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We consider a stabilized multiscale nonconforming finite element method for the two-dimensional
stationary incompressible Navier-Stokes problem. This method is based on the enrichment of
the standard polynomial space for the velocity component with multiscale function and the
nonconforming lowest equal-order finite element pair. Stability and existence uniqueness of the
numerical solution are established, optimal-order error estimates are also presented. Finally, some
numerical results are presented to validate the performance of the proposed method.

1. Introduction

As the development of science and technology, finite element method has became an
important and powerful tool for the complex fluid problems, such as for the Navier-
Stokes equations. It is well known that the pressure and velocity pairs satisfy the discrete
Inf-Sup condition [1] that plays the key role for simulating the Navier-Stokes equations.
However, some unstable mixed finite element pairs which violate the so-called Inf-Sup
condition are also popular, see [2–4]. In order to overcome this restriction, various of
stabilized methods have been proposed, including the bubble condensation-based methods
[5], pressure projection method (PPM) [6–8], the local Gauss integration method (LGIM)
[9–11], multiscale method [12, 13], macroelement stabilized method [3, 14], and so on. Most
of these stabilized methods necessarily need to introduce the stabilization parameters either
explicitly or implicitly. In addition, some of these techniques are conditionally stable or are of
suboptimal accuracy. Therefore, the development of mixed finite element methods free from
stabilization parameters has become increasingly important.
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In 2005, Franca et al. gave a newmultiscale method for the reaction-diffusion equation
in [15]. The chief characteristic of their method is to use the Petrov-Galerkin approach to
split the solution into two parts, and the trial function space is enriched with an unstable
bubble-like function, which is the solution to a local problem. Later, Barrenechea and Valentin
[13] considered the relationship between the enriched multiscale method and stabilized
techniques for generalized Stokes problem based on the P1-P1 pair. By enriching the velocity
spacewith an unusual bubble function, Araya et al. established the convergence for the Stokes
problem in [16], their method is different from usual residual free bubble method in [5], in
which one should choose local basis functions to enrich the standard finite element spaces by
solving some local problem analytically. Furthermore, the method proposed in [15] can also
be used to treat the unsteady reaction-diffusion problem (see [17]).

Compared with conforming finite element method, the nonconforming finite element
methods are more popular due to their simplicity and small support sets of basis functions.
Crouzeix and Ravizrt in [18] used the nonconforming piecewise linear velocity and a pie-
cewise constant pressure to solve the Stokes equations. In this paper, motivated by the ideas
of [13, 15, 16], wewill use the Petrov-Galerkin approach based on the nonconforming velocity
space to handle with the steady Navier-Stokes equations. The main differences between [13,
15, 16, 19] and this work lie in the following: (i) the finite element spaces of velocity are
different; it is nonconforming element in this paper; (ii) the treated problems are different;
we consider the nonlinear problem; (iii) the finite element pairs are different; the NCP1-P1

pair is used in this paper.
The outline of this work is arranged as follows. In the following section, the abstract

functional setting for steady Navier-Stokes equations is recalled. Section 3 is devoted to
derive the general form of enriched multiscale method based on the NCP1-P1 pair. After
providing the stability and existence uniqueness for the approximation solution, the optimal
error estimates are established in Section 4. In Section 5, Some numerical results are presented
to verify the established theoretical analysis. Finally, Some conclusions are made in Section 6.

2. Preliminaries

Let Ω be an open bounded domain of R
2 with Lipschitz continuous boundary ∂Ω and

satisfy a further condition stated in (A1) below. The incompressible stationary Navier-Stokes
equations with the homogeneous Dirichlet boundary condition are

−νΔu + (u · ∇)u +∇p = f in Ω,

divu = 0, in Ω,

u|∂Ω = 0 on ∂Ω,

(2.1)

where u = (u1(x), u2(x))
T represents the velocity, p = p(x) the pressure, f = f(x) ∈ L2(Ω)2

the prescribed body force, ν > 0 the viscosity coefficient.
In order to introduce the variational formulation for problem (2.1), we set

X = H1
0(Ω)2, Y = L2(Ω)2, D(A) = H2(Ω)2 ∩X,

M = L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q dx = 0

}
.

(2.2)
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The standard notations of Sobolev spaceWm,r(Ω) are used. To simplify, we useHm(Ω)
instead of Wm,r(Ω) as r = 2 and ‖ · ‖m for ‖ · ‖m,2. The spaces L2(Ω)m (m = 1, 2) are endowed
with the usual L2-scalar product (·, ·) and L2-norm ‖·‖0. The spacesH1

0(Ω) andX are equipped
with the scalar product (∇u,∇v) and the norm |u|21,Ω, u, v ∈ H1

0(Ω) (or X).
DefineAu = −Δu is the operator associated with the Navier-Stokes problem, it is posi-

tive self-adjoint operator from D(A) onto Y .
Introducing the bilinear operator

B(u, v) = (u · ∇)v +
1
2
(divu)v ∀u, v ∈ X, (2.3)

and defining a trilinear form on X ×X ×X as follows:

b(u, v,w) = 〈B(u, v), w〉X′×X = ((u · ∇)v,w) +
1
2
((divu)v,w)

=
1
2
((u · ∇)v,w) − 1

2
((u · ∇)w,v).

(2.4)

The variational formulation of problem (2.1) reads as: find (u, p) ∈ (X,M) such that
for all (v, q) ∈ (X,M)

a(u, v) − d
(
v, p
)
+ d
(
u, q
)
+ b(u, u, v) =

(
f, v
)
, (2.5)

where

a(u, v) = ν(∇u,∇v), d
(
v, q
)
= −
(
v,∇q

)
=
(
q,divv

)
,

B0
((
u, p
)
;
(
v, q
))

= a(u, v) − d
(
v, p
)
+ d
(
u, q
)
.

(2.6)

Clearly, the bilinear forms a(·, ·) and d(·, ·) are continuous on X × X and X × M,
respectively. Moreover, d(·, ·) also satisfies (see [20]):

sup
0/=v∈X

∣∣d(v, q)∣∣
|v|1,Ω

≥ β
∥∥q∥∥0,Ω, (2.7)

where β is a positive constant depending only on Ω.
It is easy to verify that B0 satisfies the following important properties for all (u, p),

(v, q) ∈ (X,M) (see [1]):

B0
((
u, p
)
;
(
u, p
))

= ν‖u‖21,Ω, (2.8)

∣∣B0
((
u, p
)
;
(
v, q
))∣∣ ≤ C

(
‖u‖1,Ω +

∥∥p∥∥0,Ω
)(

‖v‖1,Ω +
∥∥q∥∥0,Ω

)
, (2.9)

β0
(
‖u‖1,Ω +

∥∥p∥∥0,Ω
)
≤ sup

(v,q)∈(X,M)

∣∣B0
((
u, p
)
;
(
v, q
))∣∣

‖v‖1,Ω +
∥∥q∥∥0,Ω , (2.10)
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where β0 > 0 is a constant. Here and below, the letter C (with or without subscript) denotes a
generic positive constant, depending at most on the data ν,Ω and f . Furthermore, the follow-
ing estimates about b(·, ·, ·) are hold [1, 20]:

b(u, v,w) = −b(u,w, v), (2.11)

|b(u, v,w)| ≤ 1
2
c0‖u‖0,Ω

1/2|u|1,Ω
1/2
(
|v|1,Ω‖w‖1/20,Ω |w|1/21,Ω + ‖v‖1/20,Ω |v|

1/2
1,Ω |w|1,Ω

)
, (2.12)

for all u, v, w ∈ X and

|b(u, v,w)| + |b(v, u,w)| + |b(w,u, v)| ≤ C|u|1,Ω‖Av‖0,Ω‖w‖0,Ω, (2.13)

for all u ∈ X, v ∈ D(A), w ∈ Y .
As mentioned above, a further assumption about Ω is needed (see [1]).
(A1)Assume thatΩ is regular so that the unique solution (v, q) ∈ (X,M) of the steady

Stokes equations

−νΔv +∇q = g, divv = 0 in Ω, v|∂Ω = 0, (2.14)

for a prescribed g ∈ Y exists and satisfies

‖Av‖0,Ω +
∣∣q∣∣1,Ω ≤ C

∥∥g∥∥0,Ω. (2.15)

Under the assumption of (A1), if ∂Ω is of C2 or Ω is a two-dimensional convex
polygon, it has been shown that (see [20])

‖v‖0,Ω ≤ γ0|v|1,Ω, ∀v ∈ X, |v|1,Ω ≤ γ0‖Av‖0,Ω, ∀v ∈ D(A), (2.16)

where γ0 is a positive constant only depending on Ω.
The following existence and uniqueness results about problem (2.5) are classical (see

[1, 20]).

Theorem 2.1. Assume that ν and f ∈ Y satisfy the following uniqueness condition:

1 −
c0γ

2
0

ν2
∥∥f∥∥0,Ω > 0. (2.17)

Then problem (2.5) admits a unique solution (u, p) ∈ (D(A),H1(Ω) ∩M) with divu = 0 such that

|u|1,Ω ≤
γ0
ν

∥∥f∥∥0,Ω, ‖Au‖0,Ω +
∣∣p∣∣1,Ω ≤ C

∥∥f∥∥0,Ω. (2.18)
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3. Enriched Nonconforming Finite Element Method

Let Th be a regular triangulation of Ω into element {Kj} : Ω = ∪Kj , that is, |Kj |  Ch2
Kj
,

where |Kj | is the area of the element Kj and hKj is the diameter of Kj ; the mesh parameter h
is given by h = max{hKj : Kj ∈ Th}. Denote the boundary segment and the interior boundary
by γj = ∂Ω ∩ ∂Kj and γjk = γkj = ∂Kj ∩ ∂Kk, respectively. Let Γh and Γj be the sets of γjk and
γj . The centers of γj and γjk are indicated by ξj and ξjk, respectively. The finite element spaces
investigated in this paper are the following mixed finite element spaces:

NCP1 =
{
v ∈ Y : v|Kj

∈ P1
(
Kj

)2
, v
(
ξjk
)
= v
(
ξkj
)
, v
(
ξj
)
= 0 ∀j, k,Kj ∈ Th

}
,

P1 =
{
q ∈ H1(Ω) : q

∣∣
Kj

∈ P1
(
Kj

)
, ∀Kj ∈ Th

}
,

(3.1)

where P1(Kj) is the set of line polynomials on Kj , and noting that the nonconforming finite
element space NCP1 is not a subspace of X. Defining the energy norm

‖v‖1,h =

⎛
⎝∑

Kj

|v|21,Kj

⎞
⎠

1/2

, ∀v ∈ NCP1. (3.2)

The finite element spaces NCP1 and P1 satisfy the following approximation property (see
[4, 21]): for (v, q) ∈ H2(Ω) × H1(Ω), there are two approximations vI ∈ NCP1 and qI ∈ P1

such that

‖v − vI‖0,Ω + h
(
‖v − vI‖1,h +

∥∥q − qI
∥∥
0,Ω

)
≤ Ch2

(
‖Av‖0,Ω +

∣∣q∣∣1,Ω
)
, (3.3)

and the compatibility conditions hold for all j and k:

∫
γjk

[v]ds = 0,
∫
Γj
vds = 0 ∀v ∈ NCP1, (3.4)

where [v] = vγjk − vγkj denotes the jump of the function v across the boundary γjk.
Set 〈·, ·〉j = (·, ·)∂Kj

and | · |m,j = | · |m,Kj . Then for all u, v ∈ H1(Kj)
2, q ∈ L2(Ω), the

discrete bilinear forms are

ah(u, v) =
∑
Kj

ν(∇u,∇v)Kj
, dh

(
v, p
)
=
∑
Kj

(
divv, p

)
Kj
. (3.5)

For the nonconforming space NCP1, we define a local operator

Πj : H1(Kj

)2 −→ NCP1
(
Kj

)
, (3.6)
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satisfying

∫
∂Kj

(
v −Πjv

)
ds = 0. (3.7)

Then the local operator Πj satisfies (see [21])

∣∣v −Πjv
∣∣
1,Kj

≤ Chi|v|i+1,Kj
, v ∈ Hi+1(Kj

)
, i = 0, 1,

∥∥Πjv
∥∥
1,Kj

≤ C‖v‖1,Kj
. (3.8)

The global operator Πh : X → NCP1 is defined as Πhv|j = Πjv, v ∈ X.
As noted, the choice NCP1-P1 is an unstable pair that does not satisfy the discrete

Inf-Sup condition. Therefore, we need to introduce the enrichment multiscale method to
overcome this restriction.

Let Eh be a finite dimensional space, called multiscale space, such that

Eh ∈ H1(Th)2, Eh ∩NCP1 = {0}, where H1(Th)2 =
{
v ∈ Y : v|Kj

∈ H1(Kj

)2}
. (3.9)

The discrete weak formulation of the Stokes equations is to find uh + ue ∈ NCP1 ⊕ Eh and
ph ∈ P1, such that

ah(uh + ue, vh) − dh

(
vh, ph

)
+ dh

(
uh + ue, qh

)
=
(
f, v
)
Ω, (3.10)

for all vh ∈ NCP1 ⊕H1
0(Th)

2 and qh ∈ P1. Let ue|Kj = u
Kj

e + u
∂Kj

e , we can solve it through the
following local problem:

−νΔu
Kj

e = f + νΔuh − ∇ph in Kj, u
Kj

e

∣∣∣
∂Kj

= 0,

−νΔu
∂Kj

e = 0 in Kj, u
∂Kj

e = ge on ∂Kj,

−ν∂ssge =
1
he

[
ν∂nuh + phI · n

]
E, ge = 0 at the nodes,

(3.11)

where he denotes the length of the edge E ∈ ∂Kj ; n the normal outward vector on ∂Kj ; ∂s, ∂n
are the tangential and normal derivative operators, respectively; I is the R

2×2 identity matrix.
Equation (3.11) is well posed, that is, ue can be expressed by uh, ph, and f on each element
Kj . For convenience, we define two local operators MKj : L2(Kj)

2 → H1
0(Kj)

2 and HKj :
L2(∂Kj)

2 → H1(Kj)
2 by

u
Kj

e =
1
ν
MKj

(
f + νΔuh − ∇ph

)
, ∀Kj ∈ Th,

u∂K
e =

1
ν
HKj

([
ν∂nuh + phI · n

]
E

)
, ∀Kj ∈ Th, E ∈ Γh.

(3.12)
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With Green formulation and (3.12), for all (uh, ph), (vh, qh) ∈ NCP1×P1, (3.10) can be rewritten
as

∑
Kj

[
ν(∇uh,∇vh)Kj

−
(
ph,∇ · vh

)
Kj

+
(
qh,∇ · uh

)
Kj

]

+
∑
Kj

1
ν

(
MKj

(
−νΔuh +∇ph

)
−HKj

([
ν∂nuh + phI · n

]
E

)
, νΔvh +∇qh

)
Kj

+
∑
E∈Γh

1
ν

(
HKj

([
ν∂nuh + phI · n

]
E

)
, ν∂nvh + qhI · n

)
E

=
∑
Kj

[(
f, vh

)
Kj

+
1
ν

(
MKj

(
f
)
, νΔvh +∇qh

)
Kj

]
.

(3.13)

With the help of (3.13), the enriched nonconforming finite element method for the stationary
Navier-Stokes equations (2.1) is rewritten as follows: find (uh, ph) ∈ NCP1 × P1 such that

B
((
uh, ph

)
;
(
vh, qh

))
+ b(uh, uh, vh) = F

(
vh, qh

)
(3.14)

for all (vh, qh) ∈ NCP1 × P1, where

B
((
uh, ph

)
;
(
vh, qh

))
= Bh

((
uh, ph

)
;
(
vh, qh

))
+
∑
Kj

1
ν

(
MKj

(
∇ph
)
,∇qh

)
Kj

+
∑
E∈Γh

1
ν

(
HKj ([ν∂nuh]), [ν∂nvh]

)
E

� Bh

((
uh, ph

)
;
(
vh, qh

))
Ω +
∑
Kj

τKj

(
∇ph,∇qh

)
Kj

+
∑
E∈Γh

τE([ν∂nuh], [ν∂nvh])E,

F
(
vh, qh

)
=
∑
Kj

[(
f, vh

)
Kj

+
1
ν

(
MKj

(
f
)
,∇qh

)
Kj

]
,

Bh

((
uh, ph

)
;
(
vh, qh

))
= ah(uh, vh) − dh

(
vh, ph

)
+ dh

(
uh, qh

)
.

(3.15)

By applying the technique to one used in [16], we can obtain that (bKj , 1)Kj
/|Kj | �

C̃h2
Kj
, (aKj , 1)E/he � he/12, τKj � C̃h2

Kj
and τE � he/(12ν). Moreover, if f is a piecewise con-

stant, then we have MKj (f) = bKj f ,

(
MKj

(
f
)
,∇qh

)
Kj

=

(
bKj , 1

)
Kj∣∣Kj

∣∣
(
f,∇qh

)
Kj

 C̃h2
Kj

(
f,∇qh

)
Kj
. (3.16)
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Define the mesh-dependent norms as follows:

‖|u|‖2h = ν‖u‖21,h +
∑
E∈Γh

τE‖[ν∂nu]‖20,E,
∥∥q∥∥2h =

∑
Kj

τKj

∣∣q∣∣21,Kj
. (3.17)

Remark 3.1. The assumption of piecewise constant f is made simply to analyze the problem
(3.14), but this assumption does not affect the precision of this method, and (3.14) may be
implemented as it is presented for a general function f ∈ L2(Ω)2. Here, we do not give the
detail proof about this fact; readers can visit Appendix B of the paper [16] for f ∈ H1(Ω)2.

Remark 3.2. Generally speaking, the following linear algebra equations can be obtained from
the discrete system of original problem:

(
A −D
DT 0

)(
U
P

)
=
(
F
0

)
, (3.18)

where the matrices A and D are deduced from the diffusion, convection, and incompressible
terms; F is the variation of the source term. The norm of matrix A gets smaller as the
convection increases; therefore, some unnecessary oscillations will be created. In order to
eliminate these oscillations, we introduce the stabilized term, in this case, the coefficient
matrix of discrete formulation transforms into

(
A −D
DT G

)
, (3.19)

whereG is derived from the stabilized term, that is, the term of (∇ph,∇qh). As the considered
problem has strong convection, in order to obtain a good behavior of matrix

(
A −D
DT G

)
, we

should choose a proper G. In this way, the singularly perturbed problem can be treated
effectively. The reason that we treat the convection term not use enriched function technique
is to simply the theoretical analysis and computation, and the discrete convection term has
no influence about the stabilized term G(·, ·).

Lemma 3.3. Let (vh, qh) ∈ NCP1 × P1, then,

B
((
vh, qh

)
;
(
vh, qh

))
= ‖|vh|‖2h +

∥∥qh∥∥2h. (3.20)

Proof. The results follow from the definition of (3.15) and the mesh-dependent norms in each
K ∈ Th.

Before establishing the stability of scheme (3.14), we introduce the local trace theorem
(see [1]). There exists C > 0, independent of h, such that

‖u‖20,∂Kj
≤ C
(
h−1
Kj
‖u‖20,Kj

+ hKj |u|
2
1,Kj

)
, ∀u ∈ H1(Kj

)
. (3.21)
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Theorem 3.4. There exist two positive constants C, β depending on ν, for all (uh, ph), (vh, qh) ∈
NCP1 × P1 such that

∣∣B((uh, ph
)
;
(
vh, qh

))∣∣ ≤ C
(
‖uh‖1,h +

∥∥ph∥∥0,Ω
)(

‖vh‖1,h +
∥∥qh∥∥0,Ω

)
, (3.22)

sup
0/= (vh,qh)∈(NCP1,P1)

∣∣B((uh, ph
)
;
(
vh, qh

))∣∣
‖vh‖1,h +

∥∥qh∥∥0,Ω ≥ β
(
‖uh‖1,h +

∥∥ph∥∥0,Ω
)
. (3.23)

Proof. It follows from (uh, ph), (vh, qh) ∈ NCP1 × P1, inverse inequality, (3.15), and (3.21) that

∣∣B((uh, ph
)
;
(
vh, qh

))∣∣
≤ ν‖uh‖1,h‖vh‖1,h + ‖uh‖1,h

∥∥qh∥∥0,Ω +
∥∥ph∥∥0,Ω‖vh‖1,h

+
∑
Kj

τKj

∣∣ph∣∣1,Kj

∣∣qh∣∣1,Kj
+
∑
E∈Γh

τE‖[ν∂nuh]‖0,E‖[ν∂nvh]‖0,E

≤ ν‖uh‖1,h‖vh‖1,h + ‖uh‖1,h
∥∥qh∥∥0,Ω +

∥∥ph∥∥0,Ω‖vh‖1,h + C1
∥∥ph∥∥0,Ω

∥∥qh∥∥0,Ω
+ C2

∑
E∈Γh

τE
(
h−1/2
Kj

‖∇uh‖0,Kj
+ h1/2

Kj
|∇uh|1,Kj

)(
h−1/2
Kj

‖∇vh‖0,Kj
+ h1/2

Kj
|∇vh|1,Kj

)

≤ C(ν)‖uh‖1,h‖vh‖1,h + ‖uh‖1,h
∥∥qh∥∥0,Ω +

∥∥ph∥∥0,Ω‖vh‖1,h + C1
∥∥ph∥∥0,Ω

∥∥qh∥∥0,Ω
≤ C
(
‖uh‖1,h +

∥∥ph∥∥0,Ω
)(

‖vh‖1,h +
∥∥qh∥∥0,Ω

)
,

(3.24)

that is, the continuity result (3.22) holds.
From the properties of the nonconforming finite element given in [18], for all ph ∈

L2(Kj), there exists a function w ∈ H1(Kj)
2, such that ‖w‖1,h = ‖ph‖0 and

(
∇ ·w, ph

)
Kj

=
∥∥ph∥∥20,Kj

, ‖w‖1,h ≤ C
∥∥ph∥∥0,Ω. (3.25)

Using the Cauchy-Schwartz inequality and (3.25), we have

∣∣B((uh, ph
)
; (−w, 0)

)∣∣
= −ν(∇uh,∇w) +

(
ph,∇ ·w

)
−
∑
E∈Γh

τE([ν∂nuh], [ν∂nw])E

≥ −ν‖uh‖1,h‖w‖1,h + C0‖w‖1,h
∥∥ph∥∥0,Ω −

∑
E∈Γh

τE‖[ν∂nuh]‖0,E‖[ν∂nw]‖0,E

≥ −
(
ν‖uh‖21,h +

∑
E∈Γh

τE
∥∥∥[ν∂nuh]

2
0,E

∥∥∥
)1/2(

ν‖w‖21,h +
∑
E∈Γh

τE‖[ν∂nw]‖20,E

)1/2

+ C0‖w‖1,h
∥∥ph∥∥0,h.

(3.26)
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Using (3.21) and inverse inequality, we obtain that

τE‖[ν∂nw]‖20,E ≤ he

12ν

(
h−1
K ‖ν∇w · n‖20,K + hK|ν∇w · n|21,K

)

≤ heν

12hK
|w|21,K +

CKνhe

12hK
|w|21,K ≤ ν(1 + CK)

12
|w|21,K.

(3.27)

Combining (3.26) with (3.27) yields

∣∣B((uh, ph
)
; (−w, 0)

)∣∣

≥ −
√
Cν‖w‖1,h

(
ν|uh|21,h +

∑
E∈Γh

τE‖[ν∂nuh]‖20,E

)1/2

+ C0‖w‖1,h
∥∥ph∥∥0,Ω

= −
√
Cν‖w‖1,h‖|uh|‖h + C0

∥∥ph∥∥20,Ω
≥ −Cνγ−11 ‖|uh|‖2h +

(
C0 − γ1

)∥∥ph∥∥20,Ω,

(3.28)

where C = (1 + C0)/12 with C0 = maxk∈ThCK, and γ1 is chosen small enough. Let

(
vh, qh

)
=
(
uh − δw, ph

)
, δ > 0. (3.29)

Using (3.26) and Lemma 3.3 we have

∣∣B((uh, ph
)
;
(
vh, qh

))∣∣ = ∣∣B((uh, ph
)
;
(
uh, ph

))
+ δB

((
uh, ph

)
; (−w, 0)

)∣∣
≥ ‖|uh|‖2h +

∥∥ph∥∥2h + δ
(
−Cνγ−11 ‖|uh|‖2h +

(
C0 − γ1

)∥∥ph∥∥20,Ω
)

≥
(
1 − Cδνγ−11

)
‖|uh|‖2h +

∥∥ph∥∥2h + δ
(
C0 − γ1

)∥∥ph∥∥20,Ω
≥ ν
(
1 − Cδνγ−11

)
‖uh‖21,h + δ

(
C0 − γ1

)∥∥ph∥∥20,Ω,

(3.30)

provided that 0 < δ < γ1/(Cν) and 0 < γ1 < C0. Denote

C(ν) � min
{
ν
(
1 − Cδνγ−11

)
, δ
(
C0 − γ1

)}
, C(δ) � max

{
2, 1 + 2δ2

}
. (3.31)

Then we have

‖vh‖21,h +
∥∥qh∥∥20,Ω = ‖uh − δw‖21,h +

∥∥ph∥∥20,Ω
≤ 2‖uh‖21,h +

(
1 + 2δ2

)∥∥ph∥∥20,Ω
≤ C(δ)

(
‖uh‖21,h +

∥∥ph∥∥20,Ω
)
.

(3.32)

Taking β = C(ν)/(C(δ)), we obtain the desired result (3.23).



Abstract and Applied Analysis 11

Theorem 3.5. Under the assumptions of Theorem 2.1 and the following condition:

the strong uniqueness condition: 1 − c0γ0
γ0 + ν1/2

ν2
∥∥f∥∥0,Ω > 0. (3.33)

Problem (3.14) admits a unique solution (uh, ph) ∈ (NCP1,P1), and satisfying

‖uh‖1,h ≤
γ0 + ν1/2

ν

∥∥f∥∥0,Ω,
∥∥ph∥∥0,Ω ≤ β−1

[(
γ0 +

C

ν

)∥∥f∥∥0,Ω + c0γ0ν
−2
(
γ0 + ν1/2

)2∥∥f∥∥20,Ω
]
.

(3.34)

Proof. Let Hilbert space Hh = (NCP1, P1) be with the scalar product and norm

((
v, q
)
; (w, r)

)
Hh

=
∑
Kj

(∇v,∇w)Kj
+
(
q, r
)
, (3.35)

and Kh be a nonvoid, convex, and compact subset of Hh defined by

Kh =

⎧⎨
⎩
(
v, q
)
∈ Hh : ‖v‖1,h ≤

γ0 + ν1/2

ν

∥∥f∥∥0,

∥∥q∥∥0,Ω ≤
νγ0 + C

βν

∥∥f∥∥0,Ω +
c0γ0
(
γ0 + ν1/2

)2
βν2

∥∥f∥∥20,Ω
⎫⎬
⎭.

(3.36)

Defining a continuous mapping from Kh into Hh as follows: given (v, q) ∈ Kh, for all
(w, r) ∈ Hh, find (v, q) = F(v, q) such that

B
((
v, q
)
; (w, r)

)
+ b(v, v,w) =

(
f,w
)
+
∑
Kj

τKj

(
f,∇r

)
Kj
. (3.37)

Taking (w, r) = (v, q), using (2.8)–(2.13) and inverse inequality yields

ν‖v‖21,h +
∥∥q∥∥2h ≤ ‖|v|‖2h +

∥∥q∥∥2h ≤ γ0
∥∥f∥∥0,Ω‖v‖1,h +

∑
Kj

τKj

∥∥f∥∥0,Kj

∥∥∇q
∥∥
0,Kj

≤
(

γ20
2ν

+
h2

2

)∥∥f∥∥20,Ω +
ν

2
‖v‖21,h +

1
2

∑
Kj

τKj

∥∥∇q
∥∥2
0,Kj

=

(
γ20
2ν

+
h2

2

)∥∥f∥∥20,Ω +
ν

2
‖v‖21,h +

1
2
∥∥q∥∥2h.

(3.38)
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As a consequence, we have

‖v‖1,h ≤
γ0 + ν1/2

ν

∥∥f∥∥0,Ω. (3.39)

Using again (2.17), (3.23), (3.37), and inverse inequality, we arrive at

β
(
‖v‖1,h +

∥∥q∥∥0,Ω
)
≤

∣∣f,w∣∣ + ∣∣∣∑Kj
τKj

(
f,∇r

)
Kj

∣∣∣
‖w‖1,h + ‖r‖0

+ c0γ0‖v‖1,h‖v‖1,h

≤ γ0
∥∥f∥∥0,Ω +

Ch

ν

∥∥f∥∥0,Ω + c0γ0ν
−2
(
γ0 + ν1/2

)2∥∥f∥∥20,Ω
≤
(
γ0ν + Ch

ν

)∥∥f∥∥0,Ω + c0γ0ν
−2
(
γ0 + ν1/2

)2∥∥f∥∥20,Ω.

(3.40)

Hence, the two estimates imply (v, q) = F(v, q) ∈ Kh, thanks to the fixed point theorem, the
mapping (v, q) = F(v, q) ∈ Kh has at least one fixed point (uh, ph) ∈ Kh; namely, (uh, ph) ∈ Kh

is a numerical solution of problem (3.14).
Next, we shall prove that the problem (3.14) has a unique solution (uh, ph). In fact, if

(vh, qh) also satisfies (3.14), then for all (w, r) ∈ (NCP1, P1)we have

B
((
uh − vh, ph − qh

)
; (w, r)

)
= b(vh − uh, uh,w) + b(vh, vh − uh,w). (3.41)

Taking (w, r) = (uh − vh, ph − qh) in (3.41) and using again (2.8)–(2.13), Lemma 3.3, it follows
that

ν‖uh − vh‖21,h ≤ c0γ0‖uh‖1‖uh − vh‖21,h ≤ c0γ0
γ0 + ν1/2

ν

∥∥f∥∥0,Ω‖uh − vh‖21,h, (3.42)

Which, together with the strong uniqueness condition

ν − c0γ0
γ0 + ν1/2

ν

∥∥f∥∥0,Ω = ν

(
1 − c0γ0

γ0 + ν1/2

ν2
∥∥f∥∥0,Ω

)
> 0, (3.43)

gives uh = vh. Using again (2.13), (3.23), and (3.41), we obtain β‖ph−qh‖20,Ω ≤ 0 which implies
ph = qh.

4. Error Estimates
In order to derive the error estimates of the numerical solution (uh, ph), we introduce the
Galerkin projection (Rh,Qh):(X,M) → (NCP1, P1) defined as follows: for all (vh, qh) ∈
(NCP1, P1)

B
((
Rh

(
v, q
)
, Qh

(
v, q
))
;
(
vh, qh

))
= B0
((
v, q
)
;
(
vh, qh

))
. (4.1)

Noting the Theorem 3.4, (Rh(v, q), Qh(v, q)) is well defined.
By using a similar argument to the one used in [14, 22], we have the following lemma.
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Lemma 4.1. Let (u, p) ∈ D(A)× (H1(Ω)∩M); under the assumptions of Theorems 3.4 and 3.5, the
projection operator (Rh,Qh) satisfies

∥∥u − Rh(u, p)
∥∥
0,Ω + h

(∥∥u − Rh(u, p)
∥∥
1,h +

∥∥p −Qh(u, p)
∥∥
0,Ω

)
≤ Ch2

(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)
.

(4.2)

Proof. From (u, p) ∈ [H2(Ω)2 ∩ X] × [H1(Ω) ∩ M], we have [ν∂nu]E = 0. For all (vh, qh) ∈
NCP1 × P1, using (4.1) yields

B
((
Rh

(
u, p
)
, Qh

(
u, p
))(

vh, qh
))

= B0
((
u, p
)
;
(
vh, qh

))

= B
((
u, p
)
;
(
vh, qh

))
−
∑
Kj

τKj

(
∇p,∇qh

)
Kj
.

(4.3)

From the definition of (Rh(u, p), Qh(u, p)), (3.3), combining Theorem 3.4, (4.3), the triangular
with inverse inequalities, we arrive at

∥∥u − Rh(u, p)
∥∥
1,h +

∥∥p −Qh(u, p)
∥∥
0,Ω

≤ ‖u − uI‖1,h +
∥∥p − pI

∥∥
0,Ω +

∥∥uI − Rh(u, p)
∥∥
1,h +

∥∥pI −Qh(u, p)
∥∥
0,Ω

≤ ‖u − uI‖1,h +
∥∥p − pI

∥∥
0,Ω + β−1 sup

(vh,qh)∈NCP1×P1

∣∣B((uI − Rh

(
u, p
)
, pI −Qh

(
u, p
))
;
(
vh, qh

))∣∣
‖vh‖1,h +

∥∥qh∥∥0,Ω

≤ β−1 sup
(vh,qh)∈NCP1×P1

∣∣B((uI − u, pI − p
)
;
(
vh, qh

))∣∣ + ∣∣∣∑Kj
τKj

(
∇p,∇qh

)
Kj

∣∣∣
‖vh‖1,h +

∥∥qh∥∥0,Ω
+ ‖u − uI‖1,h +

∥∥p − pI
∥∥
0,Ω.

(4.4)

It is easy to check that

∣∣B((uI − u, pI − p
)
;
(
vh, qh

))∣∣ ≤ C
(
‖u − uI‖1,h +

∥∥p − pI
∥∥
0,Ω + h

∣∣p∣∣1
)(

‖vh‖1,h +
∥∥qh∥∥0,Ω

)
.

(4.5)
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Combining (4.4), (4.5), and inverse inequality yields

∥∥u − Rh(u, p)
∥∥
1,h +

∥∥p −Qh(u, p)
∥∥
0,Ω

≤ C
(
‖u − uI‖1,h +

∥∥p − pI
∥∥
0,Ω + h

∣∣p∣∣1
)
+ β−1 sup

(vh,qh)∈NCP1×P1

∣∣∣∑Kj
τKj

(
∇p,∇qh

)
Kj

∣∣∣
‖vh‖1,h +

∥∥qh∥∥0,Ω

≤ C1h
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)
+ C2h sup

(vh,qh)∈NCP1×P1

∑
Kj

hKj

∥∥∇p
∥∥
0,Kj

∥∥∇qh
∥∥
0,Kj

‖vh‖1,h +
∥∥qh∥∥0,Ω

≤ Ch
(
‖Au‖0,Ω +

∥∥p∥∥1,Ω
)
.

(4.6)

In order to derive the estimate in the L2-norm, we consider the following dual problem with
(e, η) = (u − Rh(u, p), p −Qh(u, p)):

−ΔΦ +∇Ψ = e in Ω, (4.7)

divΦ = 0 in Ω, (4.8)

Φ|∂Ω = 0 on ∂Ω. (4.9)

Based on the assumption of (A1), (4.7)–(4.9) have a unique solution and satisfy

‖AΦ‖0,Ω + |Ψ|1,Ω ≤ C
∥∥u − Rh(u, p)

∥∥
0,Ω. (4.10)

Multiplying (4.7) and (4.8) by e and η, respectively, integrating over Ω, and using (4.3) with
(vh, qh) = (ΦI ,ΨI), we see that

∥∥u − Rh(u, p)
∥∥2
0

= B0
((
u − Rh

(
u, p
)
, p −Qh

(
u, p
))
; (Φ,Ψ)

)

−
∑
Kj

〈
∂Φ
∂n

, u − Rh

(
u, p
)〉

j

+
∑
Kj

〈(
u − Rh

(
u, p
))

· n,Ψ
〉
j

= B
((
u − Rh

(
u, p
)
, p −Qh

(
u, p
))
; (Φ,Ψ)

)
−
∑
Kj

τKj

(
∇
(
p −Qh

(
u, p
))
,∇Ψ

)
Kj

−
∑
Kj

〈
∂Φ
∂n

, u − Rh

(
u, p
)〉

j

+
∑
Kj

〈(
u − Rh

(
u, p
))

· n,Ψ
〉
j
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= B
((
u − Rh

(
u, p
)
, p −Qh

(
u, p
))
; (Φ −ΦI ,Ψ −ΨI)

)

−
∑
Kj

τKj

(
∇
(
p −Qh

(
u, p
))
,∇Ψ

)
Kj

+
∑
Kj

τKj

(
∇p,∇ΨI

)
Kj

−
∑
Kj

〈
∂Φ
∂n

, u − Rh

(
u, p
)〉

j

+
∑
Kj

〈(
u − Rh

(
u, p
))

· n,Ψ
〉
j ,

(4.11)

where (ΦI ,ΨI) is the finite element interpolation of (Φ,Ψ) in (NCP1, P1) and satisfies (3.3).
For each E ∈ ∂Kj , we define the mean value of u − Rh(u, p) and Ψ on E

u − Rh(u, p) =
1
he

∫
E

(
u − Rh

(
u, p
))

|Kj
ds; Ψ =

1
he

∫
E

Ψ|Kj
ds. (4.12)

Note that each interior edge appears twice in the sum of (4.11); u − Rh(u, p) and Ψ are
constants. Then it follows from (4.11) that

∥∥u − Rh(u, p)
∥∥2
0,Ω

= B
((
u − Rh

(
u, p
)
, p −Qh

(
u, p
))
; (Φ −ΦI ,Ψ −ΨI)

)
+
∑
Kj

τKj

(
∇p,∇ΨI

)
Kj

−
∑
Kj

τKj

(
∇
(
p −Qh

(
u, p
))
,∇Ψ

)
Kj

+
∑
Kj

∑
E∈∂Kj

((
u − Rh

(
u, p
))

· n,Ψ −Ψ
)
E

−
∑
Kj

∑
E∈∂Kj

(
∂Φ
∂n

, u − Rh

(
u, p
)
− u − Rh

(
u, p
))

E

.

(4.13)

Combining (3.3) with Lemma 4.1, we deduce that

B
((
u − Rh

(
u, p
)
, p −Qh

(
u, p
))
; (Φ −ΦI ,Ψ −ΨI)

)

≤ Ch2
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)(

‖AΦ‖0,Ω + |Ψ|1,Ω
)
,

(4.14)

∑
Kj

τKj

(
∇p,∇ΨI

)
Kj

−
∑
Kj

τKj

(
∇
(
p −Qh

(
u, p
))
,∇Ψ

)
Kj

≤
∑
Kj

τKj

∣∣p∣∣1,Kj
|ΨI |1,Kj

+
∑
Kj

τKj

∣∣p −Qh

(
u, p
)∣∣

1,Kj
|Ψ|1,Kj

.
(4.15)

With the help of (4.12), we have

∫
E

[(
u − Rh

(
u, p
))

− u − Rh

(
u, p
)]
ds = 0. (4.16)
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Combining the definition of Πj , (4.16), and local trace theorem (3.21) with the standard
argument for the nonconforming element (see [21]), we see that

∑
Kj

∑
E∈∂Kj

(
∂Φ
∂n

, u − Rh

(
u, p
)
− u − Rh

(
u, p
))

E

=
∑
Kj

∑
E∈∂Kj

(
∂Φ
∂n

−
∂
(
ΠjΦ
)

∂n
, u − Rh

(
u, p
)
− u − Rh

(
u, p
))

E

≤
∑
Kj

∑
E∈∂Kj

∥∥∇(Φ −ΠjΦ)
∥∥
L2(E)

∥∥∥u − Rh(u, p) − u − Rh(u, p)
∥∥∥
L2(E)

≤ Ch2
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)
‖AΦ‖0,Ω.

(4.17)

In a similar way, we have

∑
Kj

∑
E∈∂Kj

((
u − Rh

(
u, p
))

· n,Ψ −Ψ
)
E
≤ Ch2(‖Au‖0,Ω +

∣∣p∣∣1)|Ψ|1,Ω. (4.18)

By combining (4.13)–(4.15)with (4.17)-(4.18), we deduce that

∥∥u − Rh(u, p)
∥∥
0,Ω ≤ Ch2

(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)
, (4.19)

which, together with (4.6). We finish the proof.

Theorem 4.2. Assume that the conditions of Theorems 3.4 and 3.5 are valid; let (u, p), (uh, ph) be
the solutions of (2.1) and (3.14), respectively, then

‖u − uh‖1,h +
∥∥p − ph

∥∥
0,Ω ≤ Ch. (4.20)

Proof. We get the following error equation by combining (2.1) with (3.14), for all (vh, qh) ∈
(NCP1, P1)

B
((
u − uh, p − ph

)
;
(
vh, qh

))
+ b(u − uh, u, vh) + b(uh, u − uh, vh) −

∑
Kj

〈
∂u

∂n
, vh

〉
j

+
∑
Kj

〈
vh · n, p

〉
j =
∑
Kj

τKj

(
∇p,∇qh

)
Kj

−
∑
Kj

τKj

(
f,∇qh

)
Kj
.

(4.21)

With (4.3), (4.21) can be rewritten as

B
((
eh, ηh

)
;
(
vh, qh

))
+ b
(
u − Rh

(
u, p
)
+ eh, u, vh

)
+ b
(
uh, u − Rh

(
u, p
)
+ eh, vh

)

−
∑
Kj

〈
∂u

∂n
, vh

〉
j

+
∑
Kj

〈
vh · n, p

〉
j = −

∑
Kj

τKj

(
f,∇qh

)
Kj
,

(4.22)

where eh = Rh(u, p) − uh and ηh = Qh(u, p) − ph.
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From Theorem 3.5 and (4.22), we get that

∥∥ηh∥∥0,Ω ≤ β−1 sup
0/= (vh,qh)∈(NCP1,P1)

∣∣B((eh, ηh); (vh, qh
))∣∣

‖vh‖1,h +
∥∥qh∥∥0,Ω

≤ β−1 sup
0/= (vh,qh)∈(NCP1,P1)

1
‖vh‖1,h +

∥∥qh∥∥0,Ω

×

⎛
⎝∣∣b(u − Rh

(
u, p
)
+ eh, u, vh

)∣∣ +
∣∣∣∣∣∣
∑
Kj

τKj

(
f,∇qh

)
Kj

∣∣∣∣∣∣

+
∣∣b(uh, u − Rh

(
u, p
)
+ eh, vh

)∣∣ +
∣∣∣∣∣∣
∑
Kj

〈
∂u

∂n
, vh

〉
j

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∑
Kj

〈
vh · n, p

〉
j

∣∣∣∣∣∣
⎞
⎠.

(4.23)

Again, with (2.13), Theorem 2.1, inverse inequality, and Lemma 4.1, we have

∣∣b(u − Rh

(
u, p
)
, u, vh

)∣∣ + ∣∣b(uh, u − Rh

(
u, p
)
, vh

)∣∣
≤ c0γ0

(
|u|1,Ω + ‖uh‖1,h

)∥∥u − Rh

(
u, p
)∥∥

1,h‖vh‖1,h ≤ Ch‖vh‖1,h,
(4.24)

|b(eh, u, vh)| + |b(uh, eh, vh)| ≤ c0γ0
(
|u|1,Ω + ‖uh‖1,h

)
‖eh‖1,h‖vh‖1,h, (4.25)

∑
Kj

τKj

∣∣∣(f,∇qh
)
Kj

∣∣∣ ≤∑
Kj

τKj

∥∥f∥∥0,Kj

∥∥∇qh
∥∥
0,Kj

≤
∑
Kj

C̃h2
Kj

∥∥f∥∥0,Kj

∥∥∇qh
∥∥
0,Kj

≤ C(ν)h
∥∥f∥∥0,Ω

∥∥qh∥∥0,Ω,

(4.26)

and using the similar arguments as for (4.17)-(4.18) yields

∣∣∣∣∣∣
∑
Kj

〈
∂u

∂n
, vh

〉
j

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∑
Kj

〈
vh · n, p

〉
j

∣∣∣∣∣∣ ≤ Ch2
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)
‖vh‖1,h. (4.27)

Combining (4.23)–(4.27)with Theorem 3.5, we arrive at

∥∥ηh∥∥0,Ω ≤ Ch + 2c0γ0
γ0 + ν1/2

ν

∥∥f∥∥0,Ω‖eh‖1,h. (4.28)
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Choosing (vh, qh) = (eh, ηh) in (4.22), we obtain that

B
((
eh, ηh

)
;
(
eh, ηh

))
+ b(eh, u, eh) +

∑
Kj

τKj

(
f,∇ηh

)
Kj

= −b
(
u − Rh

(
u, p
)
, u, eh

)
− b
(
uh, u − Rh

(
u, p
)
, eh
)

+
∑
Kj

〈
∂u

∂n
, vh

〉
j

−
∑
Kj

〈
eh · n, p

〉
j .

(4.29)

Using (2.13), (2.17), Theorem 2.1, and Lemma 3.3, we get

B
((
eh, ηh

)
;
(
eh, ηh

))
− b(eh, u, eh) = ‖|eh|‖2h +

∥∥ηh∥∥2h − c0γ0|u|1‖eh‖
2
1,h

≥ ν‖eh‖21,h − c0γ0|u|1‖eh‖
2
1,h

≥ ν
(
1 − c0γ

2
0ν

−2∥∥f∥∥0
)
‖eh‖21,h > 0.

(4.30)

Combining (4.24)–(4.28)with (4.29) yields:

‖eh‖1,h ≤ Ch. (4.31)

From (4.28) and (4.31), we obtain that ‖ηh‖0,Ω ≤ Ch. Furthermore, we finish the proof by
combining triangles inequality with Lemma 4.1, (4.28), and (4.31).

Theorem 4.3. Let (u, p) and (uh, ph) be the solutions of (2.1) and (3.14), respectively, then we have

‖u − uh‖0,Ω ≤ Ch2
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)
. (4.32)

Proof. Using the duality argument for a linearized stationary Navier-Stokes problem; for
some given g ∈ Y and the solution (u, p) of (2.1), defining (Φ,Ψ) ∈ (X,M) by

−νΔΦ +∇Ψ + B̃(u,Φ) − B(u,Φ) = g, in Ω, (4.33)

divΦ = 0 in Ω, (4.34)

u|∂Ω = 0 on ∂Ω, (4.35)

where B̃(u,Φ) is defined as 〈v, B̃(u,Φ)〉X×X′ = b(v, u,Φ), for all v ∈ X; multiplying (4.33) and
(4.34) by v ∈ X and q ∈ M, respectively; integrating over Ω, from (2.8)–(2.11), it is easily
to see that the bilinear form a(Φ, v) − d(v,Ψ) + d(Φ, q) is continuity and X ×M coercive, by
using the Lax-Milgram’s Lemma, (4.33)–(4.35) have a unique solution (Φ,Ψ).
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Multiplying (4.33) and (4.34) by Φ and Ψ, respectively, using (2.13) and Theorem 2.1,
we have

ν|Φ|21,Ω − b(Φ, u,Φ) ≥ ν|Φ|21,Ω − c0γ0|u|1,Ω|Φ|21,Ω

≥ ν
(
1 − c0γ

2
0ν

−2∥∥f∥∥0,Ω
)
|Φ|21,Ω > 0.

(4.36)

On the other hand, estimating the right term yields

(
Φ, g
)
≤ ‖Φ‖0,Ω

∥∥g∥∥0,Ω ≤ γ0|Φ|1,Ω
∥∥g∥∥0,Ω. (4.37)

By using (4.36) and (4.37), we arrive at

|Φ|1,Ω ≤ C
∥∥g∥∥0,Ω. (4.38)

Setting Ψ = 0 and taking the scalar product of (4.33) with AΦ in Y yields

ν‖AΦ‖20 + b(AΦ, u,Φ) − b(u,Φ, AΦ) =
(
g,AΦ

)
. (4.39)

Using the Gagliardo-Nirenberg inequality yields

‖v‖2L4 ≤ C‖v‖0,Ω|v|1,Ω, ∀v ∈ X,

‖∇v‖2L4 ≤ C‖Av‖0,Ω|v|1,Ω, ∀v ∈ H2(Ω)2 ∩X.
(4.40)

With the help of the Agmon’s inequality, we have

‖v‖2L∞ ≤ C‖v‖0,Ω‖Av‖0,Ω, ∀v ∈ H2(Ω)2 ∩X. (4.41)

Furthermore, the following estimates are hold:

b(AΦ, u,Φ) ≤ C‖AΦ‖0,Ω
(
‖∇u‖L4‖Φ‖L4 + ‖u‖L∞‖∇Φ‖0,Ω

)

≤ ν

4
‖AΦ‖20,Ω + Cν−1‖Au‖20,Ω‖∇Φ‖20,Ω),

b(u,Φ, AΦ) ≤ ν

4
‖AΦ‖20,Ω + Cν−1‖Au‖20,Ω‖∇Φ‖20,Ω),

(
g,AΦ

)
≤ ν

4
‖AΦ‖20,Ω + Cν−1

∥∥g∥∥0,Ω.

(4.42)

Combining above inequalities with (4.38) and (4.39), we arrive at

‖AΦ‖20,Ω ≤ cν−2
(
1 + ‖Au‖20,Ω

)∥∥g∥∥20,Ω. (4.43)
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Applying the continuous Inf-Sup condition (2.8) yields

|Ψ|1,Ω ≤ cν‖AΦ‖0,Ω + c‖Au‖0,Ω|Φ|1,Ω + c
∥∥g∥∥0,Ω. (4.44)

Combining (4.43)-(4.44)with (2.18), (4.38), we arrive at

‖AΦ‖0,Ω + |Ψ|1,Ω ≤ C
∥∥g∥∥0,Ω. (4.45)

Taking g = Rh(u, p) − uh, multiplying (4.33) and (4.34) by Rh(u, p) − uh and Qh(u, p) − ph,
respectively, using (4.1) yields

∥∥Rh(u, p) − uh

∥∥2
0,Ω

= B
((
Rh

(
u, p
)
− uh,Qh

(
u, p
)
− ph
)
; (Φ,Ψ)

)
+ b
(
u,Rh

(
u, p
)
− uh,Φ

)

−
∑
Kj

τKj

(
∇
(
Qh

(
u, p
)
− ph
)
,∇Ψ

)
Kj

+
∑
Kj

〈
Ψ,
(
Rh

(
u, p
)
− uh

)
· n,
〉
j

+ b
(
Rh

(
u, p
)
− uh, u,Φ

)
−
∑
Kj

〈
∂Φ
∂n

,Rh

(
u, p
)
− uh

〉
j

.

(4.46)

Setting (vh, qh) = (ΦI ,ΨI) in (4.22), and using (4.46), we obtain that

∥∥Rh(u, p) − uh

∥∥2
0,Ω

= B
((
Rh

(
u, p
)
− uh,Qh

(
u, p
)
− ph
)
; (Φ −ΦI ,Ψ −ΨI)

)

−
∑
Kj

τKj

(
∇
(
Qh

(
u, p
)
− ph
)
,∇Ψ

)
Kj

+ b
(
u − uh, Rh

(
u, p
)
− uh,Φ

)
+
∑
Kj

〈
∂u

∂n
, vh

〉
j

+ b
(
u − Rh

(
u, p
)
, u,ΦI

)
+ b
(
Rh

(
u, p
)
− uh, u,Φ −ΦI

)
+ b
(
uh, u − Rh

(
u, p
)
,Φ −ΦI

)

+ b
(
uh, Rh

(
u, p
)
− uh,Φ −ΦI

)
− b
(
uh, u − Rh

(
u, p
)
,Φ
)
+
∑
Kj

〈
Ψ,
(
Rh

(
u, p
)
− uh

)
· n,
〉
j

−
∑
Kj

τKj

(
f,∇ΨI

)
Kj

−
∑
Kj

〈
∂Φ
∂n

,Rh

(
u, p
)
− uh

〉
j

−
∑
Kj

〈
vh · n, p

〉
j .

(4.47)
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We now estimate the right terms of (4.47). Thanks to (3.3); Theorems 2.1, 3.4-3.5, and 4.2;
inverse inequality; Lemma 4.1; we know that

B
((
Rh

(
u, p
)
− uh,Qh

(
u, p
)
− ph
)
; (Φ −ΦI ,Ψ −ΨI)

)

≤ C
(∥∥Rh

(
u, p
)
− uh

∥∥
1,h +

∥∥Qh

(
u, p
)
− ph
∥∥
0,Ω

)(
‖Φ −ΦI‖1,h + ‖Ψ −ΨI‖0,Ω + h|Ψ|1,Ω

)

≤ Ch2
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)(

‖AΦ‖0,Ω + |Ψ|1,Ω
)
,

b
(
Rh

(
u, p
)
− uh, u,Φ −ΦI

)
+ b
(
uh, Rh

(
u, p
)
− uh,Φ −ΦI

)
≤ 2c0

(
|u|1,Ω + ‖uh‖1,h

)∥∥Rh(u, p) − uh

∥∥
1,h‖Φ −ΦI‖1,h

≤ Ch2
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)
‖AΦ‖0,Ω,

∑
Kj

τKj

(
∇
(
Qh

(
u, p
)
− ph
)
,∇Ψ

)
Kj

≤
∑
Kj

C̃h2
K

∥∥∇(Qh(u, p) − ph)
∥∥
0,Kj

‖∇Ψ‖0,Kj

≤ Ch2(‖Au‖0,Ω +
∣∣p∣∣1)|Ψ|1,Ω,

b
(
u − Rh

(
u, p
)
, u,ΦI

)
≤ C
∥∥u − Rh(u, p)

∥∥
0,Ω‖Au‖0,Ω|ΦI |1,h

≤ Ch2
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)
|Φ|1,Ω,

b
(
u − uh, Rh

(
u, p
)
− uh,Φ

)
≤ c0‖u − uh‖1,h

∥∥Rh(u, p) − uh

∥∥
1,h|Φ|1,Ω

≤ Ch2(‖Au‖0,Ω +
∣∣p∣∣1)|Φ|1,Ω,

b
(
uh, u − Rh

(
u, p
)
,Φ
)
≤ C‖uh‖1,h

∥∥u − Rh

(
u, p
)∥∥

0,Ω‖AΦ‖0,Ω,∑
Kj

τKj

(
f,∇ΨI

)
Kj

≤
∑
Kj

C̃h2
Kj

∥∥f∥∥0,Kj
‖∇ΨI‖0,Kj

≤ Ch2∥∥f∥∥0,Ω|Ψ|1,Ω,

b
(
uh, u − Rh

(
u, p
)
,Φ −ΦI

)
≤ c0‖uh‖1,h

∥∥u − Rh(u, p)
∥∥
1,h‖Φ −ΦI‖1,h

≤ Ch2
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)
‖AΦ‖0,Ω.

(4.48)

Applying the argument used for (4.18)-(4.21), (4.28) gives

∑
Kj

〈
∂Φ
∂n

,Rh

(
u, p
)
− uh

〉
j

+
∑
Kj

〈
Ψ,
(
Rh

(
u, p
)
− uh

)
· n,
〉
j

≤ Ch2
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)(

‖AΦ‖0,Ω + |Ψ|1,Ω
)
,

∑
Kj

〈
∂u

∂n
,ΦI

〉
+
∑
Kj

〈
ΦI · n, p

〉
j ≤ Ch2

(
‖Au‖0,Ω +

∥∥p∥∥1,Ω
)
‖ΦI‖1,h

≤ Ch2
(
‖Au‖0,Ω +

∥∥p∥∥1,Ω
)
‖ΦI‖1,Ω.

(4.49)
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Combining above inequalities, Theorems 2.1, 3.5, (4.46), and (4.51), we get that

∥∥Rh(u, p) − uh

∥∥2
0,Ω

≤ Ch2
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)(

‖AΦ‖0,Ω + |Ψ|1,Ω
)
+ C‖uh‖1,h

∥∥u − Rh(u, p)
∥∥
0,Ω‖AΦ‖0,Ω

≤ Ch2
(
‖Au‖0,Ω +

∣∣p∣∣1,Ω
)∥∥Rh(u, p) − uh

∥∥
1,Ω + C

γ0 + ν1/2

ν

∥∥f∥∥0,Ω
∥∥u − Rh(u, p)

∥∥2
0,Ω.

(4.50)

Choosing the appropriate ν,Ω and f such that 1 − C((γ0 + ν1/2)/ν)‖f‖0 > 0, then we have

∥∥Rh(u, p) − uh

∥∥
0,Ω ≤ Ch2

(
‖Au‖0,Ω +

∥∥p∥∥1,Ω
)
. (4.51)

By applying the triangles inequality, Lemma 4.1 and (4.51), we finish the proof.

Lemma 4.4. Under the assumptions of Theorem 4.2, the following estimate about u − uh in mesh-
dependent norm

‖|u − uh|‖h ≤ Ch, (4.52)

holds, where u and uh are the solution of problem (2.1) and (3.14), respectively.

Proof. According to the definition of ‖| · |‖h, uh ∈ Xh, with Theorems 2.1 and 4.2, inverse and
local trace inequalities (3.21), we have

‖|u − uh|‖2h = ν‖|u − uh|‖21,h +
∑
E∈Γh

τE‖ν∂n(u − uh)‖20,E

= ν‖|u − uh|‖21,h +
∑
E∈Γh

he

12ν
‖ν∂n(u − uh)‖20,E

≤ Ch2 + C
∑
E∈Γh

he

[
h−1
Kj
‖∇(u − uh) · n‖20,Kj

+ hKj |∇(u − uh) · n|21,Kj

]

≤ Ch2.

(4.53)

5. Numerical Validations

In this section, we provide two numerical examples to illustrate the theoretical analysis of the
method (3.14). In all experiments, we consider the domain Ω to be the square [0, 1] × [0, 1].
The mesh consists of triangular elements that are obtained by dividing Ω into subsquares
of equal size and then drawing the diagonal in each sub-square, see Figure 1. The software
Freefem++, developed by Hecht et al. [23], is used in our experiments.
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Figure 1: Uniform triangulation of Ω into triangulars.

Table 1: Numerical results for enriched multiscale method with NCP1-P1 element.

1/h ‖ph − p̃‖0/‖p̃‖0 ‖uh − ũ‖0/‖ũ‖0 |uh − ũ|1/|ũ|1 pL2 rate uL2 rate uH1 rate
20 0.160667 0.15627 0.816235
25 0.126534 0.10132 0.665410 1.0703 1.9418 0.9155
30 0.105785 0.0708881 0.556179 0.9823 1.9591 0.9835
35 0.083427 0.0523941 0.478261 1.5403 1.9611 0.9791
40 0.0667358 0.0405399 0.420987 1.6717 1.9209 0.9552

Table 2: Numerical results for PPM in [6] with NCP1-P1 element.

1/h ‖ph − p‖0/‖p̃‖0 ‖uh − u‖0/‖u‖0 ‖uh − u‖1/‖u‖1 pL2 rate uL2 rate uH1 rate
20 0.208238 0.0182227 0.12718 1.8797 1.9629 0.9963
25 0.136834 0.0117122 0.101772 1.8818 1.9809 0.9988
30 0.0972068 0.0081486 0.0848213 1.8754 1.9898 0.9993
35 0.0727087 0.00599297 0.0727009 1.8837 1.9932 1.0002
40 0.056478 0.00459177 0.0636082 1.8918 1.9945 1.0006

5.1. An Analytical Solution: Convergence Validation

For this test, our purpose is to verify the theoretical analysis which has been established in the
previous section by setting the viscosity coefficient ν = 1 and f is given by the exact solution

u1 = 10x2(x − 1)2y
(
y − 1

)(
2y − 1

)
,

u2 = −10x(x − 1)(2x − 1)y2(y − 1
)2
,

p = 10(2x − 1)
(
2y − 1

)
.

(5.1)

In our numerical validation, The experimental rates of convergence with respect to the
mesh size h are calculated by the formula (log(Ei/Ei+1))/(log(hi/hi+1)), where Ei and Ei+1

are the relative errors corresponding to the meshes of sizes hi and hi+1.
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Table 3: Numerical results for SGM with P1b-P1 element.

1/h ‖ph − p‖0/‖p‖0 ‖uh − u‖0/‖u‖0 ‖uh − u‖1/‖u‖1 pL2 rate uL2 rate uH1 rate
20 0.194855 0.0167771 0.120396 1.9352 2.0150 1.0040
25 0.127314 0.010703 0.0962298 1.9073 2.0144 1.0041
30 0.0903239 0.00741503 0.080144 1.8827 2.0130 1.0033
35 0.0675341 0.00543371 0.068793 1.8863 2.0168 0.9907
40 0.0527341 0.00416312 0.059691 1.8532 1.9947 1.0628

Table 4: Numerical results for LGIM in [4, 7, 19] with NCP1-P1 element.

1/h ‖ph − p‖0/‖p‖0 ‖uh − u‖0/‖u‖0 ‖uh − u‖1/‖u‖1 pL2 rate uL2 rate uH1 rate
20 0.263248 0.0186335 0.127546 1.7919 2.0088 1.0010
25 0.176286 0.0118944 0.102010 1.7970 2.0117 1.0012
30 0.128021 0.00824161 0.0849864 1.7547 2.0122 1.0014
35 0.0978302 0.00604517 0.0728229 1.7448 2.0106 1.0020
40 0.0776455 0.00462309 0.0637016 1.7305 2.0085 1.0022

Table 5: CPU time for solving the steady Navier-Stokes equations with different mesh sizes.

1/h 20 25 30 35 40
Our method with NCP1-P1 1.6324 3.286 5.975 8.792 14.088
PPM in [6] with NCP1-P1 1.875 3.594 6.406 10.891 17.453
LGIM in [10]with NCP1-P1 1.844 3.547 6.391 10.593 17.047
SGM with P1b-P1 3.031 6.078 11.375 21.106 35.020

In order to show the efficiency of the enriched multiscale method, we compare the
numerical results obtained by using different methods, which are shown in Tables 1, 2, 3,
and 4. The compared methods include the pressure projection method (PPM) in [6], the local
Gauss integration method (LGIM) in [7, 10, 19], and the standard Galerkin method (SGM)
with MINI element (see [1]), respectively. From these tables, we can see that the stabilized
multiscale method has good precision for pressure, and the precision of velocity, worse than
other methods. Table 5 explains the CPU times that needed for solving the steady Navier-
Stokes equations in different mesh sizes. From these data, we know that our method takes
less time than other methods. Furthermore, from Tables 1–4, we can see that the numerical
results reproduce the established theoretical analysis and show anO(h) order of convergence
for |u − uh|1,Ω and ‖p − ph‖0,Ω, and an O(h2) convergence for ‖u − uh‖0,Ω.

5.2. Lid-Driven Cavity Problem

In this test, we consider the incompressible lid-driven cavity flow problem defined on the unit
square. Setting f = 0 and the boundary condition u = 0 on [{0}× (0, 1)]∪ [(0, 1)×{0}]∪ [{1}×
(0, 1)] and u = (1, 0)T on (0, 1)×{1}, see Figure 2. The mesh consists of triangular element and
the mesh size h = 1/50.

Figure 3 shows the pressure contours at different Reylond numbers, where the stop-
ping criterion ‖un+1

h
−un

h
‖0,Ω/‖un+1

h
‖0,Ω ≤ 10−6 is employed, where un+1

h
is the approximation of

uh at the n + 1 Newton iterative. From Figure 3, we can see that the oscillations are absented
for the pressure isovalues by the NCP1-P1 approximations, and compared with the results
given in [24], we can see that our method has the effect to stabilized flow field (see Figure 4).
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Figure 2: Lid-driven cavity flow.

(a) (b)

Figure 3: Pressure contours of the driven cavity by using the stabilized multiscale method with NCP1-P1
at different Reynolds numbers. (a) Re = 1, (b) Re = 100.

In this sense, we say that the stabilized multiscale nonconforming finite element method is
effective for the stationary Navier-Stokes problem.

6. Conclusion

In this paper we have derived a theoretical analysis of enriched multiscale nonconforming
finite element method for the steady incompressible Navier-Stokes equations. The analysis
has extended the work in [16] from the linear problem to the nonlinear problem. The
discretization uses nonconforming and conforming piecewise linear finite elements for
velocity and pressure over triangles elements, respectively. Numerical tests show that this
stabilized method is computationally efficient, and it can be performed locally at the element
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Figure 4: The computed velocity profiles through the geometric center at Re = 100. (a)Horizontal velocity,
(b) vertical velocity.

level with minimal additional cost; at the same time, our numerical results obtained are in
good agreement with the established theoretical results.
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