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Let {T}Y, be N quasi-nonexpansive mappings defined on a closed convex subset C of a real Hilbert
space H. Consider the problem of finding a common fixed point of these mappings and introduce

the parallel and cyclic algorithms for solving this problem. We will prove the strong convergence
of these algorithms.

1. Introduction

Throughout this paper, we always assume that C is a nonempty, closed, and convex subset
of a real Hilbert space H. Let A : C — H be a nonlinear mapping. Recall the following
definitions.

(1) A is said to be monotone if

(Ax-Ay,x-y)>0, VYx,yeC. (1.1)

(2) A is said to be strongly positive if there exists a constant y > 0 such that

(Ax,x) >7||lx|>, VxeC. (1.2)
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(3) A is said to be strongly monotone if there exists a constant & > 0 such that
(Ax - Ay, x - y) 20c||x—y||2, Vx,y € C. (1.3)
For such a case, A is said to be a-strongly monotone.
(4) Aissaid to be inverse strongly if there exists a constant a > 0 such that

(Ax - Ay, x - y) > a|Ax - Ay|]*, Vx,yeC. (1.4)

For such a case, A is said to be a-inverse-strongly-monotone (a-ism).
Assume A is strongly positive operator, that is, there is a constant y with the property

(Ax,x) >y|x|>, VxeH. (1.5)

Remark 1.1. Let F = A - yf, where A is strongly positive operator, and f is contraction
mapping with coefficient € (0,1). It is a simple matter to see that the operator F is (y — yf)-
strongly monotone over C, that is,

2 V(x,y)eCxC. (1.6)

(Fx-Fy,x-y)2 (y-vB)|lx-v

The classical variational inequality which is denoted by VI(A, C) is to find x € C such
that

Ax,y-x)>0, VyeC. (1.7)
(Ax,y - x) y

The variational inequality has been extensively studied in literature; see, for example,
[1, 2] and the reference therein. A mapping T : C — C is said to be a strict pseudocontraction
[3] if there exists a constant 0 < k < 1 such that

ITx - Ty|)* < ||lx - y|* + k|| -T)x - (I - Dy, (1.8)

for all x,y € C (If (1.8) holds, we also say that T is a k-strict pseudo-contraction). These
mappings are extensions of nonexpansive mappings which satisfy the inequality (1.8) with
k =0.Thatis, T : C — C is nonexpansive if

ITx =Tyl < lx-v

, VYx,yeC. (1.9)

In [4], Xu proved that the sequence {x,} defined by the iterative method below with
the initial guess xo € H chosen arbitrarily,

Xp1 =ayb+ (I -a,A)Tx,, n>0, (1.10)
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where the sequence {a,} satisfies certain conditions, he proved the sequence {x,} converges
strongly to the unique solution of the following minimization problem:

meig%(Ax,x) —(x,b). (1.11)

In [5], Marino and Xu considered the following general iterative method:

Xne1 = oY f(xn) + (I — 2y A)Tx,, n>0, (1.12)

they proved that if the sequence {a, } of parameters satisfies appropriate conditions, then the
sequence {x,} generated by (1.12) converges strongly to the unique solution of the variational
inequality

((yf-A)x*,x-x*)<0, x€eC, (1.13)
which is the optimality condition for the minimization problem

min1<Ax,x> — h(x), (1.14)
xeC 2

where h is a potential function for yf (i.e., I'(x) = yf(x) for x € H). Some people also study
the applications of the iterative method (1.12) [6, 7].
Acedo and Xu [8] consider the following parallel and cyclic algorithms:

Parallel Algorithm

The sequence {x,} was generated by

N
Xpat = tpdy + (1 ) > M Tixy, (1.15)
i=1

where {T;} Y, are N strict pseudocontractions defined on a closed convex subset C of a Hilbert

space H. Under the following assumptions on the sequences of the weights {AS") N

(a1l) XN, )LE") =1 for all n and inf,5; A > 0, forall 1 <i < N,

(a2) =N /N Y A" < oo,

By (1.15), they will prove the weak convergence to a solution of the problem x €
ﬂf\zjl F ix(Ti)'
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Cyclic Algorithm

They define the sequence {x,} cyclically by

x1 = apxo + (1 = ag)Toxo;

x2 = ayx1 + (1 - a1)Tixy;

(1.16)
xN = an-1XN-1 + (1 —an-1)TN-1XN-1;
xN+1 = anxn + (1 —an)Toxn;
In a more compact form, they are rewritten x,,1 as
xN+1 = anxN + (1= an)Tnxy, (1.17)

where {T; }i]\ll are k;-strict pseudo-contractions and Ty = T; withi = n (mod N), 0 < i <
N —1. They show that this cyclic algorithm (1.17) is weakly convergent if the sequence {a,,}
of parameters is appropriately chosen. On the other hand, Osilike and Shehu [9] also consider
the cyclic algorithm (1.17), under appropriate assumptions on the sequences of {a,}, some
strong convergence theorems are proved.

In this paper, we are concerned with the problem of finding a point x such that

N
x€(Fix(Tw), N =1, (1.18)
i=1

where T, = (1 — wi)I + w;T;, {wi}f-\:I1 € (0,1] and {Ti}f\:’1 are quasi-nonexpansive mappings
defined on a closed convex subset C of a Hilbert space H. Here Fix(Ty,) = {g € C : Tw,q = q}
is the set of fixed points of T;, 1 <i < N.

Let T be defined by

N
T=> AT, (1.19)
i=1

where \; > 0 for all i € (0,1) such that 3%, \; = 1. Motivated and inspired by Acedo and
Xu [8], we consider the following two general iterative algorithms for a family of quasi-
nonexpansive mappings.
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Algorithm 1.2.

i=1 (1.20)

Xni1 = Ay f (%) + Puxn + (I = Pu)] — 4, A)Tx.

Algorithm 1.3.

N
T=>\"T,,
i (1.21)

X1 = OnY f (%) + Bunxn + (I = Pn)] — anA)Tx,.

In (1.20), the weights {J;}, are constant in the sense that they are independent of 7, the
number of steps of the iteration process. In (1.21), we consider a more general case by allow-
ing the weights {)Lf") }¥,. Under appropriate assumptions on the sequences of the wights
{ );5") }fﬁl, { )Li}f\:jl, {an} and {B,}. From (1.20) and (1.21), we will prove some strong conver-
gence to a solution of the problem (1.18). In addition, we can also know that the condition

>N \/z{il |J\§"+1) - )Lfn)l < oo in [8] is superfluous.

Another approach to the problem (1.18) is the cyclic algorithm (for convenience, we
relabel the mappings {T.,}~; as {T.,}~o'). This means that beginning with an xy € C, we

i i

define the sequence {x,} cyclically by

x1 = agy f (x0) + Poxo + ((I = Po)I — agA) Ty, x0,
Xy = alyf(xl) +ﬁ1x1 + ((I — ﬁ1>1 - alA)Twlxl,

(1.22)
xn = anayf(xen-1) + Bnaaxn-t + (T = Bn-1)] —an1A) Ty, XN-1,
xn+1 = anyf(xn) + v + (I = Bn)T — anA)To XN,
(1.23)
In a more compact from, x,.; can be written as
Xn+l = aan(xn) + pnxn + ((I - ﬁn)I - anA)T[n]xnr (124)

where Ty = T, Ty, = (1 = wi) I + wiT;, {wi}f\:]1 € (0,1], withi=n (mod N),0<i< N - 1.
We will show that this cyclic algorithm (1.24) is also strongly convergent if the
sequence {a,} of parameters is appropriately chosen.
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2. Preliminaries

Throughout this paper, we write x,, — x to indicate that the sequence {x,} converges weakly
tox. x, — ximplies that {x,} converges strongly to x. The following definitions and lemmas
are useful for main results.

Definition 2.1. An operator T : H — H is said to be quasi-nonexpansive if

Fix(T)#0 and if || Tx — z|| < ||x — z||, Vz € Fix(T), Vx € H. (2.1)
Iterative methods for quasi-nonexpansive mappings have been extensively investi-
gated; see [10, 11].
Remark 2.2. From the above definitions, It is easy to see that

(i) a nonexpansive mapping is a quasi-nonexpansive mapping;

(ii) the set of fixed points of T is the set Fix(T) = {x € H : Tx = x}. We assume that
Fix(T) #0, it is well know that F;,(T) is closed and convex.

Remark 2.3 (see [10]). Let T, = (1-a)I +aT, where T is a quasi-nonexpansive on H, F;,(T) #0
and a € (0,1]. Then the following statements are reached:

(i) Fix(T) = Fix(Ta);

(ii) T, is quasi-nonexpansive;
(iif) I Tax = glI* < llx = qlI* - a(1 - @) ITx - x|?, for all (x, q) € H x Fix(T);
(iv) (x = Tax,x —q) > (a/2)||Tx - x||?, for all (x,q) € H x Fi(T).

Example 2.4. Let X = I> with the norm || - || defined by

IXI = 4| DixZ,  Vx=(x1,x2,...,%n,..) €X, (2.2)
i=1

and C = {x = (x1,x2,...,%n,...) | x1 <0,x; € R,i=2,3,...}. Then C is a nonempty subset of
X.
Now, for any x = (x1,x2,...,%y,...) € C, define a mapping T : C — C as follows:

T(x) = (0,4%1,0,...,0,...). (2.3)

It is easy to see that T is a quasi-nonexpansive mapping. In fact, for any x = (x1,x2,...,xy,
...) € X, taking T'(x) = x, that is,

(0,4x1,0,...,0,...) = (x1, X2, .-+, Xp, - - .), (2.4)
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we have F(T) = {0} and

IT(x) -0l = [1(0,4x1,0,...,0,...) = (0,0,0,...,0,...)|| = 4|x1]

el (2.5)
= ||(x1,x2,...,xn,...) - (0,0,0,...,O,...)H
= [|x - 0.

Lemma 2.5. Assume C is a closed convex subset of a Hilbert space H.

(i) Given an integer N > 1, assume, forall 1 <i < N, T; : C — C is a quasi-nonexpansive.
Let {\;}N, be a positive sequence such that YN, A; = 1. Then XN, \;T; is a quasi-nonex-
pansive.

(ii) Let (T;}N, and 3N, A = 1 be given as in (i) above. Suppose that {T;}Y, has a common
fixed point. Then

N N
Fix<ZAiTi> = (Fix(To). (2.6)
i=1 i=1

(iii) Assume T; : C — C be quasi-nonexpansives, let T, = (1 — ;)] + a;T;, 1 < i < N. If
NN, Fix (T:) #0, then

N
Fix(TalTaz Tt TaN) = ﬂFix(Tai)- (27)
i=1

Proof. To prove (i) we only need to consider the case of N = 2 (the general case can be proved
by induction). Set T = (1 — A\)T; + AT, where A € (0,1) and for i = 1,2, T; is a quasi-nonex-
pansive. We verify directly the following inequality: for all z € Fi(T1) N Fix(T3),

[ITx = 2| = [((1 = VT + ATo)x - z||
<A -V|Tix - z|| + M| Tox - z||
(2.8)
< (=Dl = 2] + Mix - =]
< llx =z,
that is, T is a quasi-nonexpansive.

To prove (ii) again we can assume N = 2. It suffices to prove that Fi,(T) C Fix(T1) N
Fix(T;), where T = (1 - A\)Ty + AT, with A € (0,1). Let x € F;, (T).
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Taking z € Fix(T1) N Fix(T>) to deduce that

Iz = x| = [I(1 = 1)(z = Tax) + M(z - Tox) ||

< (1-V)||z = Tix|| + Al|z - Tox|
(2.9)
S =Vllz = x|l + Az - x|

<z = x|

By the strict convexity of H, it follows that T; (x) —z = T>(x) —z = x—z; thatis, T1 (x) = To(x) =
x, hence x € Fix(T1) N Fix(T2). According to induction, we can easily claim that (2.6) is holds.
To prove (iii) by induction, for N =2, set T, = (1 — a;)I + a;T; for all i = 1,2. Obviously

Fix(Tal) ﬂ Fix(Taz) - Fix (TulTaz)- (210)
Now we prove
Fix(Ta,Ta,) C Fix(Ta,) () Fix(Ta)- (2.11)

Forall g € Fix(Ta,Ta,), Tey T, g = q, if T, q = g, then Ty, g = g, the conclusion holds. In fact, we
can claim that T,,q = g. From Remark 2.3, we know that T,, is quasi-nonexpansive and
Fix(Ta,) N Fix(Tay) = Fix(T1) N Fix(T2) # 0. Take p € Fix(Ta,) N Fix(Ta,), then
2 2
lp=all” = llp = TuTeq|
2
= llp = [0 - a1)Teg + 1 Ti T |

= |1 - a1)(p - Twq) + 1 (p - 1 Twyq) ||’

(2.12)
= (1-a1)||p - Twq|* + aa||p - T1Twyq||* - 11 (1 — 1) | Tonq - T2 Turq|®
< (- a)lp = Tuql* + arllp - Twgll” - a1 (1 - a)||Twrg - Ti Turq|*
= lp - Twq|l” - 11 = @) || T, q - T2 T
From (2.12), we have
| Toaq - TiTayq|)* <0, 2.13)

namely, Ty,q = T1T,,q, that is,

Tx,q € Fix(T1) = Fix(Ta,), To,q=TaTrq=q. (2.14)
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Suppose that the conclusion holds for N = k, we prove that

k+1
Fix(Ta,Tay -+ Ty..,) = [ \Fix (T)- (2.15)
i=1
It suffices to verify
k+1
Fix (Tu1 Ta2 e Tuk+1) c ﬂFix (Tui)/ (216)

i=1

for all g € Fix(Ta,Ta, -+ Tsy,,), that is, Ty, Ty, -+~ Ts,..q = q. Using Remark 2.3 again, take p €
N Fix(T,,), we obtain

”P - q”2 = ”p - TtllTllz "'Tllknq”Z
= ”p - [(1 - al)Tuz T Taknq - alTlTllz e Takﬂq] ”2

= ” [(1 - “1)(}9 - Tflz T Tm«nq) - (p - TlT“z T Tuknq)] ”2

(2.17)
= (=a)|lp~Ta - Taqll* + maflp = TiTey -+ T gl
—a1(1=a)||Tay - Tagong = Ti Ty - T 4|
<llp=Tor+ Toudll” — a1 (1 = a) | Toe - T = T Tay - Tay 4
From (2.17), we obtain
|Tes+ Tesq = Ti Ty -+ Taql* <0, (2.18)
this implies that
Ta, -+ Tay,q € Fix(Th) = Fix(Ta,), (2.19)
namely,
T, Tasq=TaTay Ty, q =g (2.20)
From (2.20) and inductive assumption, we have
k+1
g€ Fir(Tu,Tay -+ Tpp,,) C Qpix(Tai)/ (2.21)
i=

therefore

Tog=q, i=2,3,...,k+1. (2.22)
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Substituting it into (2.20), we obtain T,, q = g. Thus we assert that

k+1
q € (\Fin(Ta). (2.23)
i=1 O

Definition 2.6. A mapping T is said to be demiclosed, if for any sequence {x,} weakly con-
verges to y, and if the sequence {Tx,} strongly converges to z, then T(y) = z.

Lemma 2.7 (see [5]). Assume A is a strong positive linear bounded operator on a Hilbert space H
with coefficient Yy > 0and 0 < p < ||A|| ™}, then ||I - pA|| <1 - py.

Lemma 2.8 (see [12]). Let H be a Hilbert space, K a closed convex subset of H,and T : K — K
a nonexpansive mapping with Fi(T) #0, if {x,} is a sequence in K weakly converging to x and if
{(I -T)x,} converges strongly to y, then (I -T)x = y.

Lemma 2.9 (see [13]). Let {<C,,} be a sequence of real numbers that does not decrease at infinity, in the
sense that there exists a subsequence { Ty, } ;5 of {Ty} which satisfies Ty, < Tpuq for all j > 0. Also
consider the sequence of integers {6(n)} defined by

n>ngp

6(n) = max{k <n| Tk < Tis1}. (2.24)

Then {6(n)} 5y, i a nondecreasing sequence verifying lim,, _, ,6(n) = oo, for all n > ny, it holds that
Csn) < Ts(ny+1 and one has

tn < t5(n)+1. (2.25)

Lemma 2.10. Let K be a closed convex subset of a real Hilbert space H, given x € H and y € K.
Then y = Pxx if and only if there holds the inequality

(x-y,y-2z)>0, VzeK. (2.26)

3. Parallel Algorithm

In this section, we discuss the parallel algorithm, respectively, for solving the variational
inequality over the set of the common fixed points of finite quasi-nonexpansives.

Before stating our main convergence result, we establish the boundedness of the
iterates given by following algorithm:

N
T = )liTw,-l
l; (3.1)

X1 = Y f (Xn) + Puxn + (I = Bn)I — 2, A)Txy,.

In (3.1), the weight {1;}Y, are constant in the sense that they are independent of 7, the
number of steps of the iteration process. Below we consider a more general case by allowing



Abstract and Applied Analysis 11

the weights {1;}~, to be step dependent. That is, initializing with xy, we define {x,} by the
algorithm

Xns1 = OnY f(Xn) + Puxn + (I = Pu)I - anA)i)LE")Twixn. (3.2)
i1

From (3.1) and (3.2), the sequence {x,} which converges strongly to the unique solution of
variational inequality problem VI(y f — A, ¥, Fix(T.,)): find x* in (Y, Fix(T,,,) such that

N
Vo e (Fir(Tw), ((yf-A)x*,v-x")<0, (3.3)
i=1

or equivalently
X" = (Pﬂgl (T} -c) (x*), (3.4)

where Pﬂi]\:ll Fi(T,) denotes the metric projection from H onto mfﬁl Fix(Ty,) (see, [14] for more
details on the metric projection).

Lemma 3.1. The sequence {x,} is generated by (3.2), where {a,} and {B,} are sequence in [0,1],
and {T;}Y, is a quasi-nonexpansive mapping on H, is bounded and satisfies

_A
It — o] < max{||x1 - ”Yf(_v)—v”} Vn>1, (3.5)
Y-vP

where v is any element in Fi(T;), 1 <i < N.

Proof. Since lim,,_, ,a,, = 0, we shall assume that a,, < (1 - ,[5,l)||A||_1 and 1 - a,(y —yp) > 0.
Observe that if ||u]| = 1, then

(((I=Bu)I - anA)u,u) = (1-p,) — an(Au,u) > (1 - f, — an||Al]) > 0. (3.6)
By Lemma 2.7, we obtain

(I = Ba)T - anAl| <1 =B, — . (3.7)

Let B, = >N, )LS") T, for all n > 1. By Lemma 2.5, each B, is a quasi-nonexpansive mapping
on H, and in light of Remark 2.3. Taking v € F;,(T), we have

N
S AT, (x0 - )

i=1

N
A (xy - v)

i=1

N
Z)LE")Twixn -0
i1

< < < lxn = ol (3.8)
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From (3.1), we have

[%ns1 = ol = [lan (Y f (xn) = AD) + B (3w = 0) + (I = fu) ] = an A)T (x0 = )|
< anllyf(xn) = A|| + Bullxn = 0l + (1 = Bu — aa¥) |20 — 0|

(3.9)
< any||f(en) = f @) + anlly f (@) = Av|| + (1 - any) lxn - ol
= [1=an(¥ = yA)]llxn = vl + anlyf (v) - Av]|.
By simple inductions, we obtain
-A
[, — ] gmax{”xl —v||,W—v”}, Vn>1, (3.10)
Y-vP
which gives that the sequence {x,} is bounded. O

Lemma 3.2. Assume that {x,} is defined by (3.2), if x* is solution of (3.3) withT : C — C demi-
closed and {y,} C H is a bounded sequence such that ||Ty, — y.|| — O, then

lir?li;lf((A—yf)x*,yn—x*) > 0. (3.11)

Proof. Clearly, by [Ty, —ya|| — 0and T : H — H demi-closed, we know that any weak clus-
ter point of {y,} belongs to Fi,(T). It is also a simple matter to see that there exist iy and a sub-
sequence {yn, } of {y,} such that lim;_,,y,, — ¥ (hence y € Fi(T)) and such that

h,‘ﬂ%{}“ (A-yf)x*, yn—x") = jlingo<(A —Yf)xX", Yn, — X" >, (3.12)

it follows from (3.3), we can derive that

liminf((A =y f)x", yn - x7) = (A-yf)x",y -x") 20, (3.13)
that is the desired result. O

Theorem 3.3. Let C be a closed convex subset of a Hilbert space H and let T; : C — C be a quasi-non-
expansive for T,,, = (1 — wi)I + w;T;, w; € (0,1),i € (1,...,N) such that ﬂf-\zjl Fix(Tw,) #9, f bea
contraction with coefficient p € (0,1), and \; a positive constant such that ¥, )Lf") =1 for all n and
infnzl)tgn) > 0 foralli € [1,N]. Let A be a strongly positive bounded linear operator with coefficient
¥. Given the initial guess xo € H chosen arbitrarily and given sequences {a,} and {p,} in (0,1),
satisfying the following conditions:

(c1) limy, oty = 0and 370 ay = oo,

(c2) 0 <liminf, o B, <limsup, f, <1
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Let {x,} be the sequence generated by (3.2). Then {x,} converges strongly to the unique a
element x* € (N, Fix(Tw,), N > 1 verifying

X" = (Pﬂgl Pl f>x* (3.14)

which equivalently solves the following variational inequality problem:

N N
x* € \Fix(Ty), - A)x*,x-x*)<0, Vxe(\Fix(Ty,). 3.15)

NFi(Tw), ((yf - A) ) (Fix(Ter) (

i1 i=1

Proof. Taking B, = X, )LE")TM., for all n > 1. By Lemma 2.5(i), each B, is a quasi-nonexpan-
sive mapping on C, and (3.2) can be rewritten as

X1 = Y f (Xn) + Puxn + ((I = n)I — 2, A) Byxy. (3.16)

Denote by Q the common fixed point of the mappings {T.,}~, (by Lemma 2.5(ii), we can

easily know that Q = mfﬁl Fix(Ty,) = nfﬁl Fix(T;)) and take x*le Q and from (3.16) we deduce
that

X1 — X + 0y (Axy = Y f(x)) = (I = B — 2y A) (Bpxy — xn), (3.17)

and hence

(xns1 = Xn + A (Axy =Y f(2n)), %0 = x*) = (1 = B — @y A) Bpxy — X, X — x*)
= (1= n— an)(Buxy — Xy, X — X*) (3.18)

+a,((I-A)(By,—D)xp, x5, — x*).

Moreover, by x* € nfﬁl Fix(Ty,) and using Remark 2.3(iv), we obtain

N
(X — BpXy, xp — x*) > <xn - ZAE")Twixn,xn - x*>

i=1

N
> " A (ot = T X, 2 — x°) (3.19)
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which combined with the (3.18) entails

-(1- n — On N n
(Xns1 = Xp + An (A =y f) X, 0 = x7) < %Z(Af Jwillxcn - Tixn||2>
i=1

(3.20)
+an((I = A)(By = D)Xy, X = X7),
or equivalently
—(%p = Xpi1, Xn — X*) < = ((A =y f) X0, X — x*)
_ W% (Aﬁ’”winxn - Tixn||2> (3.21)
+ay (I - A)(By — I)xp, x, — x*).
Furthermore, using the following classical equality:
(u,0) = %||u||2 - %Hu —of* + %||v||2, Yu,v € C, (3.22)
and setting T, = (1/2)]|x, — x*||*, we have
(%0 = Xns1, X0 —x7) = Cp = Cpyag + %len o (3.23)
So that (3.21) can be equivalently rewritten as
Ch1 —Cy— %len — X1 [* € —an((A =y f)xn, x5 — x*)
- u_[z—_mg<l§n)wi||xn - Tixn||2> (3.24)
+a,((I-A)(By—I)xy, x5 —x*).
Now using (3.16) again, we have
n1 = all® = [lan (v (en) = Axn) + (T = = @A) (B = x0) || (325)

Since A: H — H is a strongly positive bounded linear operator with coefficient ¥ > 0, hence
it is a classical matter to see that

%1 = Xull? < 202 ||y £ () = Ay ||* +2(1 = B = @ T) 1 Buxn — x| (3.26)
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from

2

N
ZAE")Twixn - X,

2
|Brxn — xu||” = ‘
i=1

2

N
= Z)‘En) (T %n = Xn)
= (3.27)
N 2
< 22 (‘)‘1(”)> wiZHxn - Tixn||2
i=1
N
< 2Z)‘En)willxn - Tixn“2
i=1
and (1 - By - ay})* < (1 - By — a,Y) yields
1 2 2 2 N (n) 2
E”xrﬁ-l —xn||” < an”Yf(xn) - Axn” + (1 - ﬁn - “"Y)Z(Ai wil|xy = Tixy|| > (3.28)
i=1

Then from (3.24) and (3.28), we have

Tu Tt [Mf_“) - (1=fu- anf)] s (M7l = Tixa )
i=1
< an<(xn||yf(xn) - Axn”2 —((A=yf)xn, xn = x*) + ((I = A)(Bu = D)Xy, X, —x*)).
(3.29)

The rest of the proof will be divided into two parts.

Case 1. Suppose that there exists ng such that {T,},,, is nonincreasing. In this situation,
{T,} is then convergent because it is also nonnegative (hence it is bounded from below),
so that limy, o (Tys1 — Ty) = 0; hence, in light of (3.29) together with lim,_,,a, = 0, 0 <
liminf, ., ,p, < liminf,_, ,p, <1, and the boundedness of {x,}, we obtain

N
lim (Af")wiﬂxn - Tixn||2> = 0. (3.30)
=]
By (3.27) and (3.30), we can easily claim that
nli—];{}o”ann — x| = 0. (3.31)
It also follows from (3.29) that

(SR G an<—¢xn||yf(xn) - Axn”2 +{((A=yf)xn, xn = x*) + ((I = A)(By = I)xp, X — x*)).
(3.32)
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Then, by >.77 a, = o, we obviously deduce that

ligi(gf(—an”)ff(xn) — Ax||* + ((A =y )%, %0 = x*) + (I = A)(By = 1), X — x*)) <0.
(3.33)

Since {f(x,)} and {x,} are both bounded, lim, _, &, = 0 and lim, _, ||Byx, — x| = 0, we
obtain

Hminf((A - yf)x,, x, — x*) <0. (3.34)

Moreover, by Remark 1.1, we have
2(Y = YB)Tu + ((A=7f)x", 20 = x") < ((A =y f)xn, X0 = X7), (335)
which by (3.34) entails

liminf(2(y - yf) Tu + ((A - yf)x", X, —x")) <0, (3.36)

hence, recalling that lim,, _, . C,, exists, we equivalently obtain

2(y —yp) im T, + liminf((A - yf)x*, x, — x*) <0, (3.37)
namely,
2(y - yp) lim T, < —liminf((A -y f)x", 2, = x*). (3.38)

From (3.30) and invoking Lemma 3.2, we obtain

N
liminf((A-yf)x*,x-x*) >0, Xxe€ mFix(Tw,-)/ (3.39)

n=1

which by (3.38) yields lim, .., = 0, so that {x,} converges strongly to x*.

Case 2. Suppose there exists a subsequence {Ty, };5o of {Ty},5 such that T, < T, for all
k > 0. In this situation, we consider the sequence of indices {6(n)} as defined in Lemma 2.9.
It follows that Ts(ur1) — Tsmy > 0, which by (3.29) amounts to

1-Psm —a Sl
[( ﬁS(n; LI (1= P - a,s(n)Y)] > (“\gn)wi 1500 = Tixsm) ”2>
- (3.40)

< asn (@son |Yf (o) = Axs [I* = ((A = Yf) Xo, %0 = 7)),
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hence, by the boundedness of {x,} and lim,,_, ,a, = 0, we immediately obtain
< (n) 2
Tim 3 (4| x50 — Tixson[|”) = 0.
i=1
From (3.28) we have

1 2
5 %601 = x50 |

17

(3.41)

N
< IV f (o) = Axsn ||* + (1 = Pow) — a5 ¥) D, (15")0% |50 = Tixsn) ||2)
i=1

N
< asn | £ (st ) = A |12+ (1= By = @5 ¥) X (A x50 = Tixson ),
i1

(3.42)

which together with (3.41), lim,, . ,a, = 0 and 0 < liminf, _,f, <limsup, , _f, <1 yields

Tim [|2¢5ny 41 = x50 || = 0.
Now by (3.40), we clearly have

a5 ||Yf (X50)) = Bxe||* > ((A =¥ f)Xomy, Xsm) — x*),

which in the light of (3.38) yields

2
7

2(Y = yB)Tom + ((A=7f)X", X6(n) = X") < a5 || f (X50m)) = AX5()
hence (as limy, — s ||y f (X5(n)) — AX5(m) ||2 = 0) it follows that

2(y = yp)limsupTe(ny < —liminf((A - yf)x*, x50 — x*).

n— oo

From (3.41) and invoking Lemma 3.2, we obtain

N
lim ((A-yf)x", X -x*) >0, xe€(\Fix(Ty,),
n— oo n=1

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

which by (3.46) yields limsup, ,_ Ts@) = 0, so that lim,,_, . Ts(y = 0. Combining (3.43), we
have lim, ., Csm+1 = 0. Then, recalling that T, < Tgswmy« (by Lemma29), we get
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lim, T, = 0, so that x, — x* strongly. In addition, the variational inequality (3.39) and
(3.47) can be written as

(I-A+yf)x" —x*,x-x")<0, Xc¢€ ﬁFix(Twi)- (3.48)

n=1

So, by the Lemma 2.10, it is equivalent to the fixed point equation

x* = Py, oy (L= A+ Y02 = (B, mry - )% (3.49)
O

If the sequences of the weights { /\5") }fﬁl = { /\i}i’l’l in (3.2), according to the proof of
Theorem 3.3, we can obtain the following corollary.

Corollary 3.4. Let C be a closed convex subset of a Hilbert space H and let T; : C — C be a quasi-
nonexpansive for T,,, = (1 — w;)I + w;T;, w; € (0,1),i € (1,...,N) such that nfﬁl Fix(Tw,) #90, f is
a contraction with coefficient p € (0,1) and \; is a positive constant such that ¥, \; = 1. Let A be
a strongly positive bounded linear operator with coefficient y. Given the initial guess xo € H chosen
arbitrarily and given sequences {a,} and {B,} in (0, 1), satisfying the following conditions:

(c1) limy, oty = 0and 3%, a, = oo;

(c2) 0 <liminf, o, p, <limsup, , f, <1

Let {x,} be the sequence generated by (3.1). Then {x,} converges strongly to the unique a element
x* € Y Fie(Tw,), N 2 1verifying

X = (Pﬂfl’l Fie(T,,) 'f)x*, (3.50)

which equivalently solves the following variational inequality problem:

N N
x*€(VFix(Tw), ((yf-A)x*,x-x*)<0, VXe(|Fix(Ta). (3.51)
i=1 i=1

4. Cyclic Algorithm

In this section, we discuss the cyclic algorithm, respectively, for solving the variational in-
equality over the set of the common fixed points of finite quasi-nonexpansives and introduce
quasi-shrinking mapping and quoted its definition from [11]. Hereafter, for nonempty closed
set S ¢ H and r > 0, we use the notations ds : H > u — d(u, S) := infyes||u — x||, o(S,r) :=
{fue H|dwu,S)=r},4S,r) ={ue H|duS) < r}and ¥S,r) = {ue H|duS) > r}.
In this case, by the upper semicontinuity of ds (see e.g., [14, Theorem 1.3.3]), KS, r) is closed.
Moreover, for a nonempty bounded closed convex set C ¢ H and r > 0, it is not hard to verify
that (i) ¢(C,r) and ¥C,r) are also closed; (ii) ¢(C,r) and KC,r) are bounded; (iii) KC, r) is
convex.
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Definition 4.1 (see [11]). Suppose that T : H — H is quasi-nonexpansive with Fi(T) N C #0
for some closed convex set C. Then T : H — H is called quasi-shrinking on C if

uEL(Fir(l]f),r)ﬁCd(u, le(T)) - d(T(u)/Fix (T))/
D:re[0,00)— 4 if y e L(Fir(T),r) N C#0, (4.1)

o) otherwise

satisfies D(r) = 0 & r = 0. In particular, if T is quasi-shrinking on H, then T is just called
quasi-shrinking.

Let C be a closed convex subset of a Hilbert space H and let {T;}Y;" be quasi-nonex-
pansives defined on C such that the common fixed point set

N
F:=(Fix(Tw), N21, (42)
i=1

where T,,, = (1 — w;)I + w;T;, {wi}f\ll € (0,1). Let xg € C, let {ay, } 5, and {Bn},—, sequences in
(0,1). The cyclic algorithm generates a sequence {x,},.; in the following way:

x1 = agy f(x0) + Poxo + ((I = Po)I — agA) Ty xo,

Xy = a1yf(x1) + ﬁ1x1 + ((I = ﬂl)I - [XlA)Twlxl,
(4.3)

xn = an-1Y f(xn-1) + Pn-1xn-1 + (I = Bn-1)] — an-1A) Ty XN-1,

xn+1 = ana Y f(an-1) + pnan + (T = )] — anA) Ty XN,

In general, x,., is defined by
X1 = A f (Xn) + Puxn + (I = Bp)I — 0y A) Tpny X, (4.4)

where Ty =T, = (1 —w;)I + w;T;, withi=n (mod N),0<i <N - 1.

Lemma 4.2 (see [11]). Let ¢(x) : [0,00) — [0, o0) satisfy

(i) x1 > x2 = @(x1) > ¢(x2),
(ii) p(x) =0 x =0.
Let {zu},51 C [0, o0) satisfy lim,, _, oz, = 0. Then any sequence {b, },>; C [0, o) satisfying

by <b,—(by) +2z41, n=0,12,... (4.5)

converges to 0.
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Lemma 4.3 (see [15]). Assume that {a,}, is a sequence of nonnegative real numbers such that

Ap+1 < (1 - Yn)“n + Yn6n/ n2 01 (46)

where {yy )y C [0,1] and {6, },—, satisfy the following conditions:

(1) >0 Yn = 00 and lim, Y, =0,
(ii) limsupnéw(sn <00r X% [yubnl < 0.

Then lim,, _, wcx,, = 0.

Theorem 4.4. Let C be a closed convex subset of a Hilbert space H and let T; : H — H be quasi-
nonexpansives for T, = (1-w;)I+w;T;, w; € (0,1),i € (1,2,...,N) such that F := nfﬁl Fix(Ty,) #0
and f a contraction with coefficient p € (0,1). Let A be a strongly positive bounded linear operator
with coefficient y. Given the initial guess xo € H chosen arbitrarily and given sequences {a,} and
{Bn} in (0, 1), satisfying the following conditions:

(4.1a) limy, oty = 0and >77 ay = oo;
(4.1b) 37 llans1 — anll < oo or imy —, oty / ps1 = 1;

(4.1c) 0 < liminf, , ,f, <limsup, ,_f, <1

Let {x,} be the sequence generated by (4.4). Then {x,} converges strongly to the unique a element
x* € F:= N, Fix(Tw,), N > 1 verifying

X" = (Pﬂgl Pl f>x*, (4.7)

which equivalently solves the following variational inequality problem:

N N
x* €(VFix(Tw), ((yf-A)x",Xx-x*)<0, Vxe(|Fix(Ta,). (4.8)

i=1 i=1

Proof. Take a p € F := (Y, Fix(T.,,). We break the proof process into several steps.
Step 1. {x,} is bounded. In light of the Remark 2.3, we obtain

1T Gen = P = (1 Teor (n = D) < [l = |- (4.9)

From (4.4), we have

[l = pll = llaa (v f () = Ap) + Bu(xn = p) + (I = Pu) I = @A) T (30 = p) |
< anllyf (o) = Ap|| + Bulla = pll + (1= B = au¥) |2~
< any || f ) = F(P) Il + anlly £ (p) = Ap|l + (1 = &aT) [l - p|
= [1=an(F = yB)]llxn =PIl + aully f (p) - Ap||-

(4.10)



Abstract and Applied Analysis 21

By simple inductions, we obtain

,||Yf(P)—AP||}, > 1 (@11)

Xn — < maxy |[x1 — —
o=l < max{ 1, DL

which gives that the sequence {x,} is bounded; we also know that {Tj,jx,} and { f(x,)} are
bounded.

Step 2. Moreover if T, : H — H is quasi-shrinking on the set C, we obtain the following
statements:

(a) lim, o d(xy, F) = 0;
(b) imy, —, o5 [| Ty xn — Xl = 0;

(c) limy, — oo ||xns1 — 24| = 0.

By the boundedness of {x;}, {Tjxxx}, and {f(x,)}, there exists M > 0 satisfying

7

max{ [lxall, | Tpuul, 1 f ()|} < M. (4.12)

By a simple inspection, we deduce

d(xns1, F) < |[xne1 = Pe(Tpmpxa) ||
= [lany f (xn) + Puxn + (I = Pu) I = anA) Timxn = Pe(Tpm xa) ||
< |y f (xn) = ATpm x| + Pl xn = Tpn X || + | Ty 260 = Pr (Timxn) |
< an(y||f )| + [| AT xnl]) + Bu(1xnll + || Tpn xnl]) + | T xn = Pe (Tpmxa) ||
< d(Timxn, F) +2(aty + ) M.
(4.13)

By {xu},50 C C, we can assume the boundedness of the sequence b, := d(x,,F) > 0 (n € N).
Moreover, by Definition 4.1 and (4.13), it follows that

D(b,) < b, - d(T[n]xn, F)

(4.14)
< by —bya +2(an+p)M, Yn>0.
Now application of Lemma 4.2 to (4.14) yields lim,,_, ,,b,, = 0, hence (a) is proved.
The statements (b) and (c) are verified by
”T[n]xn - xn” = ”T[n]xn - pF(xn) + PF(xn) - xn”
< 1T = Prea) || + 1P () = 22
(4.15)

< Aloen = Pr(xn)|| + | Pr(xn) = xnl|

=2d(x,, F) —0, (n— o0),
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1%ne1 = 2all = [lany £ (xn) + Bun + ((I = )T = 20 A) Ty Xn = X

< |y f (en) = Axal| + (1= P = @) [| T 2 = x| (4.16)

— 0, (n— o).
Step 3. limy, o || XnsN — X4]| = 0. From (4.4) and (4.16), we obtain

3nen-1 = Xt ll = || @neNY f (Xnen) + BrenXnen + (I = Bren) I = @in A) Tine N XneN
= any f (xn) = Puxtn = ((I = ) I = anA) Tiu x|
= || @neNY f (Xnin) = XneNY f (Xn) + Bren (XnenN = TinaN] Xnan)
+ (I = aneNA) TNy XnaN — (I = e N A) Ty X
+ (I = aniNA) T 0 = (I = anA) T xn
+ aneNY S (Xn) = @ £ (n) + P (20 = T ) |
< A NYPlXnen = Xnl| + Bran || Xnen = Tine N Xnen ||
+ (1= aneNY) | Tin1 X = TineN1Xnsn || + [ + @ N Y || T 2 |
+lan = N[y Pllenll = Bul|n = Timxn ||

= A NY Pl XneN — Xl + ﬂn+N||xn+N = TneN xn+N”
N-1
+ (1= atuen®) 2 1 Tijn%; = Ty e || + 1ot = e ]| Timp |
j=n

+ latn = ctnen [y Bll2cull = B || 0 = Ty x|
< an+NYﬂ”xn+N - X + ﬂn+N”xn+N - T[n+N] xn+N”
_ N-1
+ (1= anend) X5 (i = Tz | + 1 = xja [l + [l = Tijxs )
j=n
+ |an - an+N|?”T[n]xn” + |an - an+N|Yﬂ”xn” + ﬂn”xn - T[”]x””'

(4.17)

By conditions (4.1a), (4.1b), (4.1c), (4.15), and (4.16), {x,} and {T},x,} are bounded we
obtain that

im [|26 N = 2| = 0. (4.18)

Step 4. limy, —, o ||Xn — Tppang - - Tins11%n]| = 0.
From (4.4), we observe that

st = T all = A L) = ATpu | + Bl = T (®.19)
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It follows from the condition (4.1a), (4.1c), (4.15), and the boundedness of {f(x,)} and

{T[n]xn} that
%01 = T x| — 0, (2 — 00).
Recursively,

|xnen = TineniXnen-1|| — 0, (1 — o),

|xnen-1 = Tinen-11%nen—2]| — 0, (1 — o0).
By Remark 2.3, T[,+n7 is quasi-nonexpansive, we obtain
| Trne N1 XneN-1 = TinaNi TineN-1]XnenN—2|| — 0, (1 — o0).
Proceeded accordingly, we obtain

| Tt N1 Tine N-11%neN—-2 = Tine N1 TineN-1 TineN-21 Xnen-3]| — 0, (n — o0),

I Tineny -+ Tz X1 = Tpeny =~ Ty || — 0, (1 — o).

Note that

|xtent = Tineng == T %n || < ||Xnen = TinenyXnen-1]|

+ || Tpne N %neN-1 = Tine N TineN-1] XneN—2 |

+ | Tneny - - Tine21 %ne1 = Tinang -+ Tine11 X |-

From all the expressions above, we have

| 2¢peny = Tinany =+ Timp || — 0, (1 — o0).
Since

7

”xn - T[n+N] te T[n+1]xn” < ”xn + xn+N|| + ||xn+N - T[n+N] to T[n]xn

it is concluded that

nli_IFc}O”x" _ T[n+N] e T[n+1]xn” =0.

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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Step 5. e (xn) € MLy Fix(Tin) = Moy Fix(Tw,),i = 1,2,..., N. Assume that {x,, } C {x,} such
that x,, — X, we prove x € N, Fix(Tjny)- By the conclusion of step 4, we obtain

lim

jooe

Xy = TpnjeN1 *** Tinga1) X || = 0. (4.28)

Observe that, for each n;, T[n].+N],. .. ,T[nj+1] is some permutation of the mappings T|yj,...,
Tiny, since Tjyy, . .., TNy are finite, all the full permutation are N!, there must be some permu-
tation that appears infinite times. Without loss of generality, suppose that this permutation is
Thy, ..., Tin), we can take a subsequence {x"/‘k } C {xn]. } such that

lim

joee

Xn, = Ty -+ - TNy, || = 0. (4.29)

It is easy to prove that Tjyy, ..., Tn) is quasi-nonexpansive. By Lemma 2.5, we have
x =Ty TinX. (4.30)

Using Remark 2.3 and Lemma 2.5, we obtain
N N
X € Fir (Tpy -+~ Tiny) = ((\Fix (Tiny) = [\ Fix(T)- (4.31)
n=1 n=1

Step 6. liminf, . ((yf — A)x",x, — x*) < 0. Indeed, there exists a subsequence {x,,} C {x,}
such that

lim inf((y f — A)x", xs = x*) = Jim <(Yf - A)X", X — X" > (4.32)

Without loss of generality, we may further assume that x,; — X. It follows from (4.31) that
X e ﬂnNzl F(T,). Since x* is the unique solution of (4.8), we have

liminf((yf - A)x*, x, — x*) = jlin;o<(yf - A)X", xp, —x*>

n—oo

(4.33)
= ((rf - A)x", 2 -x") <0
In addition, the variational inequality (4.33) can be written as
N
(I-A+yf)x*-x",x-x") <0, X €[ )Fu(Tw) (4.34)

n=1

So, by the Lemma 2.10, it is equivalent to the fixed point equation

X = Py iy (= A+ V)X = (P, )X (4.35)
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Step 7. limy, _, - ||x,, — x*|| = 0. From (4.4), we obtain

w21 = ey £ o) + B+ (1~ B)] — anA) Ty 2|
= (an(yf(xn) = Ax*) + Bu(xn = x*) + ((I = n) I — anA) (Tin)xn — x*), Xpi1 — x*)
< (Y f(Xn) = AX", Xps1 = X*) + B (X0 — X*, X1 — X*)
+ (1= Bn— an) (T xn — x*, X1 = X*) + 2y (I = A) (TpnyXn — X*), Xpa1 — x°)
S an({yf(xn) = f(X7), Xp1 = x7) + (¥ f(x7) = AX", 201 = X7)
+((I = A) (T xn = x7), Xns1 = X°)) + Bullan — x| 1201 — x|
+ (1= Bn = au)) || Ty 2n = 27 || %01 — %7
< anyPllxn = x*||[| 01 — x| + an(y f (x*) = Ax*, xpi1 — x*)
(1= ) [ Tigen = et = 271+ Bl = [ er - °]
+ (1= B — an¥)ll2xn = x"[[l20041 = X7

1-(0r-vp)
Yz 8

< ln = 1P + 1 = 271 + 2w M
< T i e L w1 M,
(4.36)
where M = (1 = Y)||Tjnxn — x*||||xp1 — x*|| + {y f(x*) = AX™, x40 — x*). It follows that
%1 = x> < (1= (¥ =yB)) |0 — X*|* + 22, M. (4.37)
By using Lemma 4.3, we can obtain the desired conclusion easily. O

5. Application

In this section, we constructed a numerical example to compare the parallel algorithm and
cyclic algorithm which is simple.

Let x = (x1,x2) € R? and f(x) = (1/2)(sin(x1), cos(xz)) be a contraction mapping with
coefficient 1/2. Let Ty (x) = (0,4x;) and T>(x) = (4x3,0) be quasi-nonexpansive mappings.
Leta, =p,=1/3, A=Iand y =\ = A, =1/2. According to (1.20) and (1.24), we can obtain
the following parallel algorithm and cyclic algorithm:

Parallel Algorithm

1 1 1
Xn+l = gf(xn) + Exn + E(Tl + Tz)xn. (5.1)
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Cyclic Algorithm

1 1 1
x1 = gf(xo) + X0+ E(Tl)xO/

1 1 1
Xy = gf(xl) +oXit E(Tz)xl}

1 1 1
X3 = gf(xz) +oXat E(Tl)xz}
(5.2)

1 1 1
Xpo1 = gf(xn—z) +5Xn2t E(Tz)xn—z;

1 1 1
X, = 6f(xn,l) + Exn,l + E(Tﬂan-

Form Theorems 3.3 and 4.4, we can easily know that parallel algorithm (5.1) and cyclic algo-
rithm (5.2) are converge to the unique point in R?. Let xp = (5,2) and |x+1—x,|*> < 107, and let
x}, and x}, be the fixed point of the parallel algorithm and cyclic algorithm. Using the software
of MATLAB, we obtain x7}, = x133 = (0.6821,0.7080) and x%, = x165 = (1.9325,0.8729). From the
computed results of x}, and x§, we can easily know that parallel algorithm (5.1) is simpler
than cyclic algorithm (5.2). On the other hand, we need to explain that those algorithms do
not converge a common fixed point, because parallel algorithm (5.1) and cyclic algorithm
(5.2) have the different algorithm structure.
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