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The purpose of this paper is to introduce and analyze a strongly convergent method which
combined regularized method, with extragradient method for solving the split feasibility problem
in the setting of infinite-dimensional Hilbert spaces. Note that the strong convergence point is the
minimum norm solution of the split feasibility problem.

1. Introduction

In 1994, Censor and Elfving [1] first introduced the split feasibility problem, (SFP) in finite-
dimensional Hilbert spaces for modeling inverse problems which arise from phase retrievals
and in medical image reconstruction. A number of image reconstruction problems can be
formulated as the SFP; see, for example, [2] and the references therein. Recently, it is found
that the SFP can also be applied to study the intensity-modulated radiation therapy; see, for
example, [3-5] and the references therein. Very recently, Xu [6] considered the SFP in the
framework of infinite-dimensional Hilbert spaces. In this setting, the SFP is formulated as
finding a point x* with the property

x*eC, Ax*€Q, (1.1)

where C and Q are two closed convex subsets of two Hilbert spaces H; and H», respectively,
and A : Hy — H, is a bounded linear operator. We use I' to denote the solution set of the
(SFP), that is,

I={xeC:AxeQ). (1.2)
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Assume that the (SFP) is consistent. A special case of the (SFP) is the convexly constrained
linear inverse problem [7] in the finite-dimensional Hilbert spaces

x*eC, Ax"=b, (1.3)
which has extensively been investigated by using the Landweber iterative method [8]:

with x¢ arbitrary and n=0,1,..., let x,41 = x, + yAT(b — Axy). (1.4)

Comparatively, the SFP has received much less attention so far, due to the complexity resulted
from the set Q. Therefore, whether various versions of the projected Landweber iterative
method can be extended to solve the SFP remains an interesting open topic. For example, it
is yet not clear if the dual approach to (1.2) of [9] can be extended to the SFP.

The original algorithm introduced in [1] involves the computation of the inverse A~!:

Xi+1 = A_po (PA(C)(Axk)), k>0, (1.5)

where C,Q C R" are closed convex sets, A a full rank n x n matrix, and A(C) = {y € R" |
y = Ax,x € C}, and thus does not become popular. A more popular algorithm that solves
the (SFP) seems to be the CQ algorithm of Byrne ([2, 10]). The CQ algorithm only involves
the computations of the projections Pc and Py onto the sets C and Q, respectively, and is
therefore implementable in the case where Pc and Py have closed-form expressions (e.g.,
C and Q are the closed balls or half-spaces). There are a large number of references on the
CQ method for the (SFP) in the literature, see, for instance, [11-24]. It remains, however, a
challenge how to implement the CQ algorithm in the case where the projections Pc and/or Py
fail to have closed-form expressions though theoretically we can prove (weak) convergence
of the algorithm.

Very recently, Xu [6] gave a continuation of the study on the CQ algorithm and
its convergence. He applied Mann’s algorithm to the SFP and proposed an averaged CQ
algorithm, which was proved to be weakly convergent to a solution of the SFP. He derived
a weak convergence result, which shows that for suitable choices of iterative parameters
(including the regularization), the sequence of iterative solutions can converge weakly to
an exact solution of the SFP.

Note that x € ' means that there is an x € C such that Ax—x* = 0 for some x* € Q. This
motivates us to consider the distance function d(Ax, x*) = ||Ax — x*|| and the minimization
problem

. 1
min =

Ax — x* 2. X
xeC,x*EQZ” . x” (1 6)

Minimizing with respect to x* € Q first makes us consider the minimization:

. 1 2
r?elélf(x) = §||Ax - PoAx||”. (1.7)
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However, (1.7) is, in general, ill-posed. So regularization is needed. We consider Tikhonov’s
regularization

. 1 2 1
min f = §||(1— Po)Ax||” + Ea||x||2, (1.8)

where a > 0 is the regularization parameter. We can compute the gradient V f, of f, as
Vfa=Vf(x)+al =A*(I-Py)A+al (1.9)
Define a Picard iteration
xb  =Pc(I-y(A*(I-Py)A+al))xy (1.10)

Xu [6] has has shown that if the (SFP) (1.1) is consistent, then as n — oo, x¥ — x, and
consequently the strong lim,_ox, exists and is the minimum-norm solution of the (SFP).
Note that (1.10) is a double-step iteration. Xu [6] further suggested a single-step regularized
method:

X1 = Po(I = ynV fa,)Xn = Po((1 = apyn)xn — 12 A* (I — Pg) Axy). (1.11)

Xu proved that the sequence {x,} generated by (1.11) converges in norm to the minimum-
norm solution of the (SFP) provided the parameters {a,} and {y,} satisfy the following
conditions:

(i) & — 0and 0 <y, < (an/ (| Al* + an));
(i) 22y @nYn = o0;
(111) (|Yn+1 - Yn| + Ynl‘x‘rﬁl - ‘xnl)/(‘ererHl)z — 0.

Motivated by the ideas of extragradient method and Xu’s regularization, Ceng et al. [25]
presented the following extragradient method with regularization for finding a common
element of the solution set of the split feasibility problem and the set Fix(S) of fixed points of
a nonexpansive mapping S:

Xo = X € Hy chosen arbitrarily,
Yn = Pe (0 = An(Vf (xn) + anxn)), (1.12)
Xni1 = Pnxn + (1= Bu)SPc(xn = X (Vf () + anyn)), n2>0.

Ceng et al. only obtained the weak convergence of the algorithm (1.12).

The purpose of this paper is to further introduce and analyze a strongly convergent
method, which combined regularized method with extragradient method for solving the split
feasibility problem in the setting of infinite-dimensional Hilbert spaces. Note that the strong
convergence point is the minimum norm solution of the split feasibility problem.
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2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping T : C — C
is called nonexpansive if

[ITx =Tyl <[lx-v

, VYx,yeC. (2.1)

We will use Fix(T) to denote the set of fixed points of T, that is, Fix(T) = {x € C : x = Tx}.
A mapping T : C — C is said to be v-inverse strongly monotone (v-ism) if there exists a
constant v > 0 such that

(x -y, Tx-Ty) 2v||Tx—Ty||2, Vx,y € C. (2.2)

Recall that the (nearest point or metric) projection from H onto C, denoted Pc, assigns, to
each x € H, the unique point Pc(x) € C with the property

[lx = Pc(x)|| = inf{||x - y|| : y € C}. (2.3)

It is well known that the metric projection Pc of H onto C has the following basic properties:

(@) IPc(x) = Pe(y)l < [lx - yll for all x, y € H;
(b) (x —y, Pc(x) = Pc(y)) > ||Pc(x) = Pe(y)|? for every x,y € H;
(c) (x = Pc(x),y—Pc(x)) <Oforallxe H,y € C.

Especially, 2Pc - I is nonexpansive.

Let K be a nonempty closed convex subset of a real Hilbert space H, and let F : K —
H be a monotone mapping. The variational inequality problem (VIP) is to find x € K such
that

(Fx,y-x)>0, VyeK. (2.4)
The solution set of the VIP is denoted by VIP(K, F). It is well known that

x € VI(K,F) & x = Px(x —AFx), VA>0. (2.5)

A set-valued mapping T : H — 2H is called monotone if forall x,y € H, f € Tx,and g € Ty
imply

(x-y,f-g)>0. (2.6)

A monotone mapping T : H — 2! is called maximal if its graph G(T) is not properly
contained in the graph of any other monotone mapping. It is known that a monotone
mapping T is maximal if and only if, for (x, f) € HxH, (x-y, f-g) > 0forevery (y,g) € G(T)
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implies f € Tx. Let F : K — H be a monotone and k-Lipschitz continuous mapping, and let
Nk be the normal cone to K at v € K, that is,

Nxv={weH:(v-uw)>0,VuecK}. (2.7)

Define

Fv+ N, if K
Tvz{ v+ Ngv, ifve K, 2.8)

0, ifod K.

Then, T is maximal monotone and 0 € Tv if and only if v € VI(K, F); see [21] for more details.
Next we adopt the following notation

(i) x, — x means that x,, converges strongly to x;
(ii) x, — x means that x,, converges weakly to x;

(iii) wq (xn) = {x : Jxp; — x} is the weak w-limit set of the sequence {x;}.
Lemma 2.1 (see [6]). We have the following assertions.

(a) T is nonexpansive if and only if the complement I — T is (1/2)-ism.
(b
(c
(d) If S and T are both averaged, then the product (composite) ST is averaged.

If S is v-ism, then for y > 0, yS is (v/y)-ism.

S is averaged if and only if the complement I — S is v-ism for some v > (1/2).

)
)
)
)

Lemma 2.2 (see [26]). Let {x,} and {y,} be bounded sequences in a Banach space X, and let {f,}
be a sequence in [0,1] with 0 < liminf, ., B, <limsup, B, < 1. Suppose that

Xn+l = (1 - ﬁn)yn + ﬁnxn (29)
foralln >0 and

lim sup (||yne1 = Y| = 12ne1 — xnll) <0. (2.10)

n—oo

Then, lim,, _, ||y — x,|| = 0.

Lemma 2.3 (see [27]). Assume that {a,} is a sequence of nonnegative real numbers such that
ani1 < (1= Yn)an + 6y, (2.11)

where {y,} is a sequence in (0,1) and {6,} is a sequence such that

(1) X1 Yn = oo
(2) limsup,, _,  (64/Yn) <001 3571 |64] < c0.

Then lim,, _, ,a,, = 0.
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3. Main Results

Let Hy and H; be two infinite-dimensional Hilbert spaces. Let C and Q be two nonempty
closed and convex subset of H; and H», respectively. Let A : H; — H; be a bounded linear
operator. In this section, we will devote to solve the SFP (1.1). First, we need the following
propositions.

Proposition 3.1 (see [6, 25]). Given x* € Hj, then the following statements are equivalent.

(i) x* solves the SFP;
(ii) x* solves the fixed equation x* = Pc(I — AV f)x* = Pc(I — LA*(I — Pg) A)x™;

(iii) x* solves the variational inequality problem (VIP) of finding x* € C such that
(Vf(x*),x-x*)y>0, VxeC, (3.1)

where V f = A*(I — Pg) A and A* is the adjoint of A.
Proposition 3.2 (see [28]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
the mapping B : C — H be a-inverse strongly monotone and y > 0 a constant. Then, we have

[T -yB)x - I -yB)y|* < |x - y|* +y(y -20)||Bx-By||>, ¥x,yeC.  (32)

In particular, if 0 < y < 2a, then I — yB is nonexpansive.
Proposition 3.3 (see [6]). We have the following conclusions:

(i) A*(I — Pg)A is Lipschitz continuous with Lipschitz constant || A||%;
(i) A*(I - Pg)A is (1/||A|?)-ism,
(iii) I - yA*(I - Pg) A is nonexpansive for all y € (0,2/||A||%).

Algorithm 3.4. For given x¢ € C arbitrarily, define a sequence {x,} iteratively by

Yn = Pc[xy = LA™ (I - Pg) Axy = atnis], (3.3)
et = Pe oty = LA™ (I = Po) Ay + i(yn - 32)], 120, |

where {a,} C (0,1) is a sequence, A € [a,b] C (0,2/||A||*) and p € (0,1) are two constants
such that (A/p) < (2/]|Al]%).

Theorem 3.5. Suppose that T #0. Assume lim,,_, o, = 0 and >,77, a, = oo. Then the sequence
{x,} generated by (3.3) converges strongly to X € Pr(0), which is the minimum norm element in T

Proof. Note that the conditions a,, — 0and A € (0,2/]Al]?). We deduce a,, < 1 - (A||A]|?/2)
for enough large n. Without loss of generality, we may assume that, for all n € N, a,, <
1 - (A|A|?/2), thatis, A/ (1 - a,) € (0,2/[|A]]?).
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Pick up any x* € I'. From Proposition 3.1, we have x* = Pc[x* — 6 A*(I — Pg)Ax*] for
any 6 > 0. Thus,

x* = PC [x* - %A* (I - PQ)A.X*]
" (3.4)

A
= PC [(xnx*+ (l—an)<x*— HA*<I_PQ)AX*>:|/ VT[ZO

From (3.3) and (3.4), we have

Iy = "1l = 1R (1 - an)xs ~ 147 (1 - Po) Ax,]

P [(1 —ay) <xn _ ﬁA*(I - PQ)Axn)]

_Pe [anx* +(1-ay,) (x* - ﬁA* (I- PQ)AX*>] || (3.5)

A

an(=x*) + (1 -ay) [(xn - 1_—%A*(I - PQ)Axn>

(v - o aa-rgar ||

<

From Propositions 3.1 and 3.2, we get that I — (1/(1 — a,))A*(I — Pg)A is nonexpansive. It
follows that

lyn — x*|| < aullx*[| + (1 - )

A e
(I— RA (I—Pg)A)xn

)L * *
—(I— RA (I - PQ)A)JC

(3.6)

< anllx*| + (1= an)||xn — x|
Thus,

xne1 = x*|| = || Pc [0 = LA™ (I = Po) Ayn + p(yn — xn)] - x*

Pc [(1 —)%Xn +#(yn - ﬁA*(I - PQ)Ayn)]
-Pc [(1 —p)x*+ ‘u<x* - %A* (I- PQ)Ax*>] H

< (M= p)lloen = x| +p

Ao
Kyn - /;A (I- PQ)Ayn>

—<x* - /%A* (I- PQ)Ax*>
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< (U= p)llacn = x| + pe|ym — x|
< (1= ) llen = x|l + e[|+ (1 = )l — 7|

(1= pa)ll2¢n = x7|| + prou |1 x"|

IN

max{|lx*l, flxo — x|}
(3.7)

Hence, {x,} is bounded.
Set S = 2Pc — I. Note that S is nonexpansive. Thus, we can rewrite x,.; in (3.3) as

I+S A
Xns1 = ; [(1_ﬂ)xn+ﬂ<yn_ﬁA*(I_PQ)Ayn>]

1-
T‘uxn + g<yn - iA* (I- PQ)Ayn)
: (38)

N %s[(l — 1) +ﬂ<yn - ﬁA*(I B PQ)Ay")]

1- 1+

where

=y = W) AT =~ Po) Ayn) + S[(1 =~ )X + pyn = (A/ 1) A*(1 - Po) Ayn)]
" 1+u ’

(3.9)

It follows that

_ [ (yn = (/) A (I - Pg) Ay
Zns1 = zall =

1+pu

10— 1)t + (s = (/) A*(I = Po) Ay)]
1+pu

_ p(yn = (M) A*(I - Pg) Ayn)
1+u

LS p)xn + p(yn = M/ ) A*(1 = Po) Aya)]
1+pu

1 A
<t '(ym - ﬁA*(I - PQ)AynH) - (yn - ;A*(I - PQ)Ayn>

T 1l+p

1 1.
1 +#“5[(1 — #)Xni1 +#<yn+1 A (I- PQ)Ayn+1>]

+

-s [(1 —H)%Xn + P‘<V" B ﬁA*(I B PQ)Ay")] H
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—1+ﬂllyn+1 Al
H(l ) (ot %) + ( A a-po)a >
1+//£ H)(Xni1 n) T U\ Yn+1 7 Q)AYn+1
Lo
(-2 ron)|
U
< gl =l + g =l + 1l = wal
—_ n n n n 1+# n n
< yn” |xn+1 Xn||.

(3.10)

By (3.3), we have

”yn+1 - yn” = ”PC [(1 - an+1)xn+1 - 1A (I - PQ)Axn+1] - PC [(1 - ‘xn)xn -1A* (I - PQ)Axn] ”
< A = ape1) Xpe1 = LA*(I = Pg) Axpar] — [(1 = a)xn — LA™ (I — Pg) Axy] ||
< [t = A" (I = Po) Asr] = [0 = LA" (1 = Po) A | + st [t | + ]

< ||xn+l - xn“ + an+l”xn+1” + an”xn”'
(3.11)

Hence, we deduce

Tt = Xl + w2 ] +
tH (3.12)

= lIxXne1 = Xull + anaa | xna [ + an | xnl]-

2
241 = zall < nllxm xall +

Therefore,
tim sup ||z = Zall = 1 = 2ull) < 0. (3.13)
By Lemma 2.2, we obtain
im [z, — x| = 0. (3.14)
Hence,
T et = 2 = Tim — |z, - 2, =0. (3.15)
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From (3.5), (3.7), Proposition 3.2, and the convexity of the norm, we deduce

2
[[ns1 = x|

< (1= p)1xn = [P+l — ¥

A

an(=x*) + (1-ay) [(xn - RA* (I- PQ)Axn>

< (1= p) o = x"|* +

2

—(x* -7 —J\cxn A (I- PQ)Ax*>]

< ﬂ[anllx*llz +(1-ay)

Ao, L .
<I— mA (I—PQ)A>xn - (I_ mA (I—PQ)A)X

X

]
+ (1= ) llxn = 7|

<(1- “n).u

*(12 A A _ 2 * _ _Ax _ *]]2
x[nxn—xn +1_an<1_an ||A||2>”A (I~ Po) Axy ~ A*(I - Po) Ax II]

+ (1= p)llxn = X7 + ||

2 2
< a7 + floen — 7]

b 2 . ¥ 1|2
+‘ua<1—0€n - ||A||2>”A (I -Pg)Ax, — A*(I - Pp) Ax || .
(3.16)
Therefore, we have
pa( 2 - L )|l a(1 - o) Ax, - (1 P)Ax
AP 1= an
(3.17)

< [l + [l = X7 = floter = x|

2
S anllx* 17 + (lxn = x|+ ll2nsa = X)) x [lon = Xnsall-

Since &, — 0and |x, — x,41|| — 0asn — oo, we obtain liminf,_, ,ua((2/||Al|*) - (b/(1 -
ay))) > 0. Thus, we have

lim |A*(I - Py) Ax, — A*(I - Pg) Ax*|| = 0. (3.18)

n—oo
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By the property (b) of the metric projection Pc, we have

%12
[lyn = x|
= ||Pc[(1 = an)xy = AA*(I = Pg) Ax,] - Pe[x* = AA*(I - Po) Ax*]|)?
<{(1 - ay)xy — LA™ (I - Pg) Axy, — (x* — LA™ (I — Pp) AX™), Y — x*)

2

i

1
= §{||xn — AA*(I = Pg) Axy — (x* = MA*(I = Pg) Ax") = X ||” + ||y — x*

/(1= @) LA (1 - Po) Ay — (3 = AA"(I - PQ) AX") = (yu = x°)

1 * * * * 2
< E{” (xn = AA*(I - Pg) Ax,,) — (x* = LA*(I - Pg) Ax™) ||
+ 20| %, ||| xn = LA™ (I = Pg) Axy, — (x* — LA* (I — Po) AX™) — anxy||

G = ) ~ A(A” (I~ Po) A, — A* (I - Po) Ax") — aat |}

Fllyn =2
< 5 {lGen = 1A (1 = Po)Ax,) - (= AA*(I = PQ) Ax") " + auM + [y — x°
I Gon = y) = A(A (1 = Po)Axy = A°(I = Po) Ax") = aua '}
< {1+ @+ [ = 1P = vl + 20— )
+20(t = Y, A*(I - Pg) Axy — A*(I - Pg) Ax")
~[|M(A* (I = Pg) Ax, — A*(I = Po) Ax") + x|}

1
< 3 (1o =1+ M [l = 2 = [ =yl + 2l =

20 = yall || A (T = Po) Ax, = A (I - Po) Ax*||},

(3.19)
where M > 0 is some constant such that
sup (2l - 14°(1 - Po)Ax, - (x" ~AA'(I - Po)Ax) -yl S M. (320)
It follows that
7 = x> < [l = X712 + @M = [|205 = Y ||* + 20120l [| 0 = | (321)

+2X |2 — ||| A" (I - Pg) Ax,, — A*(I — Pg) Ax*

7
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and hence
nst = I < (1= ) e = %71 + pal |y = ||
<l = I + @aM = pl| 2 = yal|* + 21l |60 =y (322)
+ 2413 = yall | A" (1 - Po) Ax, — A*(1 - Po) Ax"|,
which implies that
#llxn =yl

< (lloen = 7| + [1xner = X121 = Xl + @M + 20|20l [| 200 = | (3.23)

+2M| 200 =y || || A" (I - Pp) Ax,, — A*(I - Pg) Ax*

Since a, — 0, ||xy — Xp1|| — 0, and ||A*(I — Pg)Ax, — A*(I - Py)Ax*|| — 0, we derive

nhf;,”x" -va| =0. (3.24)
Next we show that
limsup(X,X - y,) <0, (3.25)

where X = Pr(0). To show it, we choose a subsequence {y,,} of {1, } such that

limsup(X, X — y») = lim (X, X — yy,,). (3.26)

n— oo

Since {x,} is bounded, we have that {y,} is also bounded. As {y,,} is bounded, we have that
a subsequence {yy, } of {yy,} converges weakly to z.
Next we show that z € I'. We define a mapping T by

A*(I = Py)Av + N,
Tv:{ (I-Pg)Av+Ncv, veC, (3.27)

0, véC.

Then T is maximal monotone. Let (v, w) € G(T). Since w — A*(I - Pg)Av € Ncv and y, € C,
we have (v -y, w—A*(I - Pg)Av) > 0. On the other hand, from y,, = Pc[(1 - a,)x,—AA*(I -
Pg)Ax,], we have

(V= Yn, Yn — (1 = an)x, + LA™ (I = Pg) Axy) 20, (3.28)
that is,

<v - Yn, g + Ax, + %xn> >0. (3.29)
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Therefore, we have

<v - yﬂi'w> 2 <ZJ = Ynis A'(J>
> (0 -y, A" (I - Pg) Av)

- <v oy Yn lxni + A*(I - Pg) Axy, + %xni>

X X
= (0= Y, A*(I - Pg) Av — A*(I - Po) Ay,,) (3.30)

- <U ~ Ynis Y lxni + %xni>

+ (0 = Y, A*(I = Pg) Ayn, — A*(I - Pg) Axy,)

= <v — Y, A (I - Pg) Av — A*(I — Py) Axy, — Y = Xm _ %xni>

> (0 =Y, A*(I - Pg) Ayn, — A*(I - Pg) Axy,)
ni — Xn; O,
—<v—yni,y 1 +Txni>.

Noting that a,, — 0, |lyn, — x| — 0, and A*(I — Py)A is Lipschitz continuous, we deduce
from above

(v-z,w) >0. (3.31)

Since T is maximal monotone, we have z € T™1(0) and hence z € VI(C, A*(I — Pg)A) =T.
Therefore,

limsup(X,X — y») = im (X, X - yp,,) = (X, ¥ —z) <0. (3.32)

n— oo t—oo

By the property (b) of metric projection Pc, we have

lyn - %

A

Pc [(1 - ay) (xn S A PQ)Axn>

2

~ - A
-Pc [(xnx +(1 —lxn)<x— T a

A (I - PQ)A£>]

< <an(—5c)+ 1 -ay [(x,, - ﬁA*(] - PQ)Ax,,) - (3? - ﬁA* (I- PQ)Aa?)], Yn— 5E>
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< an<£ri_yn> +(1—ay)

A . - A . - -
X <xn—mA (I—PQ)Axn> - <x—mA (I—PQ)AJC> ‘”yn—x”
< an<5cv/5cv - ]/n> + (1 —apn)|lx, - illllyn - 55”
~ ~ 1- ay ~ ~12
<an(X,X—yn) + 5 (IIxn ~F + |lyn - X|| >
(3.33)
Hence
lyn = Z|° < (1= ) l|xn = X + 20, (%, % = y)- (3.34)
Therefore,
%ne1 = FI7 < (1= ) llxcn = I + pl|y - |
(3.35)

< (1 - pay) |y = X + 2p0 (%, % = Y-

We apply Lemma 2.3 to the last inequality to deduce that x, — X. This completes the proof.
O

Remark 3.6. Now it is wellknown that the Korpelevich’s extragradient method has only weak
convergence in the setting of infinite-dimensional Hilbert spaces. But our algorithm (3.3)
which is similar to the Korpelevich’s method, has strong convergence in the setting of infinite-
dimensional Hilbert spaces.

Remark 3.7. Algorithm (1.12) has only weak convergence for solving SFP. Our algorithm with
strong convergence solves SFP under some weaker assumptions.
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