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We prove Krasnosel’skii type fixed point theorems in situations where the domain is not nec-
essarily convex. As an application, the existence of solutions for perturbed integral equation is
considered in p-normed spaces.

1. Introduction

Let X be a linear space over K (K = R or K = C) with the origin θ. A functional ‖ · ‖p : X →
[0,∞)with 0 < p ≤ 1 is called a p-norm on X if the following conditions hold

(a) ‖x‖p = 0 if and only if x = θ;

(b) ‖λx‖p = |λ|p‖x‖p, for all x ∈ X, λ ∈ K;

(c) ‖x + y‖p ≤ ‖x‖p + ‖y‖p, for all x, y ∈ X.

The pair (X, ‖ · ‖p) is called a p-normed space. If p = 1, thenX is a usual normed space.
A p-normed space is a metric linear space with a translation invariant metric dp given by
dp(x, y) = ‖x − y‖p for all x, y ∈ X.
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LetΩ be a nonempty set, letM be a σ-algebra inΩ, and let μ : M → [0,+∞) be a posi-
tive measure. The space Lp(μ) based on the complete measure space (Ω,M, μ) is an example
of a p-normed space with the p-norm defined by

∥
∥f(t)

∥
∥
p =

∫

Ω

∣
∣f(t)

∣
∣
p
dμ, for f ∈ Lp(μ

)

,

Lp(μ
)

=
{

f : f : Ω −→ K is measurable,
∫

Ω

∣
∣f(t)

∣
∣
p
dμ < +∞

}

.

(1.1)

Another example of a p-normed space is Cp[0, 1], the space of all continuous functions
defined on the unit interval [0, 1] with the sup p-norm given by

‖x‖p = sup
0≤t≤1

|x(t)|p, for x ∈ Cp[0, 1]. (1.2)

The class of p-normed spaces (0 < p ≤ 1) is a significant generalization of the class of usual
normed spaces. For more details about p-normed spaces, we refer the reader to [1, 2].

It is noted that most fixed point theorems are concerned with convex sets. As we know,
there exists nonconvex sets also, for example, the unit ball with center θ in a p-normed space
(0 < p < 1) is not a convex set. It is a natural question whether the well-known fixed point
theorems could be extended to nonconvex sets. Xiao and Zhu [3] established the existence of
fixed points of mappings on s-convex sets in p-normed spaces, where 0 < p ≤ 1, 0 < s ≤ p.

Theorem 1.1 (see [3] (Krasnosel’skii-type)). Let (X, ‖ · ‖p) be a complete p-normed space and C
a bounded closed s-convex subset of X, where 0 < p ≤ 1, 0 < s ≤ p. Let T : C → X be a contraction
mapping and S : C → X a completely continuous mapping. If Tx + Sy ∈ C for all x, y ∈ C, then
there exists x∗ ∈ C such that Sx∗ + Tx∗ = x∗.

In this paper, we investigate the fixed point problem of the sum of an expansive map-
ping and a compact mapping. Our results extend and complement the classical Krasnosel’skii
fixed point theorem. We also prove the Sadovskii theorem for s-convex sets in p-normed
spaces, where 0 < p ≤ 1, 0 < s ≤ p, and from it we obtain some fixed point theorems for the
sum of two mappings. In the last section, as an application of a Krasnosel’skii-type theorem,
the existence of solutions for perturbed integral equation is considered in p-normed spaces.

2. Preliminaries

Throughout this paper, we denote the closure and the boundary of a subset A of X by A and
∂A, respectively. B(x, r) will be the open ball of X with center x ∈ X and radius r > 0.

Definition 2.1. Let (X, dX) and (Y, dY ) be two metric spaces and T : X → Y . The mapping T
is said to be k-Lipschitz, where k is a positive constant, if

dY

(

Tx, Ty
) ≤ kdX

(

x, y
)

, ∀x, y ∈ X. (2.1)

T is said to be nonexpansive if k = 1, and to be a contraction if k < 1.
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It is clear that every k-Lipschitz mapping is continuous. Moreover, the Banach contrac-
tion principle holds for a closed subset in a complete p-normed space.

Definition 2.2 (see [3]). Let (X, ‖ · ‖p) (0 < p ≤ 1) be a p-normed space and 0 < s ≤ p. A set
C ⊂ X is said to be s-convex if the following condition is satisfied

(1 − t)1/sx + t1/sy ∈ C, whenever x, y ∈ C, t ∈ [0, 1]. (2.2)

Let A ⊂ X. The s-convex hull of A denoted by cosA is the smallest s-convex set containing
A and the closed s-convex hull of A denoted by cosA is the smallest closed s-convex set
containing A.

In other words, the s-convexity of the set C is equivalent to that

t1x + t2y ∈ C, whenever x, y ∈ C, t1, t2 ≥ 0, ts1 + ts2 = 1. (2.3)

For s = 1, we obtain the usual definition of convex sets. For a subsetA ofX, the s-convex hull
of A is given by

cosA =

{
n∑

i=1

tixi : ti ≥ 0,
n∑

i=1

tsi = 1, xi ∈ A, n ≥ 2

}

. (2.4)

It is easy to see that if C is a closed s-convex set, then θ ∈ C.

Lemma 2.3 (see [3]). Let (X, ‖ · ‖p) (0 < p ≤ 1) be a p-normed space and 0 < s ≤ p.

(a) The ball B(θ, r) is s-convex, where r > 0.

(b) If C ⊂ X is s-convex and α ∈ K, then αC is s-convex.

(c) If C1, C2 ⊂ X are s-convex, then C1 + C2 is s-convex.

(d) If Ci ⊂ X, i = 1, 2, . . . are all s-convex, then
⋂∞

i=1 Ci is s-convex.

(e) If A ⊂ X and θ ∈ A, then cosA ⊂ coA, where coA is the convex hull of A.

(f) If C is a closed s-convex set and 0 < k < s, then C is a closed k-convex set.

(g) If X is complete and A is a totally bounded subset of X, then cosA(0 < s ≤ p) is compact.

Theorem 2.4 (see [3] (Schauder-type)). Let (X, ‖ · ‖p) be a complete p-normed space and C a com-
pact s-convex subset of X, where 0 < p ≤ 1, 0 < s ≤ p. If S : C → C is continuous, then S has a fixed
point (i.e., there exists x∗ ∈ C such that Sx∗ = x∗).

Theorem 2.5. Let (X, ‖ · ‖p) be a complete p-normed space and C a closed s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. If S : C → C is a continuous compact map (i.e., the image of C under S
is compact), then S has a fixed point.

Proof. LetQ = cos(S(C)). NoteQ is a closed compact s-convex subset ofX and S(Q) ⊆ S(C) ⊆
Q. The result follows from Theorem 2.4.
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We will need the following definition.

Definition 2.6 (see [4]). Let (X, d) be a metric space and C a subset of X. The mapping T :
C → X is said to be expansive, if there exists a constant h > 1 such that

d
(

Tx, Ty
) ≥ hd

(

x, y
)

, ∀x, y ∈ C. (2.5)

Theorem 2.7 (see [4]). Let C be a closed subset of a complete metric space (X, d). Assume that the
mapping T : C → X is expansive and T(C) ⊃ C, then there exists a unique point x∗ ∈ C such that
Tx∗ = x∗.

Recently, Xiang and Yuan [4] established a Krasnosel’skii type fixed point theorem
when the mapping T is expansive. For other related results, see also [5, 6].

3. Main Results

Theorem 3.1. Let (X, ‖ · ‖p) be a complete p-normed space and C a closed s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that

(i) S : C → X is a continuous compact mapping (i.e., the image of C under S is compact);

(ii) T : C → X is an expansive mapping;

(iii) z ∈ S(C) implies T(C) + z ⊃ C where T(C) + z = {y + z : y ∈ T(C)}.
Then there exists a point x∗ ∈ C such that Sx∗ + Tx∗ = x∗.

Proof. Let z ∈ S(C). Then themapping T+z : C → X satisfies the assumptions of Theorem 2.7
by virtue of (ii) and (iii), which guarantees that the equation

Tx + z = x (3.1)

has a unique solution x = τ(z) ∈ C. For any z1, z2 ∈ S(C), we have

T(τ(z1)) + z1 = τ(z1), T(τ(z2)) + z2 = τ(z2), (3.2)

and so

‖T(τ(z1)) − T(τ(z2))‖p = ‖τ(z1) − z1 − τ(z2) + z2‖p
≤ ‖z1 − z2‖p + ‖τ(z1) − τ(z2)‖p.

(3.3)

Since T is expansive, there exists a constant h > 1 such that

‖T(τ(z1)) − T(τ(z2))‖p ≥ h‖τ(z1) − τ(z2)‖p. (3.4)

As a result

‖τ(z1) − τ(z2)‖p ≤ 1
h − 1

‖z1 − z2‖p. (3.5)
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This implies that τ : S(C) → C is continuous. Since S is continuous on C, it follows that
τS : C → C is also continuous. Since S is compact, so is τS. By Theorem 2.5, there exists
x∗ ∈ C, such that τ(S(x∗)) = x∗. From (3.1), we have

T(τ(S(x∗))) + S(x∗) = τ(S(x∗)), (3.6)

that is,

Tx∗ + Sx∗ = x∗. (3.7)

This completes the proof.

Corollary 3.2. Let (X, ‖ · ‖p) be a complete p-normed space and C a closed s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that

(i) S : C → X is a continuous compact mapping;

(ii) T : C → X is an expansive and onto mapping.

Then there exists a point x∗ ∈ C such that Sx∗ + Tx∗ = x∗.

The following example shows that there are mappings which are expansive and satisfy
T(C) ⊂ C.

Example 3.3. Let X = C = R with the usual metric and consider Tx = x3 + 2x + 1 for x ∈ C.
Then for all x, y ∈ C, we have

∣
∣Tx − Ty

∣
∣ =

∣
∣
∣

(

x3 − y3
)

+ 2
(

x − y
)
∣
∣
∣

=
∣
∣
∣

(

x − y
)(

x2 + xy + y2
)

+ 2
(

x − y
)
∣
∣
∣

=
∣
∣
∣

(

x2 + xy + y2 + 2
)∣
∣
∣

∣
∣x − y

∣
∣

≥ 2
∣
∣x − y

∣
∣.

(3.8)

Thus T is expansive with T(C) ⊂ C.

Theorem 3.4. Let (X, ‖ · ‖p) be a complete p-normed space and C a closed s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that

(i) S : C → X is a continuous compact mapping;

(ii) T : C → X is an expansive mapping;

(iii) z ∈ S(C) implies C + z ⊂ T(C) ⊂ C where C + z = {y + z : y ∈ C}.

Then there exists a point x∗ ∈ C such that T ◦ (I − S)x∗ = x∗.
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Proof. Since T is expansive, it follows that the inverse of T : C → T(C) exists, T−1 : T(C) → C
is a contraction and hence continuous. Thus T(C) is a closed set. Then, for each fixed z ∈ S(C),
the equation

T−1x + z = x (3.9)

has a unique solution x = τ(z) ∈ T(C). For any z1, z2 ∈ S(C), we have

T−1(τ(z1)) + z1 = τ(z1), T−1(τ(z2)) + z2 = τ(z2), (3.10)

so that

‖τ(z1) − τ(z2)‖p ≤ ‖z1 − z2‖p +
∥
∥
∥T−1(τ(z1)) − T−1(τ(z2))

∥
∥
∥
p

≤ ‖z1 − z2‖p +
1
h
‖τ(z1) − τ(z2)‖p.

(3.11)

Thus,

‖τ(z1) − τ(z2)‖p ≤ h

h − 1
‖z1 − z2‖p. (3.12)

This shows that τ : S(C) → T(C) is continuous. Since S is continuous on C, it follows that
τS : C → T(C) ⊂ C is also continuous and since S is compact, so is τS. Then, by Theorem 2.5,
there exists x∗ ∈ C, such that τ(S(x∗)) = x∗. From (3.9)we have

T−1(τ(S(x∗))) + S(x∗) = τ(S(x∗)), (3.13)

that is,

T−1x∗ + Sx∗ = x∗, (3.14)

that is,

T ◦ (I − S)x∗ = x∗. (3.15)

This completes the proof.

Lemma 3.5. Let (X, ‖ · ‖p) (0 < p ≤ 1) be a p-normed space and C ⊂ X. Suppose that the mapping
T : C → X is expansive with constant h > 1. Then the inverse of F = I − T : C → (I − T)(C) exists
and

∥
∥
∥F−1x − F−1y

∥
∥
∥
p
≤ 1

h − 1
∥
∥x − y

∥
∥
p, x, y ∈ F(C). (3.16)
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Proof. Let x, y ∈ C, we have

∥
∥Fx − Fy

∥
∥
p =

∥
∥
(

Tx − Ty
) − (

x − y
)∥
∥
p

≥ ∥
∥Tx − Ty

∥
∥
p −

∥
∥x − y

∥
∥
p

≥ (h − 1)
∥
∥x − y

∥
∥
p.

(3.17)

From (3.17) we see that F is one-to-one. Therefore, the inverse of F : C → F(C) exists. Thus,
for x, y ∈ F(C), we have F−1x, F−1y ∈ C. Now, using F−1x, F−1y and substituting for x, y in
(3.17), respectively, we obtain

∥
∥
∥F−1x − F−1y

∥
∥
∥
p
≤ 1

h − 1
∥
∥x − y

∥
∥
p. (3.18)

Theorem 3.6. Let (X, ‖ · ‖p) be a complete p-normed space and C a closed s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that

(i) S : C → X is a continuous compact mapping;

(ii) T : X → X (or T : C → X) is an expansive mapping with constant h > 1;

(iii) S(C) ⊂ (I − T)(X) and [x = Tx + Sy, y ∈ C implies x ∈ C] or S(C) ⊂ (I − T)(C).

Then there exists a point x∗ ∈ C such that Sx∗ + Tx∗ = x∗.

Proof. From (iii), for each y ∈ C since S(C) ⊂ (I −T)(X) or S(C) ⊂ (I −T)(C) there is an x ∈ X
such that

x − Tx = Sy. (3.19)

If S(C) ⊂ (I − T)(C) then x ∈ C whereas if S(C) ⊂ (I − T)(X) then Lemma 3.5 and (iii) imply
x = (I − T)−1Sy ∈ C. Now (I − T)−1 is continuous, and so (I − T)−1S is a continuous mapping
of C into C. Since S is compact, so is (I − T)−1S. By Theorem 2.5, (I − T)−1S has a fixed point
x∗ ∈ C with x∗ = (I − T)−1Sx∗, that is, Sx∗ + Tx∗ = x∗. This completes the proof.

Theorem 3.7 (Petryshyn-type). Let (X, ‖ · ‖p) be a complete p-normed space and D an open

s-convex subset of X with θ ∈ D, where 0 < p ≤ 1, 0 < s ≤ p. Let S : D → X be a continuous
compact mapping and

‖x − Sx‖p ≥ ‖Sx‖p, ∀x ∈ ∂D. (3.20)

Then there exists z ∈ D such that Sz = z.

Proof. The proof is exactly the same as the proof of Theorem 2.20 (b) [3]. Here we use
Theorem 2.5 instead of Theorem 2.14 [3].
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Theorem 3.8. Let (X, ‖ · ‖p) be a complete p-normed space and D an open s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that

(i) S : D → X is a continuous compact mapping;

(ii) T : X → X is an expansive map with constant h > 1;

(iii) S(D) ⊂ (I − T)(X);

(iv) ‖Sx + Tθ‖p ≤ ((h − 1)/2)‖x‖p for each x ∈ ∂D.

Then there exists a point x∗ ∈ D such that Sx∗ + Tx∗ = x∗.

Proof. From (iii), for each x ∈ D, there is a y ∈ X such that

y − Ty = Sx. (3.21)

Thus by Lemma 3.5, we have y = (I − T)−1Sx := GSx ∈ X. Again by Lemma 3.5 and (i), we
see that GS : D → X is compact. We now prove that (3.20) holds with S replaced by GS. In
fact, for each x ∈ D, from (3.21), we have

T(GSx) + Sx = GSx, (3.22)

so

‖T(GSx) − Tθ‖p ≤ ‖GSx‖p + ‖Sx + Tθ‖p. (3.23)

Since T is expansive, we have

‖T(GSx) − Tθ‖p ≥ h‖GSx‖p. (3.24)

It follows from (3.23) and (3.24) that

‖GSx‖p ≤ 1
h − 1

‖Sx + Tθ‖p. (3.25)

Thus, by (3.25) and (iv), for each x ∈ ∂D, we have

‖GSx‖2p −
(

‖GSx‖p − ‖x‖p
)2

= ‖x‖p
(

2‖GSx‖p − ‖x‖p
)

≤ ‖x‖p
(

2
h − 1

‖Sx + Tθ‖p − ‖x‖p
)

≤ 0,
(3.26)

which implies (3.20). This completes the proof.
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Corollary 3.9. Let (X, ‖ · ‖p) be a complete p-normed space and D an open s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that

(i) S : D → X is a continuous compact mapping;

(ii) T : X → X is an expansive map with constant h > 1;

(iii) z ∈ S(D) implies T(X) + z = X where T(X) + z = {y + z : y ∈ T(X)};
(iv) ‖Sx + Tθ‖p ≤ ((h − 1)/2)‖x‖p for each x ∈ ∂D.

Then there exists a point x∗ ∈ D such that Sx∗ + Tx∗ = x∗.

Theorem 3.10. Let (X, ‖ · ‖p) be a complete p-normed space and D an open s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that

(i) S : D → X is a continuous compact mapping;

(ii) T : X → X is a contraction with contractive constant α < 1;

(iii) ‖Sx + Tθ‖p ≤ ((1 − α)/2)‖x‖p for each x ∈ ∂D.

Then there exists a point x∗ ∈ D such that Sx∗ + Tx∗ = x∗.

Proof. For each z ∈ S(D), the mapping T + z : X → X is a contraction. Thus, the equation

Tx + z = x (3.27)

has a unique solution x = σ(z) ∈ X. For any z1, z2 ∈ S(D), from

T(σ(z1)) + z1 = σ(z1), T(σ(z2)) + z2 = σ(z2), (3.28)

it follows that

‖σ(z1) − σ(z2)‖p = ‖T(σ(z1)) + z1 − T(σ(z2)) − z2‖p
≤ ‖T(σ(z1)) − T(σ(z2))‖p + ‖z1 − z2‖p.

(3.29)

Since T is a contraction with contractive constant α < 1, we have

‖T(σ(z1)) − T(σ(z2))‖p ≤ α‖σ(z1) − σ(z2)‖p. (3.30)

Thus, we have

‖σ(z1) − σ(z2)‖p ≤ 1
1 − α

‖z1 − z2‖p, z1, z2 ∈ S
(

D
)

. (3.31)

It follows from (3.31) and (i) that σS : D → X is compact. From (3.27), we have

‖σSx‖p ≤ 1
1 − α

‖Sx + Tθ‖p, x ∈ D. (3.32)
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For every x ∈ ∂D, from (3.32) and (iii), we deduce that

‖σSx‖2p −
(

‖σSx‖p − ‖x‖p
)2

= ‖x‖p
(

2‖σSx‖p − ‖x‖p
)

≤ ‖x‖p
(

2
1 − α

‖Sx + Tθ‖p − ‖x‖p
)

≤ 0,
(3.33)

which implies (3.20). This completes the proof.

4. Condensing Mappings

Now, we extend the above results to a class of condensing mappings. For convenience, we
recall some definitions, see [4, 7].

Definition 4.1. Let A be a bounded subset of a metric space (X, d). The Kuratowski measure
of noncompactness χ(A) of A is defined as follows:

χ(A) = inf

{
δ > 0 : there is a finite number of subsets Ai ⊂ A such that

A ⊆ ⋃

i
Ai and diam(Ai) ≤ δ

}

, (4.1)

where diam(Ai) denotes the diameter of set Ai.

It is easy to prove the following fundamental properties of χ, see [7]

(i) χ(A) = χ(A).

(ii) χ(A) = 0 if and only if A is compact.

(iii) A ⊆ B ⇒ χ(A) ≤ χ(B).

(iv) χ(A ∪ B) = max{χ(A), χ(B)}.
(v) If A, B are bounded, then χ(A + B) ≤ χ(A) + χ(B).

(vi) If A is bounded and λ ∈ R, then χ(λA) = |λ|χ(A).

For (ii) one should remember that a set is compact if and only if it is closed and totally
bounded.

Proposition 4.2. Let (X.‖ · ‖p) (0 < p ≤ 1) be a complete p-normed space and let A, B be two
bounded subsets of X. Then

χ(cos(A)) = χ(A), (4.2)

where 0 < s ≤ p.

Proof. Let ε > 0 and U(x; ε) the open ball with center x and radius ε. Note

diam(Nε(S)) ≤ diam(S) + 2ε, (4.3)
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holds for any bounded set S in a metric space; here Nε(A) =
⋃

x∈A U(x; ε). Then, if A is a
bounded set, we have that

χ(Nε(A)) ≤ χ(A) + 2ε. (4.4)

Assume first that A and B are bounded s-convex sets. Let C = A ∪ B. We now prove
that

χ(cos(C)) ≤ max
{

χ(A), χ(B)
}

. (4.5)

To do it, suppose that x ∈ cos(C) and x /∈ A ∪ B. Then there exist xi ∈ C and ti ≥ 0, i =
1, . . . , n,

∑n
i=1 t

s
i = 1, such that x =

∑n
i=1 tixi. Let xi ∈ A for 1 ≤ i ≤ m and xi ∈ B form+1 ≤ i ≤ n.

Then, we have

x =

(
m∑

i=1

tsi

)1/s ∑m
i=1 tixi

(∑m
i=1 t

s
i

)1/s
+

(
n∑

i=m+1

tsi

)1/s ∑n
i=m+1 tixi

(∑n
i=m+1 t

s
i

)1/s
. (4.6)

Consequently

x =

(
m∑

i=1

tsi

)1/s

u +

(
n∑

i=m+1

tsi

)1/s

v, where u ∈ A, v ∈ B, (4.7)

and then (4.7) leads to

x = t1/su + (1 − t)1/sv, where u ∈ A, v ∈ B, t ∈ [0, 1]. (4.8)

Assume that for each ε > 0, there is a positive integer N such that 1/N < ε. For each i =
0, 1, . . . ,N, let

Ci =

{

x ∈ cos(C) : x =
(

i

N

)1/s

u +
(

1 − i

N

)1/s

v for some u ∈ A, v ∈ B

}

. (4.9)

Note if t ∈ (0, 1), then t ∈ [i/N, (i+1)/N] for some 0 ≤ i ≤ N−1. This implies that if x ∈ cos(C)
and x /∈ A ∪ B, then x ∈ Nε(Ci) for some i = 0, . . . ,N. Thus,

cos(C) ⊆
(

n⋃

i=1

Nε(Ci)

)

∪A ∪ B. (4.10)
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By (iv) and (4.4), we have

χ(cos(C)) ≤ max
{

χ(A), χ(B), max
1≤i≤N

χ(Nε(Ci))
}

≤ max
{

χ(A), χ(B), max
1≤i≤N

[

χ(Ci) + 2ε
]
}

.

(4.11)

For each i, by (v) and (vi), we deduce that

χ(Ci) = χ

((
i

N

)1/s

A +
(

1 − i

N

)1/s

B

)

≤
(

i

N

)1/s

χ(A) +
(

1 − i

N

)1/s

χ(B)

≤
[(

i

N

)1/s

+
(

1 − i

N

)1/s
]

max
{

χ(A), χ(B)
}

.

(4.12)

Since

(
i

N

)1/s

+
(

1 − i

N

)1/s

≤ 1, (4.13)

we have

χ(Ci) ≤ max
{

χ(A), χ(B)
}

. (4.14)

Hence,

χ(cos(C)) ≤ max
{

χ(A), χ(B)
}

+ 2ε. (4.15)

Since ε > 0 is arbitrary we obtain (4.5).
Consequently, if C =

⋃n
i=1 Ai, where each Ai is bounded s-convex, we have that

χ(cos(C)) ≤ max
1≤i≤N

χ(Ai). (4.16)

Now, to prove (4.2), let q > χ(A). Then A ⊆ ⋃n
i=1 Ai, where diam(Ai) ≤ q. We now

claim that diam(cos(Ai)) = diam(Ai). In fact, since Ai ⊆ cos(Ai), we have

diam(Ai) ≤ diam(cos(Ai)), (4.17)
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for each i. Also, let x, y ∈ cos(Ai), such that x =
∑n

i=1 tixi, y =
∑n

i=1 tiyi, xi, yi ∈ Ai and
∑n

i=1 t
s
i = 1. Then

sup
x,y∈cos(Ai)

∥
∥x − y

∥
∥
p ≤

n∑

i=1

t
p

i

∥
∥xi − yi

∥
∥
p

≤
n∑

i=1

tsi
∥
∥xi − yi

∥
∥
p

≤
n∑

i=1

tsi diam(Ai),

(4.18)

that is,

diam(cos(Ai)) ≤ diam(Ai). (4.19)

Hence, diam(cos(Ai)) = diam(Ai).
Now we may assume that each Ai is s-convex for each i. By (4.16), we have

χ(cos(A)) ≤ max
1≤i≤N

χ(Ai) ≤ max
1≤i≤N

diam(Ai) ≤ q. (4.20)

Since this is true for all q > χ(A) then χ(cos(A)) ≤ χ(A) so (4.2) is proved.

Definition 4.3. LetX, Y be twometric spaces andΩ a subset ofX. A bounded continuous map
T : Ω → Y is k-set contractive if for any bounded set A ⊂ Ω, we have

χ(T(A)) ≤ kχ(A). (4.21)

T is strictly k-set contractive if T is k-set contractive and

χ(T(A)) < kχ(A) (4.22)

for all bounded sets A ⊂ Ω with χ(A)/= 0. We say T is a condensing map if T is a bounded
continuous 1-set contractive map and

χ(T(A)) < χ(A) (4.23)

for all bounded sets A ⊂ Ω with χ(A)/= 0.

Notice that T is a compact map if and only if T is a 0-set contractive map.
Now, we extend Sadovskii theorem in [7] to a map, that is, defined on a p-normed

space.

Theorem 4.4 (Sadovskii type). Let (X.‖ · ‖p) be a complete p-normed space andC a closed s-convex
subset of X, where 0 < p ≤ 1, 0 < s ≤ p. If S : C → C is condensing and S(C) is bounded, then S
has a fixed point.
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Proof. For each fixed x ∈ C, let B be the family of all closed s-convex subsets A of C, such
that x ∈ A and S : A → A. Suppose that

B =
⋂

A∈B

A,

D = cos{S(B) ∪ {x}}.
(4.24)

Since x ∈ B and S : B → B, it follows that D ⊆ B. This implies that S(D) ⊆ S(B) ⊆ D. On the
other hand, since x ∈ D, we have D ∈ B and B ⊆ D. Therefore, B = D.

As a result, we have S(D) = S(B) ⊆ D and

χ(D) = χ(cos{S(B) ∪ {x}}) = χ({S(B) ∪ {x}}) = χ(S(B)) = χ(S(D)). (4.25)

Since S is condensing, it follows that χ(D) = 0, that is,D is compact. Therefore S is a compact
mapping of s-convex set D into itself. By Theorem 2.5, S has a fixed point.

We next make use of the main ideas established in [5, 6, 8] to obtain a Krasnosel’skii
fixed point theorem in a p-normed space.

Theorem 4.5. Let (X, ‖ · ‖p) be a complete p-normed space and C a closed s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that S : C → X and

(i) T : C → X is such that the inverse of (I − T) : C → (I − T)(C) exists;

(ii) S(C) ⊆ (I − T)(C);

(iii) (I − T)−1S : C → X is condensing and (I − T)−1S(C) is bounded.

Then there exists a point x∗ ∈ C such that Sx∗ + Tx∗ = x∗.

Proof. From (ii), we have (I − T)−1S : C → C. Thus, (I − T)−1S is a condensing map of C into
itself. By Theorem 4.4, (I − T)−1S has a fixed point. This completes the proof.

The following lemma is easy to prove.

Lemma 4.6. Let (X, ‖ · ‖p) (0 < p ≤ 1) be a complete p-normed space and C ⊂ X. Assume that
T : C → X is a k-Lipschitizian map, that is,

∥
∥Tx − Ty

∥
∥
p ≤ k

∥
∥x − y

∥
∥
p, x, y ∈ C. (4.26)

Then for each bounded subset Ω of C, we have χ(T(Ω)) ≤ kχ(Ω).

Theorem 4.7. Let (X, ‖ · ‖p) be a complete p-normed space and C a closed s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that

(i) S : C → X is a 1-set contractive map (condensing) and S(C) is bounded;

(ii) T : C → X is an expansive map with constant h > 2 (h ≥ 2);

(iii) z ∈ S(C) implies T(C) + z ⊃ C where T(C) + z = {y + z : y ∈ T(C)}.
Then there exists a point x∗ ∈ C such that Sx∗ + Tx∗ = x∗.
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Proof. Let τ be the function defined as in Theorem 3.1. We will show that τS : C → C is a
condensing map. Let Ω be bounded in C. From (3.5) and Lemma 4.6, it follows that

χ(τ(S(Ω))) ≤ 1
h − 1

χ(S(Ω)). (4.27)

Suppose first that S is 1-set contractive. Then

χ((τS)(Ω)) ≤ 1
h − 1

χ(Ω), (4.28)

which implies that τS : C → C is a condensing map. The other case when S is condensing
and h ≥ 2 also guarantees that τS : C → C is a condensing map. The result follows from
Theorem 4.4. This completes the proof.

Theorem 4.8. Let (X, ‖ · ‖p) be a complete p-normed space and C a closed s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that

(i) S : C → X is a 1-set contractive map (condensing) and S(C) is bounded;

(ii) T : X → X (or T : C → X) is an expansive map with constant h > 2 (h ≥ 2);

(iii) S(C) ⊂ (I − T)(X) and [x = Tx + Sy, y ∈ C implies x ∈ C] or S(C) ⊂ (I − T)(C).

Then there exists a point x∗ ∈ C such that Sx∗ + Tx∗ = x∗.

Proof. For each x ∈ C, by (iii), there exists a y ∈ X such that

y − Ty = Sx. (4.29)

If S(C) ⊂ (I − T)(C) then y ∈ C whereas if S(C) ⊂ (I − T)(X) then it follows from Lemma 3.5
and (iii), that y = (I − T)−1Sx ∈ C. Now, if A ⊂ C is bounded, then by Lemma 4.6 and (3.16),
we have

χ
((

(I − T)−1S
)

(A)
)

≤ 1
h − 1

χ(S(A)). (4.30)

Suppose first that S is 1-set contractive. Then

χ
((

(I − T)−1S
)

(A)
)

≤ 1
h − 1

χ(A), (4.31)

which implies since h > 2 that (I − T)−1S : C → C is a condensing map. The other case when
S is condensing and h ≥ 2 also guarantees that (I − T)−1S : C → C is a condensing map.

The result follows from Theorem 4.4. This completes the proof.
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Lemma 4.9. Let (X, ‖ · ‖p) (0 < p ≤ 1) be a p-normed space and C ⊂ X. Suppose that the mapping
T : C → X is a contraction with contractive constant α < 1. Then the inverse of F = I − T : C →
(I − T)(C) exists and

∥
∥
∥F−1x − F−1y

∥
∥
∥
p
≤ 1

1 − α

∥
∥x − y

∥
∥
p, x, y ∈ F(C). (4.32)

Proof. Since, for each x, y ∈ C, we have

∥
∥Fx − Fy

∥
∥
p =

∥
∥
(

x − y
) − (

Tx − Ty
)∥
∥
p

≥ ∥
∥x − y

∥
∥
p −

∥
∥Tx − Ty

∥
∥
p

≥ (1 − α)
∥
∥x − y

∥
∥
p.

(4.33)

Then F is one-to-one and the inverse of F : C → F(C) exists. Suppose that

G := F−1 − I : F(C) −→ X. (4.34)

From the identity

I = F ◦ F−1 = (I − T) ◦ (I +G) = I +G − T ◦ (I +G), (4.35)

we have that

G = T ◦ (I +G). (4.36)

Thus,

∥
∥Gx −Gy

∥
∥
p ≤ α

∥
∥(I +G)x − (I +G)y

∥
∥
p

≤ α
(∥
∥x − y

∥
∥
p +

∥
∥Gx −Gy

∥
∥
p

)

,
(4.37)

and so

∥
∥Gx −Gy

∥
∥
p ≤ α

1 − α

∥
∥x − y

∥
∥
p, x, y ∈ F(C). (4.38)

Therefore,

∥
∥
∥F−1x − F−1y

∥
∥
∥
p
≤ ∥
∥Gx −Gy

∥
∥
p +

∥
∥x − y

∥
∥
p ≤ 1

1 − α

∥
∥x − y

∥
∥
p. (4.39)
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Remark 4.10. If T : C → X is a contraction with contractive constant α < 1, by Lemma 4.9, it
follows that (I − T)−1 exists and is continuous. If in addition

Tx + Sy ∈ C, for any x, y ∈ C (4.40)

holds, then (I − T)−1S : C → C. To see this first note, since S(C)+T(C) ⊆ C, for each z ∈ S(C),
the mapping T + z : C → C is a contraction. Thus,

Tx + z = x (4.41)

has a unique solution x ∈ C. Hence, z ∈ (I−T)(C) and we have S(C) ⊆ (I−T)(C). This shows
that (I − T)−1S : C → C.

From Theorem 4.4, we generalize a Krasnosel’skii type theorem (Theorem 1.1) as fol-
lows.

Theorem 4.11. Let (X, ‖ · ‖p) be a complete p-normed space and C a closed s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that

(i) S : C → X is a strictly (1 − α)-set contractive map (or a β-set contractive map with
β < 1 − α) and S(C) is bounded;

(ii) T : C → X is a contraction with contractive constant α < 1;

(iii) any x, y ∈ C imply Tx + Sy ∈ C.

Then there exists a point x∗ ∈ C such that Sx∗ + Tx∗ = x∗.

Proof. Let A ⊂ C be bounded. By Remark 4.10, Lemma 4.6 and (4.32), we have

χ
((

(I − T)−1S
)

(A)
)

≤ 1
1 − α

χ(S(A)), (4.42)

and so (I − T)−1S : C → C is a condensing map. Hence, from Theorem 4.4, there exists a
point x∗ ∈ C such that Sx∗ + Tx∗ = x∗. This completes the proof.

Remark 4.12. If (I − T)−1 exists and is continuous on X and if in addition

x = Tx + Sy, y ∈ C =⇒ x ∈ C (4.43)

holds, then (I − T)−1S : C → C. To see this first note if z ∈ S(C), then there exists y ∈ C such
that z = S(y). Let x = (I − T)−1z, so x − Tx = z. This implies x = Tx + Sy, and then x ∈ C.
Hence, z ∈ (I − T)(C) and we have S(C) ⊆ (I − T)(C). This shows that (I − T)−1S : C → C.

Theorem 4.13. Let (X, ‖ · ‖p) be a complete p-normed space and C a closed s-convex subset of X,
where 0 < p ≤ 1, 0 < s ≤ p. Suppose that

(i) S : C → X is a strictly (1 − α)-set contractive map (or a β-set contractive map with
β < 1 − α) and S(C) is bounded;
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(ii) T : X → X is a contraction with contractive constant α < 1;

(iii) [x = Tx + Sy, y ∈ C] ⇒ x ∈ C.

Then there exists a point x∗ ∈ C such that Sx∗ + Tx∗ = x∗.

Proof. Let A ⊂ C be bounded. By Remark 4.12, Lemma 4.6 and (4.32), we have

χ
((

(I − T)−1S
)

(A)
)

≤ 1
1 − α

χ(S(A)), (4.44)

and so (I − T)−1S : C → C is a condensing map. Hence, from Theorem 4.4, there exists a
point x∗ ∈ C such that Sx∗ + Tx∗ = x∗. This completes the proof.

5. Application

In [9], Hajji and Hanebaly presented a modular version of Krasnosel’skii fixed point theorem
and applied their result to the existence of solutions to perturbed integral equations in modu-
lar spaces. In this section, we use the same argument as in [9] to give an application of Kras-
nosel’skii fixed point theorem to a p-normed space. For more details about modular spaces,
we refer the reader to [10, 11]. Now, we recall some definitions.

Definition 5.1 (see [12]). Let X be an arbitrary linear space over K, where K = R or K = C. A
functional ρ : X → [0,+∞) is called a modular if

(i) ρ(x) = 0 if and only if x = θ;

(ii) ρ(αx) = ρ(x) if α ∈ K with |α| = 1, for all x ∈ X;

(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α, β ≥ 0 with α + β = 1, for all x, y ∈ X.

If in place of (iii), we have

(iv) ρ(αx + βy) ≤ αsρ(x) + βsρ(y) for α, β ≥ 0 and αs + βs = 1 with an s ∈ (0, 1],

then the modular ρ is called an s-convex modular, and if s = 1, ρ is called convex modular.
A modular ρ defines a corresponding modular space, that is, the space Xρ given by

Xρ =
{

x ∈ X : ρ(λx) −→ 0 as λ −→ 0
}

. (5.1)

The subset A of Xρ is ρ-bounded if

sup
x,y∈A

ρ
(

x − y
)

< +∞. (5.2)

The ρ-diameter of A is defined by

δρ(A) = sup
x,y∈A

ρ
(

x − y
)

. (5.3)

A simple example of a modular space is a p-normed space (X, ‖ · ‖p).
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Now, we discuss the existence of solutions for the following perturbed integral equa-
tion

u(t) = e−tf0 +
∫ t

0
er−t(T + h)u(r)dr, (5.4)

in the modular space (p-normed space) Cp = C([0, 1], Lp), where

Lp = Lp[0, 1]

=
{

f : f : [0, 1] −→ K is measurable, and
∥
∥f(t)

∥
∥
p =

∫
∣
∣f(t)

∣
∣
p
dt < +∞

}

,
(5.5)

and Cp = C([0, 1], Lp) is the space of all continuous functions from [0, 1] to Lp[0, 1] under the
modular (norm)

∥
∥g

∥
∥
pc = sup

0≤t≤1

∥
∥g(t)

∥
∥
p. (5.6)

Consider the following assumptions:
(i) B is a bounded closed s-convex subset of Lp with θ ∈ B, where 0 < p ≤ 1, 0 < s ≤ p;
(ii) T : B → B is a mapping satisfying

∥
∥Tx − Ty

∥
∥
p ≤ k

∥
∥x − y

∥
∥
p, (5.7)

for all x, y ∈ B where 0 < k < 1, and h : B → B is a continuous compact mapping such
that T(B) + h(B) ⊆ B;

(iii) f0 is a fixed element of B.

Theorem 5.2. Suppose that (i)–(iii) are satisfied then the integral equation (5.4) has a solution u ∈
Cp.

Proof. Consider Cp with

‖u‖pc = sup
0≤t≤1

‖u(t)‖p, (5.8)

for u ∈ D with D = C([0, 1], B). First we show S : D → D where S is given by

Su(t) = e−tf0 +
∫ t

0
er−t(T + h)u(r)dr. (5.9)

Suppose that tn, t0 ∈ [0, 1] and tn → t0 as n → ∞. Since T and h are continuous, then (T +h)u
is continuous at t0. In fact,

‖(T + h)u(tn) − (T + h)u(t0)‖p ≤ ‖Tu(tn) − Tu(t0)‖p + ‖hu(tn) − hu(t0)‖p. (5.10)
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Let n → ∞ so we have ‖(T + h)u(tn) − (T + h)u(t0)‖p → 0, that is, (T +h)u is continuous at t0.
Since t0 ∈ [0, 1] is arbitrary, Su is continuous from [0, 1] into Lp. Next, in the complete space
Lp, we have

∫ t

0
er−t(T + h)u(r)dr ∈

(∫ t

0
er−tdr

)

cos(T + h)u(r), (5.11)

where 0 ≤ r ≤ t. Since (T + h)(B) ⊆ B, it follows that

∫ t

0
er−t(T + h)u(r)dr ∈ (

1 − e−t
)

cos(B), (5.12)

and since B is closed s-convex, we have cos(B) = B = B. Therefore, Su(t) ∈ e−tB+(1−e−t)B ⊆ B
for all t ∈ [0, 1]. Thus S : D → D.

Let

T1u(t) = e−tf0 +
∫ t

0
er−tTu(r)dr,

h1u(t) =
∫ t

0
er−thu(r)dr.

(5.13)

Thus S = T1 + h1. We will show that the hypotheses of Theorem 4.11 are satisfied.
Now since T(B) + h(B) ⊂ B we have

T1u(t) + h1v(t) ∈ e−tB +
(

1 − e−t
)

B ⊂ B, (5.14)

for any t ∈ [0, 1] and u, v ∈ D. Hence T1(D) + h1(D) ⊂ D. For any u, v ∈ D, we have

T1u(t) − T1v(t) =
∫ t

0
er−t(Tu − Tv)(r)dr. (5.15)

Fix t ∈ [0, 1]. Using the same argument in the proof of Lemma 2.1 [12] we now show that T1
is a contraction. Let T = {t0, t1, . . . , tn} be any subdivision of [0, t]. We know that

∑n−1
i=0 (ti+1 −

ti)eti−tx(ti) is convergent to
∫ t

0 e
r−tx(r)dr in Lp when |T | = sup{|ti+1 − ti|, i = 0, . . . , n − 1} → 0

as n → ∞. Therefore

∥
∥
∥
∥
∥

∫ t

0
er−tx(r)dr

∥
∥
∥
∥
∥
p

≤ lim

∥
∥
∥
∥
∥

n−1∑

i=0
(ti+1 − ti)eti−tx(ti)

∥
∥
∥
∥
∥
p

. (5.16)
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On the other hand, since

n−1∑

i=0

(ti+1 − ti)eti−t ≤
∫ t

0
er−tdr = 1 − e−t ≤ 1, (5.17)

then we have

∥
∥
∥
∥
∥

n−1∑

i=0
(ti+1 − ti)eti−tx(ti)

∥
∥
∥
∥
∥
p

≤
∣
∣
∣
∣
∣

n−1∑

i=0
(ti+1 − ti)eti−t

∣
∣
∣
∣
∣

p

‖x(ti)‖p

≤ ‖x(ti)‖p

≤ sup ‖x(ti)‖p

≤ ‖x‖pc,

(5.18)

that is,

∥
∥
∥
∥
∥

∫ t

0
er−tx(r)dr

∥
∥
∥
∥
∥
p

≤ ‖x‖pc. (5.19)

This implies that

‖T1u(t) − T1v(t)‖p =

∥
∥
∥
∥
∥

∫ t

0
er−t(Tu − Tv)(r)dr

∥
∥
∥
∥
∥
p

≤ ‖Tu − Tv‖pc.

(5.20)

Note also

‖Tu − Tv‖pc = sup
t∈[0,1]

‖Tu(t) − Tv(t)‖p

≤ k‖u − v‖pc.
(5.21)

Hence,

‖T1u(t) − T1v(t)‖p ≤ k‖u − v‖pc, (5.22)

and so

‖T1u − T1v‖pc ≤ k‖u − v‖pc, (5.23)

for any u, v ∈ D. Therefore, T1 is a contraction.
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Now we show that h1 is compact. Let M ⊂ D. Then h1(M) is equicontinuous. To see
this let u ∈ M. Then

h1u(t) − h1u(t∗) =
∫ t

0
er−thu(r)dr −

∫ t∗

0
er−t

∗
hu(r)dr

= e−t
∫ t

0
erhu(r)dr − e−t

∗
∫ t∗

0
erhu(r)dr

= e−t
∫ t

0
erhu(r)dr − e−t

∗
∫ t

0
erhu(r)dr + e−t

∗
∫ t

0
erhu(r)dr − e−t

∗
∫ t∗

0
erhu(r)dr

=
(

e−t − e−t
∗)

∫ t

0
erhu(r)dr + e−t

∗
∫ t

t∗
erhu(r)dr.

(5.24)

Hence,

‖h1u(t) − h1u(t∗)‖p ≤
∥
∥
∥
∥
∥

(

e−t − e−t
∗)

∫ t

0
erhu(r)dr

∥
∥
∥
∥
∥
p

+

∥
∥
∥
∥
∥
e−t

∗
∫ t

t∗
erhu(r)dr

∥
∥
∥
∥
∥
p

=
∣
∣
∣e−t − e−t

∗
∣
∣
∣

p
∣
∣
∣
∣
∣

∫1

0
erdr

∣
∣
∣
∣
∣

p

δ‖·‖p(B) +
∣
∣
∣e−t

∗
∣
∣
∣

p
∣
∣
∣
∣
∣

∫ t

t∗
erdr

∣
∣
∣
∣
∣

p

δ‖·‖p(B)

≤ 2
∣
∣
∣e−t − e−t

∗
∣
∣
∣

p
δ‖·‖p(B) +

∣
∣
∣
∣
∣

∫ t

t∗
erdr

∣
∣
∣
∣
∣

p

δ‖·‖p(B)

= 2
∣
∣
∣e−t − e−t

∗
∣
∣
∣

p
δ‖·‖p(B) +

∣
∣
∣et − et

∗
∣
∣
∣

p
δ‖·‖p(B).

(5.25)

Recall the functions t �→ e−t and t �→ et are uniformly continuous on [0, 1]. Therefore, for ε > 0,
there exists η1 > 0 such that if |t − t∗| < η1 then

∣
∣
∣e−t − e−t

∗
∣
∣
∣ ≤

[

ε

4δ‖·‖p(B)

]1/p

, (5.26)

and there exists η2 > 0 such that if |t − t∗| < η2 then

∣
∣
∣et − et

∗
∣
∣
∣ ≤

[

ε

2δ‖·‖p(B)

]1/p

. (5.27)

As a result with η = min(η1, η2) note if |t − t∗| < η then

‖h1u(t) − h1u(t∗)‖p ≤ ε, (5.28)
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for any u ∈ M. Thus, h1(M) is equicontinuous. Moreover,

h1u(t) =
∫ t

0
er−thu(r)dr ∈ (

1 − e−t
)

cos{hu(r), 0 ≤ r ≤ t}

⊂ (

1 − e−t
)

cos(h(B)).

(5.29)

Hence, for all t ∈ [0, 1], we have

h1(M(t)) ⊂ (

1 − e−t
)

cos(h(B)). (5.30)

Since, h(B) is compact, this implies that cos(h(B)) is compact. Therefore, h1(M(t)) is compact
for all t ∈ [0, 1]. By using the Arzela-Ascoli Theorem, we obtain that h1(M) is compact and
also h1 is continuous. Thus h1 is compact. Hence by Theorem 4.11, S has a fixed point.
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