptotic relations of both eigenvalues and eigenfunctions
also studied the eigenfunction expansion formula and proved the equiconvergence formula
of that eigenfunctions. To complement the picture of spectral analysis of problem (1.1)-(1.2),
we crown the series of papers [10–12]with the present work. In the present work, we evaluate
the regularized trace formula for the problem (1.1)-(1.2) by using contour integration method
as in [13]. It should be noted here that in [13] the author studied such formula for continuous
spectrum in the whole line, while the present work contains point spectrum in a finite
interval.

Consider the following Dirichlet problem

−y′′ + q(x)y = λρ(x)y, 0 ≤ x ≤ π, (1.1)

y(0) = 0, y(π) = 0, (1.2)

where q(x) is a nonnegative real function, which has a second piecewise integrable
derivatives of the second order in (0, π), λ is a spectral parameter and the weight function or
the explosive factor ρ(x) is of the form

ρ(x) =

{
1; 0 ≤ x ≤ a < π,
−1; a < x ≤ π. (1.3)

Following [10], we state the basic notations and results that are needed in the
subsequent calculation. In [10], the author proved that the Dirichlet problem (1.1)-(1.2) has a
countable number of eigenvalues λ±n, n = 0, 1, 2, . . .where λ+n are the nonnegative eigenvalues
and λ−n are the negative eigenvalues which admit the asymptotic formulas

λ+n =
π2

a2

(
n − 1

4

)2

+
2koπ
a

+
(
2k1π
a

)
1
n
+O

(
1
n2

)
,

λ−n = − π2

(π − a)2
(
n − 1

4

)2

− 2koπ
π − a −

(
2h1π
π − a

)
1
n
+O

(
1
n2

)
,

(1.4)
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where

ko = − 1
8π

∫a

0
q(t)dt,

k1(x) =
a

2π2

{[
β1(a) − α1(a)

] [
2γ1(a) +

1
2
β1(a)

]
− 1
2
α1(a) + α2(a) − β2(a) + γ2(a) + δ2(a)

}
,

h1(x) =
π − a
a

k1

(1.5)

and the constants α1(a), α2(a), β1(a), β2(a), γ1(a), γ2(a), δ1(a), and δ2(a) are given by

α1(x) =
1
2

∫x

0
q(t)dt,

α2(x) =
1
4

(∫x

0
q(t)dt

)2

+
1
4
[
q(0) − q(x)],

β1(x) =
1
4

∫x

0
q(t)dt,

β2(x) =
1
8

(∫x

0
q(t)dt

)2

+
1
4
[
q(0) − q(x)],

β3(x) =
1
24

(∫x

0
q(t)dt

)3

+
1
8

[
q(0)

∫x

0
q(t)dt + q′(0) + q′(x)

]
,

γ1(x) =
1
2

∫π

x

q(t)dt,

γ2(x) = −1
8

(∫π

x

q(t)dt
)2

+
1
4
[
q(x) + q(π)

]
,

δ1(x) = −1
8

(∫π

x

q(t)dt
)2

+
1
4
[
q(x) − q(π)],

δ2(x) =
1
48

(∫π

x

q(t)dt
)3

+
1
8

∫π

x

q(t)dt
[
3q(x) − q(π)] + 1

8
[
q′(π) + q′(x)

]
.

(1.6)

We introduced in [10] the functionW(λ) as the Wronskian of the two solutions ϕ(x, λ)
and ψ(x, λ) of (1.1)-(1.2). We denote by Ψ(s) the function W(λ), for λ = s2, which has the
following asymptotic formula

Ψ(s) =
Zo(s)
s

+
Z1(s)
s2

+
Z2(s)
s3

+O

(
e| Im s|a+|Re s|(π−a)

|s|4
)
, (1.7)
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where

Zo(s) = − sin sa cosh s(π − a) − cos sa sinh s(π − a),

Z1(s) = −P1 sin sa sinh s(π − a) − P2 cos sa cosh s(π − a),

Z2(s) = −Q1 sin sa cosh s(π − a) −Q2 cos sa sinh s(π − a),

(1.8)

P1 = β1(a) + γ1(a), P 2 = α1(a) + γ1(a),

Q1 = α2(a) + β1(a)γ1(a) + δ2(a),

Q2 = α1(a) γ1(a) + β2(a) + γ2(a),

(1.9)

where α1, α2, β1, β2, γ1, γ2, and δ2 are expressed, in (1.6), in terms of q(x) and a. We also
prove that the roots of Ψ(s) = 0 coincide with the eigenvalues of the Dirichlet problem
(1.1)-(1.2) and these eigenvalues are simple. Our aim is to calculate the summation of these
eigenvalues which we call the trace formula or more precisely the regularized trace formula.
During the calculation of the eigenvalues and the eigenfunctions, the condition (1.2) forced
us to evaluate up to the term containing O(1/|λ|4). We must also notice that, the formula
obtained in the present work, due to the Dirichlet condition (1.2), contained q(x) together
with its first derivatives on [0, π]. We used the methodology as in [4, 14], by Levitan, but
our problem contains more difficulties because of the presence of the ρ(x) as ± sign. In the
following theorem we calculate the summation of these eigenvalues in a certain form called
the regularized trace formula for the Dirichlet problem (1.1)-(1.2).

Theorem 1.1. Suppose that q(x) has a second-order piecewise integrable derivatives on [0, π] then,
in view of the introduced notations, (1.4) and (1.7), the following regularized trace formula takes place

∞∑
k=0

(
λ+k − λo+k −m+) + ∞∑

k=0

(
λ−k − λo−k −m−)

=M1 +M2 ln
[

a

π − a
]
+M3 ln

[
2 − π(π − 2a)

a(π − a)
]
+M4 tan−1

[
π − a
π

]
,

(1.10)

where the constantsm+, m−, M1, M2, M3, andM4 are given by

m+ =
−1
4a

=
∫a

0
q(t)dt, m− =

−1
4(π − a) =

∫π

a

q(t)dt,
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M1 =
9
16

(∫a

0
q(t)dt

)(∫π

0
q(t)dt

)
+

1
96

(∫π

a

q(t)dt
)3

− 1
16

(∫π

a

q(t)dt
)

− 1
16a

∫a

0
q(t)dt − 1

16(π − a)
∫π

a

q(t)dt +
1
16

[
3q (a + 0) − q(π)] ∫π

a

q(t)dt

+
1
16

[
4q(0) − 4q(a − 0) + 2q(a + 0) + 2q(π) + q′(π) + q′(a + 0)

]
,

M2 =
13
32π

(∫a

0
q(t)dt

)2

+
1
8π

(∫a

0
q(t)dt

)(∫π

a

q(t)dt
)

− 1
48π

(∫π

a

q(t)dt
)3

+
1
8π

[
3q (a + 0) − q(π)] ∫π

a

q(t)dt

+
1
8π

[
4q (0) − 4q (a − 0) + 2q (a + 0) + 2q (π) + q′ (π) + q′ (a + 0)

]
,

M3 =
1

16π

(∫π

0
q(t)dt

)2

, M4 =
3
4π

(∫a

0
q(t)dt

)(∫π

0
q(t)dt

)
.

(1.11)

Proof. We use the well-known formula from the theory of functions of a complex variable

2
n∑
k=0

[
λ+k + λ

−
k

]
=

1
2πi

∮
Γn
s2d lnΨ(s), (1.12)

where Ψ(s) is given by (1.7) and the contour Γn is a quadratic contour on the s-domain as
defined in [10]

Γn =
{
|Re s| ≤ π

a

(
n − 1

4

)
+
π

2a
, |Im s| ≤ π

π − a
(
n − 1

4

)
+

π

2(π − a)
}
. (1.13)

From (1.7) we have

Ψ(s) =
Zo(s)
s

[1 + r(s)], where r(s) =
Z1(s)
sZo(s)

+
Z2(s)
s2Zo(s)

+O

(
e| Im s|a+|Re s|(π−a)

s3Zo(s)

)
, (1.14)

where, Zo(s), Z1(s), and Z2(s) are given by (1.8). It is clear that, on the contour Γn, the term
Zo(s) satisfies the following inequality from below

|Zo(s)| ≥ C e| Im s|a+|Re s|(π−a) C is constant. (1.15)



6 Abstract and Applied Analysis

which can be shown by expressing cos sa, sin sa, cosh sa, and sinh sa in terms of the
exponential functions. So that

r(s) =
Z1(s)
sZo(s)

+
Z2(s)
s2Zo(s)

+O

(
1

|s|3
)
. (1.16)

From (1.14) the Equation (1.12) can be put in the form

2
n∑
k=0

[
λ+k + λ

−
k

]
=

1
2πi

∮
Γn
s2d ln

(
Zo(s)
s

)
+

1
2πi

∮
Γn
s2d ln[1 + r(s)], (1.17)

further,

1
2πi

∮
Γn
s2d ln

(
Zo(s)
s

)
= 2

n∑
k=0

[
λo+k + λo−k

]
, (1.18)

where λo±k are the eigenvalues of (1.1)-(1.2) for q(x) = 0. Integrating by part the last term of
(1.17)we obtain

1
2πi

∮
Γn
s2d ln[1 + r(s)] =

−1
2πi

∮
Γn
2s
[
r(s) − 1

2
r2(s) +O

(
1
s3

)]
ds. (1.19)

Substituting from (1.16) into (1.19)we have

1
2πi

∮
Γn
s2d ln[1 + r(s)] =

−1
2πi

∮
Γn
2s

[
Z1(s)
sZo(s)

+
Z2(s)
s2Zo(s)

− Z2
1(s)

2s2Z2
o(s)

+O

(
1

|s|3
)]

ds. (1.20)

From (1.18) and (1.20), (1.17) takes the form

2
n∑
k=0

[(
λ+k − λo+k

)] − 2
n∑
k=0

[
λ−k − λo−k

]

=
−1
πi

∮
Γn

Z1(s)
Zo(s)

ds − 1
πi

∮
Γn

Z2(s)
sZo(s)

ds +
1

2πi

∮
Γn

Z2
1(s)

sZ2
o(s)

ds +
∮
Γn
O

(
1

|s|2
)
ds.

(1.21)

We evaluate each term of (1.21), first of all, by direct calculation it can be easily shown
that

∮
Γn
O

(
1

|s|2
)
ds −→ 0 asn −→ ∞. (1.22)
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To evaluate the integration (−1/πi)∮Γn(Z1(s)/Zo(s))ds, notice that the function Z1(s)/Zo(s)
is odd, so that from (1.8) we have

−1
πi

∮
Γn

Z1(s)
Zo(s)

ds

=
−1
πi

∮
Γn

P1 sin sa sinh s(π − a) + P2 cos sa cosh s(π − a)
sin sa cosh s(π − a) + cos sa sinh s(π − a) ds

=
−2
π

∫ ξn

−ξn

P1 sin(σn + iξ)a sinh(σn + iξ)(π − a) + P2 cos(σn + iξ)a cosh(σn + iξ)(π − a)
sin(σn + iξ)a cosh(σn + iξ)(π − a) + cos(σn + iξ)a sinh(σn + iξ)(π − a) dξ

+
2
πi

∫σn

−σn

P1 sin(σ+iξn)a sinh(σ+iξn)(π−a) + P2 cos(σ+iξn)a cosh(σ+iξn)(π−a)
sin(σ+iξn)a cosh(σ+iξn)(π−a) + cos(σ+iξn)a sinh(σ+iξn)(π−a) dσ.

(1.23)

From which (1.23) can be written in the form

−1
πi

∮
Γn

Z1(s)
Zo(s)

ds = I1 + I2,

where I1 =
−2
π

∫ ξn

−ξn

P1 tan(σn + iξ)a tanh(σn + iξ)(π − a) + P2
tan(σn + iξ)a + tanh(σn + iξ)(π − a) dξ,

I2 =
2
πi

∫σn

−σn

P1 tan(σ + iξn)a tanh(σ + iξn)(π − a) + P2
tan(σ + iξn)a + tanh(σ + iξn)(π − a) dσ.

(1.24)

We notice that in the integration I1 the function tan(σn + iξ) is bounded while

tanh(σn + iξ)(π − a) = 1 +O
(
e−2σn(π−a)

)
, (1.25)

so that I1 becomes of the form

I1 =
−2
π

∫ ξn

−ξn

P2 + P1 tan(σn + iξ)a
tan(σn + iξ)a − 1

dξ + o(1). (1.26)

By the help of the relations

cos(σn + iξ)a =
(−1)n√

2
[cosh ξa − i sinh ξa]

sin(σn + iξ)a =
(−1)n√

2
[cosh ξa + i sinh ξa]

(1.27)
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(1.26) becomes

I1 =
−2

π − a (P1 − P2)
(
n +

1
4

)
+ o(1). (1.28)

To evaluate I2 we have tanh(σ + iξn)(π − a) is bounded and

tan(σ + iξn)a = i +O
(
e−2ξna

)
(1.29)

and hence I2 becomes of the form

I2 =
2
πi

∫σn

−σn

iP1 sinh(σ + iξn)(π − a) + P2 cosh(σ + iξn)(π − a)
i cosh(σ + iξn)(π − a) + sinh(σ + iξn)(π − a) dσ + o(1). (1.30)

As before, by applying the relations

cosh(σ + iξn)(π − a) = (−1)n√
2

[cosh σ (π − a) + i sinh σ (π − a)],

sinh(σ + iξn)(π − a) = (−1)n√
2

[sinhσ(π − a) + i coshσ(π − a)]
(1.31)

to (1.30), we have

I2 =
2
a
(P1 − P2)

(
n +

1
4

)
+ o(1). (1.32)

From (1.28) and (1.32) by substitution into (1.24)we have

−1
πi

∮
Γn

Z1(s)
Zo(s)

ds =
[
2(P2 − P1)
π − a +

2(P1 − P2)
a

](
n +

1
4

)
+ o(1). (1.33)

To evaluate (−1/πi)∮Γn(Z2(s)/sZo(s))ds we notice that Z2(s)/sZo(s) is odd function,
then

−1
πi

∮
Γn

Z2(s)
sZo(s)

ds

=
−1
πi

∮
Γn

Q1 sin sa cosh s(π − a) +Q2 cos sa sinh s(π − a)
s[sin sa cosh s(π − a) + cos sa sinh s(π − a)] ds

=
−2
π

∫ ξn

−ξn

Q1 sin(σn + iξ)a cosh(σn + iξ)(π − a) +Q2 cos(σn + iξ)a sinh(σn + iξ)(π − a)
(σn + iξ)[sin(σn + iξ)a cosh(σn + iξ)(π − a) + cos(σn + iξ)a sinh(σn + iξ)(π − a)]dξ

+
2
πi

∫σn

−σn

A2 sin(σ+iξn)a cosh(σ+iξn)(π−a)+B2 cos(σ+iξn)a sinh(σ+iξn)(π−a)
(σ+iξn)[sin(σ+iξn)a cosh(σ+iξn)(π−a) + cos(σ+iξn)a sinh(σ+iξn)(π−a)]dσ.

(1.34)
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From (1.34)we have

−1
πi

∮
Γn

Z2(s)
sZo(s)

ds = I∗1 + I
∗
2 ,

where I∗1 =
−2
π

∫ ξn

−ξn

Q1 tan(σn + iξ)a +Q2 tanh(σn + iξ)(π − a)
(σn + iξ)[tan(σn + iξ)a + tanh(σn + iξ)(π − a)]dξ,

I∗2 =
2
πi

∫σn

−σn

Q1 tan(σ + iξn)a +Q2 tanh(σ + iξn)(π − a)
(σ + iξn)[tan(σ + iξn)a + tanh(σ + iξn)(π − a)]dσ.

(1.35)

By using (1.25) and keeping in mind that tan(σ + iξn)a is bounded we have

I∗1 =
−2
π

∫ ξn

−ξn

Q1 sin(σn + iξ)a +Q2 cos(σn + iξ)a
(σn + iξ)[cos(σn + iξ)a + sin(σn + iξ)a]

dξ + o(1). (1.36)

By the help of (1.27), after some elementary calculation, I∗1 takes the form

I∗1 =
2(Q1 +Q2)

π
tan−1

(
a

π − a
)
+
(Q2 −Q1)

π
ln

[
1 +

a2

(π − a)2
]
+ o(1). (1.37)

Now we evaluate I∗2 , by using (1.29) and the roundedness of tanh(σ + iξn)(π − a) we
have from (1.35)

I∗2 =
−2
πi

∫σn

−σn

Q2 sinh(σ + iξn)(π − a) +Q1 cosh(σ + iξn)(π − a)
(σ + iξn)[i cosh(σ + iξn)(π − a) + sinh(σ + iξn)(π − a)]dσ + o(1). (1.38)

From (1.38) and (1.31) after calculation we have

I∗2 =
2(Q1 +Q2)

π
tan−1

(
π − a
a

)
− (Q2 −Q1)

π
ln

[
1 +

(π − a)2
a2

]
+ o(1). (1.39)

By substitution from (1.39) and (1.36) into (1.35), we have

−1
πi

∮
Γn

Z2(s)
sZo(s)

ds = Q1 +Q2 +
Q2 −Q1

π
ln

a2

(π − a)2
. (1.40)
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We evaluate the third integral of (1.21)

−1
2πi

∮
Γn

Z2
1(s)

sZ2
o(s)

ds

=
−1
2πi

∮
Γn

[P1 sin sa sinh s(π − a) + P2 cos sa cosh s(π − a)]2
s[sin sa cosh s(π − a) + cos sa sinh s(π − a)]2

ds

=
1
π

∫ ξn

−ξn

[P1 sin(σn + iξ)a sinh(σn + iξ)(π − a) + P2 cos(σn + iξ)a cosh(σn + iξ)(π − a)]2
(σn + iξ)[sin(σn + iξ)a cosh(σn + iξ)(π − a) + cos(σn + iξ)a sinh(σn + iξ)(π − a)]2

dξ

+
1
πi

∫σn

−σn

[P1 sin(σ+iξn)a sinh(σ+iξn)(π−a)+Q2 cos(σ+iξn)a cosh(σ+iξn)(π−a)]2
(σ+iξn)[sin(σ+iξn)a cosh(σ+iξn)(π−a)+cos(σ+iξn)a sinh(σ+iξn)(π−a)]2

dσ.

(1.41)

After simplification (1.41) becomes

1
2πi

∮
Γn

Z2
1(s)

sZ2
o(s)

ds = I∗∗1 + I∗∗2 ,

where I∗∗1 =
1
π

∫ ξn

−ξn

[
P1 − P2

2
+
P1 + P2

2i
cosh ξa

sinh ξa

]2 1
σn + iξ

dξ,

I∗∗2 =
1
πi

∫σn

−σn

[
i(P1 + P2)

−2 +
P2 − P1
−2

coshσ(π − a)
sinhσ(π − a)

]2 1
σ + iξn

dσ.

.

(1.42)

For I∗∗1 we have

I∗∗1 =
1
4π

∫ ξn

−ξn

(P1 − P2)2
σn + iξ

dξ − 1
2πi

∫ ξn

−ξn

(
P 2
1 − P 2

2

)
σn + iξ

cosh ξa
sinh ξa

dξ

− 1
8π

∫ ξn

−ξn

(P1 − P2)2
σn + iξ

cosh2 ξa

sinh2 ξa
dξ

(1.43)

by calculating the integrations in (1.43)we have

I∗∗1 =
−2P1P2
π

tan−1 a

π − a +

(
P 2
1 + P 2

2

)
2π

ln

(
1 +

a2

(π − a)2
)

+ o(1). (1.44)
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On the Other hand,

I∗∗2 =
−1
4πi

∫σn

−σn

(P1 + P2)2

σ + iξn
dσ − −1

2πi

∫σn

−σn

(
P 2
2 − P 2

1

)
σ + iξn

cosh σ(π − a)
sinh σ(π − a) dσ

− 1
4πi

∫σn

−σn

(P2 − P1)2
σ + iξn

cosh2 σ(π − a)
sinh2 σ(π − a)

dσ

(1.45)

from which after calculation we have

I∗∗2 =
2P1P2
π

tan−1π − a
a

+

(
P 2
2 − P12)
2π

ln

(
1 +

(π − a)2
a2

)
+ o(1). (1.46)

Substituting from (1.44) and (1.46) into (1.42), we have

1
2πi

∮
Γn

Z2
1(s)

sZ2
o(s)

ds =
P 2
1

π
ln

a

π − a +
P 2
2

2π
ln
(
2 − π(π − 2a)

a(π − a)
)
+
4P1P2
π

tan−1π − a
a

− P1P2. (1.47)

Substituting from (1.47), (1.40), (1.33), and (1.22) into (1.21) we have

2
n∑
k=0

[(
λ+k − λo+k

)]
+ 2

n∑
k=0

[(
λ−k − λo−k

)]

=
2(P2 − P1)
(π − a)

(
n +

1
4

)

+
2(P1 − P2)

a

(
n +

1
4

)
+Q1 +Q2 − P1P2

+

[
2
π
(Q2 −Q1) +

P 2
1

π

]
ln

a

π − a

+
P 2
2

2π
ln
[
2 − π(π − 2a)

a(π − a)
]
+
4P1P2
π

tan−1
[
π − a
π

]
+ o(1).

(1.48)

Passing to the limit as n → ∞ and by using (1.9) and (1.6) we reach to the required
formula (1.10).

2. Conclusion and Comment

It should be noted here that, we cannot expect that the trace formula must become the
Gelfand-Levitan trace formula as the point x = a approaches the point “π”, because we do
not put the condition y(a) = 0 at the point x = a.

Due to the presence of the turning point (1.3), as it is well known for all unbounded
operator, the convergent series

∑
n(λn − λ(o)n ) is actually the sum of two infinite siriases, each

of which cannot be summed separately.
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Moreover the presence of the turning point helps in the solution of inverse problem
for different densities medium [15]. The present work belongs to the school of Gasymov [6].

Conflict of Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors are very grateful to the referees for their fruitful comments and advice, also
thanks for Professor Gussein G. Sh. for his advice.

References

[1] I. M. Gelfand and B. M. Levitan, “On a simple identity for the characteristic values of a differential
operator of the second order,” Doklady Akademii Nauk SSSR, vol. 88, pp. 593–596, 1953.

[2] L. A. Dikiı̆, “On a formula of Gelfand-Levitan,” Uspekhi Matematicheskikh Nauk, vol. 8, no. 2, pp. 119–
123, 1953.

[3] L. A. Dikiı̆, “The zeta function of an ordinary differential equation on a finite interval,” Izvestiya
Akademii Nauk SSSR, vol. 19, pp. 187–200, 1955.

[4] B. M. Levitan, “Calculation of the regularized trace for the Sturm-Liouville operator,” Uspekhi
Matematicheskikh Nauk, vol. 19, no. 1, pp. 161–165, 1964.

[5] L. D. Faddeev, “On the expression for the trace of the difference of two singular differential operators
of the Sturm-Liouville type,” Doklady Akademii Nauk SSSR, vol. 115, no. 5, pp. 878–881, 1957.

[6] M. G. Gasymov, “On the sum of the differences of the eigenvalues of two self-adjoint operators,”
Doklady Akademii Nauk SSSR, vol. 150, no. 6, pp. 1202–1205, 1963.

[7] V. A. Sadovnichii and V. E. Podolski, “Traces of differential operators,” Differential Equations, vol. 45,
no. 4, pp. 477–493, 2009.

[8] S. Clark and F. Gesztesy, “Weyl-Titchmarsh M-function asymptotics, local uniqueness results, trace
formulas, and Borg-type theorems for Dirac operators,” Transactions of the American Mathematical
Society, vol. 354, no. 9, pp. 3475–3534, 2002.

[9] R. Carlson, “Large eigenvalues and trace formulas for matrix Sturm-Liouville problems,” SIAM
Journal on Mathematical Analysis, vol. 30, no. 5, pp. 949–962, 1999.

[10] Z. F. A. El-Raheem and A. H. Nasser, “On the spectral property of a Dirichlet problem with explosive
factor,” Applied Mathematics and Computation, vol. 138, no. 2-3, pp. 355–374, 2003.

[11] Z. F. A. El-Raheem and A. H. Nasser, “The equiconvergence of the eigenfunction expansion for a
singular version of one-dimensional Schrödinger operator with explosive factor,” Boundary Value
Problems, vol. 2011, article 45, 2011.

[12] Z. F. A. El-Raheem and A. H. Nasser, “The eigen function expansion for a Dirichlet problem with
explosive factor,” Abstract and Applied Analysis, vol. 2011, Article ID 828176, 16 pages, 2011.

[13] Z. F. A. El-Reheem, “On some trace formula for the Sturm-Liouville operator,” Pure Mathematics and
Applications, vol. 7, no. 1-2, pp. 61–68, 1996.

[14] V. A. Marchenko, Sturm-Liouville Operators and Applications, Revised Edition, American Mathematical
Society, 2011.

[15] M. G. Gasymov and Z. F. Rekheem, “On the theory of inverse Sturm-Liouville problems with
discontinuous sign-alternating weight,” Doklady. Akademiya Nauk Azerbaı̆dzhana, vol. 48–50, no. 1–12,
pp. 13–16, 1996.


