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We give some fixed point results using an ICS mapping and involving Boyd-Wong-type
contractions in partially ordered metric spaces. Our results generalize, extend, and unify several
well-known comparable theorems in the literature. Also, we present some examples to support
our results.

1. Introduction and Preliminaries

The Banach contraction principle [1] is a very useful and classical tool in nonlinear analysis.
That is why, generalizations of the Banach principle have been heavily investigated by many
authors. For instance, in 1977 Jaggi [2] proved the following theorem satisfying a contractive
condition of rational type.

Theorem 1.1. Let (X, d) be a complete metric space. Let f : X → X be a continuous mapping such
that

d
(
fx, fy

) ≤ αd
(
x, fx

)
d
(
y, fy

)

d
(
x, y

) + βd
(
x, y

)
(1.1)

for all distinct x, y ∈ X where α, β ∈ (0, 1) with α + β < 1. Then, f has a unique fixed point.
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Existence of a fixed point for contraction-type mappings in partially ordered set has
been considered by Ran and Reurings [3], and they applied their results to matrix equations.
Later, Nieto and Rodrı́guez-López [4] studied some fixed point theorems for contractive
mappings in partially ordered set and applied their main theorems to obtain a unique
solution for a first-order ordinary differential equation. For more works on fixed point results
in partially ordered metric spaces, we refer the reader to [5–29].

Note that, in the context of partially ordered metric spaces, the usual contractive
condition is weakened, but at the expense that the operator is monotone.

Recently, Harjani et al. [17] proved the ordered version of Theorem 1.1 as follows.

Theorem 1.2 (see [17]). Let (X,≤) be a partially ordered set and suppose there exists a metric d such
that (X, d) is a complete metric space. Let f : X → X be a continuous and nondecreasing mapping
such that

d
(
fx, fy

) ≤ αd
(
x, fx

)
d
(
y, fy

)

d
(
x, y

) + βd
(
x, y

)
, for x, y ∈ X, x ≥ y, x /=y, (1.2)

where α, β ∈ (0, 1) with α + β < 1. If there exists x0 ∈ X with x0 ≤ f(x0), then f has a unique fixed
point.

Very recently, Luong and Thuan [21] generalized Theorem 1.2 as follows.

Theorem 1.3. Let (X,≤) be a partially ordered set. Suppose there exists a metric d such that (X, d)
is a complete metric space. Let f : X → X be a nondecreasing mapping such that

d
(
fx, fy

)
N
(
x, y

) − φ(N(
x, y

))
(1.3)

for all distinct x, y ∈ X with y ≤ x where φ : [0,∞) → [0,∞) is a lower semicontinuous function
with φ(t) = 0 if and only if t = 0, and

N
(
x, y

)
= max

{
d
(
x, fx

)
d
(
y, fy

)

d
(
x, y

) , d
(
x, y

)
}

. (1.4)

Also, assume either

(i) f is continuous or;

(ii) if {xn} is a nondecreasing sequence in X such that xn → x, then x = sup{xn}.
If there exists x0 ∈ X such that x0 ≤ fx0, then f has a fixed point.

In the sequel, we give the following definition (see e.g., [30]).

Definition 1.4. Let (X, d) be a metric space. A mapping T : X → X is said to be ICS if T is
injective (also said, one to one), continuous, and has the property: for every sequence {xn} in
X, if {Txn} is convergent then {xn} is also convergent.

Throughout this paper, the letters R
+ and N will denote the set of all nonnegative real

numbers and the set of all nonnegative integer numbers, respectively.
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The purpose of this paper is to generalize the above results using an ICS mapping
T : X → X and involving some generalized weak contractions of Boyd-Wong-type [31].
Also, some examples are presented to show that our results are effective.

2. Main Result

First, denote by Φ the set of functions φ : [0,+∞) → [0,+∞) satisfying

(a) φ(t) < t for all t > 0,

(b) φ is upper semicontinuous from the right [i.e., for any sequence {tn} in [0,∞) such
that tn → t, tn > t as n → ∞, we have lim supn→∞φ(tn) ≤ φ(t)].

Now we prove our first result.

Theorem 2.1. Let (X,≤) be a partially ordered set. Suppose there exists a metric d such that (X, d) is
a complete metric space. Let f, T : X → X be such that T is an ICS mapping and f a nondecreasing
mapping satisfying

d
(
Tfx, Tfy

) ≤ φ(M(
x, y

))
(2.1)

for all distinct x, y ∈ X with x ≤ y where φ ∈ Φ and

M
(
x, y

)
= max

{
d
(
Tx, Tfx

)
d
(
Ty, Tfy

)

d
(
Tx, Ty

) , d
(
Tx, Ty

)
}

. (2.2)

Also, assume either

(i) f is continuous or;

(ii) if {xn} is a nondecreasing sequence in X such that xn → x, then x = sup{xn}.
If there exists x0 ∈ X such that x0 ≤ fx0, then f has a fixed point.

Proof. Given x1 = fx0, define a sequence {xn} in X as follows:

xn = fxn−1 for n ≥ 1. (2.3)

Since f is a nondecreasing mapping, together with x0 ≤ x1 = fx0, we have x1 = fx0 ≤
fx1 = x2. Inductively, we obtain

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn ≤ xn+1 ≤ · · · . (2.4)

Assume that there exists n0 such that xn0 = xn0+1. Since xn0 = xn0+1 = fxn0 , then f has a
fixed point which ends the proof.

Suppose that xn /=xn+1 for all n ∈ N. Thus, by (2.4) we have

x0 < x1 < x2 < · · · < xn−1 < xn < xn+1 < · · · . (2.5)
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Since (2.5) holds, then condition (2.1) implies that

d(Txn, Txn+1) = d
(
Tfxn−1, Tfxn

) ≤ φ(M(xn−1, xn)), (2.6)

where,

M(xn−1, xn) = max

{
d
(
Txn−1, Tfxn−1

)
d
(
Txn, Tfxn

)

d(Txn−1, Txn)
, d(Txn−1, Txn)

}

= max{d(Txn, Txn+1), d(Txn−1, Txn)}.
(2.7)

Suppose thatM(xn−1, xn) = d(Txn, Txn+1) for some n ≥ 1. Then, inequality (2.6) turns
into

d(Txn, Txn+1) ≤ φ(d(Txn, Txn+1)). (2.8)

Regarding (2.5) and the property (a) of φ, we get

d(Txn, Txn+1) ≤ φ(d(Txn, Txn+1)) < d(Txn, Txn+1), (2.9)

which is a contradiction. Thus, M(xn−1, xn) = d(Txn−1, Txn) for all n ≥ 1. Therefore, the
inequality (2.6) yields that

d(Txn, Txn+1) ≤ φ(d(Txn−1, Txn)) < d(Txn−1, Txn). (2.10)

Consequently, the sequence {d(Txn−1, Txn)} of positive real numbers is decreasing and
bounded below. So, there exists L ≥ 0 such that limn→∞ d (Txn−1, Txn) = L.

We claim that L = 0. Suppose to the contrary that L > 0. Letting lim supn→∞ in (2.10)
and using the fact that φ is upper semicontinuous from the right, we get

L = lim sup
n→∞

d(Txn, Txn+1) ≤ lim sup
n→∞

φ(d(Txn−1, Txn)) ≤ φ(L) < L, (2.11)

which is a contradiction. Hence, we conclude that L = 0, that is,

lim
n→∞

d(Txn−1, Txn) = 0. (2.12)

We prove that the sequence {Txn} is Cauchy inX. Suppose, to the contrary, that {Txn}
is not a Cauchy sequence. So, there exists ε > 0 such that

d
(
Txm(k), Txn(k)

) ≥ ε, (2.13)

where {Txm(k)} and {Txn(k)} are subsequences of {Txn}with

n(k) > m(k) ≥ k. (2.14)
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Moreover, n(k) is chosen as the smallest integer satisfying (2.13). Thus, we have

d
(
Txm(k), Txn(k)−1

)
< ε. (2.15)

By the triangle inequality, we get

ε ≤ d(Txm(k), Txn(k)
) ≤ d(Txm(k), Txn(k)−1

)
+ d

(
Txn(k)−1, Txn(k)

)

< d
(
Txn(k), Txn(k)−1

)
+ ε.

(2.16)

Letting k → ∞ in above inequality and using (2.12), we get that

lim
k→∞

d
(
Txm(k), Txn(k)

)
= ε. (2.17)

By a triangle inequality, we have

d
(
Txm(k), Txn(k)

) ≤ d
(
Txm(k), Txm(k)−1

)
+ d

(
Txm(k)−1, Txn(k)−1

)
+ d

(
Txn(k)−1, Txn(k)

)
,

d
(
Txm(k)−1, Txn(k)−1

) ≤ d
(
Txm(k)−1, Txm(k)

)
+ d

(
Txm(k), Txn(k)

)
+ d

(
Txn(k), Txn(k)−1

)
.

(2.18)

Using (2.12), (2.17) and letting k → ∞ in (2.18), we get

lim
k→∞

d
(
Txm(k)−1, Txn(k)−1

)
= ε. (2.19)

Regardingm(k) < n(k), we have xm(k)−1 < xn(k)−1. From (2.1) we have

d
(
Txm(k), Txn(k)

)
= d

(
Tfxm(k)−1, Tfxn(k)−1

)

≤ φ(M(
xm(k)−1, xn(k)−1

))
,

(2.20)

where,

M
(
xm(k)−1, xn(k)−1

)

= max

{
d
(
Txm(k)−1, Tfxm(k)−1

)
d
(
Txn(k)−1, Tfxn(k)−1

)

d
(
Txm(k)−1, Txn(k)−1

) , d
(
Txm(k)−1, Txn(k)−1

)
}

= max

{
d
(
Txm(k)−1, Txm(k)

)
d
(
Txn(k)−1, Txn(k)

)

d
(
Txm(k)−1, Txn(k)−1

) , d
(
Txm(k)−1, Txn(k)−1

)
}

.

(2.21)

Letting k → ∞ in (2.20) (and hence in (2.21)), and using (2.12), (2.17) and (2.19), we obtain

ε ≤ φ(max{0, ε}) = φ(ε) < ε, (2.22)
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which is a contradiction. Thus, {Txn} is a Cauchy sequence in X. Since (X, d) is a complete
metric space, there exists z ∈ X such that limn→∞ Txn = z. Since T is an ICS mapping, there
exists x ∈ X such that

lim
n→+∞

xn = x. (2.23)

But T is continuous, hence

z = lim
n→+∞

Txn = Tx. (2.24)

We will show that x is a fixed point of f .
Assume that (i) holds. Then by continuity of f , we have

x = lim
n→∞

xn = lim
n→∞

fxn−1 = f
(

lim
n→∞

xn−1

)
= fx. (2.25)

Suppose that (ii) holds. Since {xn} is a nondecreasing sequence and limn→∞xn = x then
x = sup{xn}. Hence, xn ≤ x for all n ∈ N. Regarding that f is a nondecreasing mapping, we
conclude that fxn ≤ fx, or equivalently,

xn ≤ xn+1 ≤ fx, ∀n ∈ N (2.26)

and as x = sup{xn}, we get x ≤ fx.
To this end, we construct a new sequence {yn} as follows:

y0 = x, yn = fyn−1, ∀n ≥ 1. (2.27)

Since x ≤ fx, so we have y0 ≤ fy0 = y1 and hence similarly we may find that {yn} is a
nondecreasing sequence. By repeating the discussion above, one can conclude that {Tyn} is
a Cauchy sequence. Thus, {Tyn} converges and since T is an ICS mapping, so there exists
y ∈ X such that limn→∞ yn = y. The mapping T is continuous, hence

lim
n→+∞

Tyn = Ty. (2.28)

By (ii), we have y = sup{yn} and so we have yn ≤ y. From (2.26), we get

xn < x = y0 ≤ fx = fy0 ≤ yn ≤ y, ∀n ∈ N. (2.29)

If x = y, then the proof ends.
Suppose that x /=y and since the mapping T is one to one, we have Tx /= Ty, so

d(Tx, Ty) > 0. On account of (2.29), the expression (2.1) implies that

d
(
Txn+1, Tyn+1

)
= d

(
Tfxn, Tfyn

) ≤ φ(M(
xn, yn

))
, (2.30)
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where,

M
(
xn, yn

)
= max

{
d
(
Txn, Tfxn

)
d
(
Tyn, Tfyn

)

d
(
Txn, Tyn

) , d
(
Txn, Tyn

)
}

= max

{
d(Txn, Txn+1)d

(
Tyn, Tyn+1

)

d
(
Txn, Tyn

) , d
(
Txn, Tyn

)
}

.

(2.31)

Letting n → ∞ in (2.30) and using (2.24), (2.28), we obtain

d
(
Tx, Ty

) ≤ φ(d(Tx, Ty)) < d(Tx, Ty), (2.32)

which is a contradiction. So x = y and we have x ≤ fx ≤ x, then fx = x.

Corollary 2.2. Let (X,≤) be a partially ordered set. Suppose there exists a metric d such that (X, d) is
a complete metric space. Let f, T : X → X be such that T is an ICS mapping and f is a nondecreasing
mapping satisfying

d
(
Tfx, Tfy

) ≤ kM(
x, y

)
, (2.33)

for all distinct x, y ∈ X with x ≤ y. Also, assume either

(i) f is continuous or;

(ii) if {xn} is a nondecreasing sequence in X such that xn → x, then x = sup{xn}.

If there exists x0 ∈ X such that x0 ≤ fx0, then f has a fixed point.

Proof. Take φ(t) = (1 − k)t for all t ∈ [0,∞) in Theorem 2.1.

Corollary 2.3. Let (X,≤) be a partially ordered set. Suppose there exists a metric d such that (X, d) is
a complete metric space. Let f, T : X → X be such that T is an ICS mapping and f is nondecreasing
mapping with

d
(
Tfx, Tfy

) ≤ αd
(
Tx, Tfx

)
d
(
Ty, Tfy

)

d
(
Tx,Ty

) + βd
(
Tx, Ty

)
, (2.34)

for all distinct x, y ∈ X with x ≤ y where α, β ∈ (0, 1) with α + β < 1. Also, assume either

(i) f is continuous or;

(ii) if {xn} is a nondecreasing sequence in X such that xn → x, then x = sup{xn}.

If there exists x0 ∈ X such that x0 ≤ fx0, then f has a fixed point.
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Proof. Take k = α + β for all t ∈ [0,∞) in Corollary 2.2. Indeed,

d
(
Tfx, Tfy

) ≤ αd
(
Tx, Tfx

)
d
(
Ty, Tfy

)

d
(
Tx, Ty

) + βd
(
Tx, Ty

)

≤ (
α + β

)
max

{
d
(
Tx, Tfx

)
d
(
Ty, Tfy

)

d
(
Tx, Ty

) , d
(
Tx, Ty

)
}

,

(2.35)

and this completes the proof.

Theorem 2.4. In addition to hypotheses of Theorem 2.1, assume that

for every x, y ∈ X there exists z ∈ X that is comparable to x and y, (2.36)

then f has a unique fixed point.

Proof. Suppose, to the contrary, that x and y are fixed points of f where x /=y. By (2.36), there
exists a point z ∈ X which is comparable to x and y. Without loss of generality, we choose
z ≤ x. We construct a sequence {zn} as follows:

z0 = z, zn = fzn−1, ∀n ≥ 1. (2.37)

Since f is nondecreasing, z ≤ x implies z1 = fz0 = fz ≤ fx = x. By induction, we get zn ≤ x.
If x = zN0 for someN0 ≥ 1 then zn = fzn−1 = fx = x for all n ≥N0 − 1. So limn→∞ zn =

x. Analogously, we get that limn→∞ zn = y which completes the proof.
Consider the other case, that is, x /= zn for all n = 0, 1, 2, . . .. Having in mind, T is one to

one, so d(Tx, Tzn) > 0 for any n ≥ 0. Then, by (2.1), we observe that

d(Tzn, Tx) = d
(
Tfzn−1, tfx

) ≤ φ(M(zn−1, x)), (2.38)

where,

M(zn−1, x) = max

{
d
(
Tx, Tfx

)
d
(
Tzn−1, Tfzn−1

)

d(Tx, Tzn−1)
, d(Tx, Tzn−1)

}

= max
{
d(Tx, Tx)d(Tzn−1, Tzn)

d(Tzn−1, Tx)
, d(Tzn−1, Tx)

}

= d(Tzn−1, Tx).

(2.39)

Thus,

d(Tzn, Tx) ≤ φ(d(Tzn−1, Tx)) < d(Tzn−1, Tx). (2.40)

Consequently, {d(Tzn, Tx)} is a decreasing sequence of positive real numbers which is
bounded below. So, there exists L ≥ 0 such that limn→∞ d(Tx, Tzn) = L.
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We claim that L = 0. Suppose, to the contrary, that L > 0. Taking lim supn→∞ and using
a property of φ, we get

L ≤ φ(L) < L, (2.41)

which is a contradiction. Hence, we conclude that L = 0, that is,

lim
n→∞

d(Tx, Tzn) = 0. (2.42)

Analogously, repeating the same work we find that

lim
n→∞

d
(
Ty, Tzn

)
= 0. (2.43)

By uniqueness of limit of {Tzn}, we deduce that Tx = Ty and since T is one to one, we have
x = y, which is a contradiction. This ends the proof.

Recently, Jachymski [32] in his interesting paper showed the equivalence between
several generalized contractions on (ordered) metric spaces. Since the key of his study is
[32, Lemma 1], then we will combine this lemma with Theorems 2.1 and 2.4 to deduce the
following.

Corollary 2.5. Let (X,≤) be a partially ordered set. Suppose there exists a metric d such that (X, d)
is a complete metric space. Let f, T : X → X be such that T is an ICS mapping and f a nondecreasing
mapping satisfying

ψ
(
d
(
Tfx, Tfy

)) ≤ ψ(M(
x, y

)) − φ(M(
x, y

))
(2.44)

for all distinct x, y ∈ X with x ≤ y, where ψ, φ : R
+ → R

+ are continuous and nondecreasing
functions such that ψ−1({0}) = φ−1({0}) = {0}. Also, suppose that (2.36) holds and assume either

(i) f is continuous or;

(ii) if {xn} is a nondecreasing sequence in X such that xn → x, then x = sup{xn}.

If there exists x0 ∈ X such that x0 ≤ fx0, then f has a fixed point. Moreover, if for any
x, y ∈ X, there is z ∈ X that is comparable to x and y, then f has a unique fixed point.

Proof. By [32, Lemma 1], (ii)⇒ (viii), so there exists a continuous and nondecreasing function
φ : R

+ → R
+ such that φ(t) < t for all t > 0 and d(Tfx, Tfy) ≤ φ(M(x, y)) for all

distinct x, y ∈ X with x ≤ y. Therefore, Theorems 2.1 and 2.4 give, respectively, existence
and uniqueness of the fixed point of f , which completes the proof.

The following remarks are in order.

(i) Corollary 2.5 corresponds to Theorems 2.1 and 2.4 of Luong and Thuan [21] by
taking Tx = x and ψ(t) = t for all x ∈ X and t ≥ 0.
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(ii) Corollary 2.3 corresponds to Theorems 2.2 and 2.3 of Harjani et al. [17] by taking
Tx = x.

Now we give some examples illustrating our obtained results.

Example 2.6. Let X = {0, 1, 2, 8} be endowed with the metric d(x, y) = |x − y| for all x, y ∈ X
and the order ≤X given as follows:

x≤X y ⇐⇒ x = y or
(
x ≤ y, x, y ∈ {0, 1, 2}). (2.45)

Take the mappings f, T : X → X be given by

f =
(
0 1 2 8
0 0 1 2

)
, T =

(
0 1 2 8
0 1 8 2

)
. (2.46)

Set φ(t) = (1/2)t. It is easy that f is nondecreasing with respect to ≤X . First, X satisfies the
property: if {xn} is a nondecreasing sequence in X such that xn → x, then x = sup{xn}.
Indeed, let {zn} be a nondecreasing sequence in X with respect to ≤X such that zn → z ∈ X
as n → +∞. We have zn ≤X zn+1 for all n ∈ N.

(i) If z0 = 2, then z0 = 2≤X z1. From the definition of ≤X , we have z1 = 2. By induction,
we get zn = 2 for all n ∈ N and z = 2. Then, zn ≤X z for all n ∈ N and z = sup{zn}.

(ii) If z0 = 1, then z0 = 1≤X z1. From the definition of ≤X , we have z1 ∈ {1, 2}. By
induction, we get zn ∈ {1, 2} for all n ∈ N. Suppose that there exists p ≥ 1 such that
zp = 2. From the definition of ≤X , we get zn = zp = 2 for all n ≥ p. Thus, we have
z = 2 and zn ≤X z for all n ∈ N. Now, suppose that zn = 1 for all n ∈ N. In this case,
we get z = 1 and zn ≤X z for all n ∈ N and z = sup{zn}.

(iii) If z0 = 0, then z0 = 5≤X z1. From the definition of ≤X , we have z1 ∈ {0, 1, 2}.
Repeating the same idea as previous case, we get that z = sup{zn}.

Thus, we proved that in all cases, we have z = sup{zn}. We will show that (2.1) holds
for all x, y ∈ X with x /=y. The unique possibilities are (x = 0, y = 1), (x = 0, y = 2) and
(x = 1, y = 2).

Case 1. If x = 0 and y = 1, we have d(Tf0, Tf1) = 0, so (2.1) holds.

Case 2. If x = 0 and y = 2, we have d(Tf0, Tf2) = 1 and M(0, 2) = 8, so d(Tf0, Tf2) ≤
φ(M(0, 2)).

Case 3. If x = 1 and y = 2, we have d(Tf1, Tf2) = 1 and M(1, 2) = 7, so d(Tf1, Tf2) ≤
φ(M(1, 2)).

Also, it is obvious that T is an ICSmapping. All hypotheses of Theorem 2.1 are satisfied
and u = 0 is a fixed point of T .
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On the other hand, taking x = 1 and y = 2, we have

1 = d
(
f1, f2

)
> 1 − φ(1) = 1 − φ(N(1, 2)), (2.47)

for each φ given in Theorem 1.3. Hence, the main result of Luong and Thuan [21] is not
applicable.

Moreover, taking x = 1 and y = 2, we have

1 = d
(
f1, f2

)
> α + β = α

d
(
1, f1

)
d
(
2, f2

)

d(1, 2)
+ βd(1, 2), (2.48)

for each α, β ≥ 0, α + β < 1, so (1.2) fails. Then, we couldn’t apply Theorem 1.1 (also, the same
for Theorems 2.2 and 2.3 of Harjani et al. [17]).

Example 2.7. Let X = {0, 1, 2, . . .}with usual order. Define T, f : X → X by the formulas

Tx = x + 1, fx =

{
0, x = 0;
x − 1, x /= 0.

(2.49)

Let d : X ×X → R
+ be given by

d
(
x, y

)
=

{
0, x = y;
x + y, x /=y.

(2.50)

Define ψ, φ : [0,+∞) → [0,+∞) by ψ(t) = t2 and φ(t) = t. Then

(1) (X, d,≤) is a complete ordered metric space;

(2) f is non-decreasing;

(3) f is continuous;

(4) T is an ICS mapping;

(5) ψ(d(Tfx, Tfy)) ≤ ψ(M(x, y)) − φ(M(x, y)) for any distinct x, y ∈ X with x ≤ y.

Proof. The proof of (1) and (2) is clear. To prove (3), let (xn) be a sequence in X such that
xn → x ∈ X. By the definition of the metric d, there exists k ∈ N such that xn = x for all n ≥ k.
So fxn = fx for all n ≥ k. Hence fxn → fx. So f is continuous. To prove (4), it is clear that T
is injective and continuous. Now, let (xn) be any sequence in X such that (Txn) converges to
some x ∈ X. Then there exists k ∈ N such that Txn = xn + 1 = x for all n ≥ k. Thus xn = x − 1



12 Abstract and Applied Analysis

for all n ≥ k. Hence xn → x − 1. So T is an ICS mapping. To prove (5), given x, y ∈ X with
x > y. If y /= 0, then

d
(
Tfx, Tfy

)
= d

(
x, y

)
= x + y,

M
(
x, y

)
= max

{
d(x + 1, x)d

(
y + 1, y

)

d
(
x + 1, y + 1

) , x + y + 2

}

= max

{
(2x + 1)

(
2y + 1

)

x + y + 2
, x + y + 2

}

= x + y + 2.

(2.51)

Since

(
x + y

)2 ≤ (
x + y + 2

)2 − (
x + y + 2

)
, (2.52)

we have ψ(d(Tfx, Tfy)) ≤ ψ(M(x, y)) − φ(M(x, y)).
If x > 0 and y = 0, then

d
(
Tfx, Tf0

)
=

{
0, x = 1;
x + 1, x /= 1,

(2.53)

andM(x, 0) = d(x + 1, 1) = x + 2. Since

(x + 1)2 ≤ (x + 2)2 − (x + 2), (2.54)

we have ψ(d(Tfx, Tfy)) ≤ ψ(M(x, y))−φ(M(x, y)). Then T, f, ψ and φ satisfy all conditions
of Corollary 2.5, so f has a unique fixed point, which is u = 0.

Finally, we give a simple example which shows that if T is not an ICS mapping then
the conclusion of Theorem 2.1 fails.

Example 2.8. Let X = R with the usual metric and the usual ordering. Take fx = x + 2 and
φ(t) = t/(1+ t) for all x ∈ X and t ≥ 0. The mapping f is nondecreasing and continuous. Also,
φ ∈ Φ and there exists x0 = 0 such that x0 ≤ fx0.

Let T : X → X be such that Tx = 1 for all x ∈ X, then T is not an ICS mapping.
Obviously, the condition (2.1) holds. However, f has no fixed point.
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