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Given an integrable potential q ∈ L1([0, 1],R), the Dirichlet and the Neumann eigenvalues λDn (q)
and λNn (q) of the Sturm-Liouville operator with the potential q are defined in an implicit way.
In recent years, the authors and their collaborators have solved some basic extremal problems
concerning these eigenvalues when the L1 metric for q is given; ‖q‖L1 = r. Note that the L1 spheres
and L1 balls are nonsmooth, noncompact domains of the Lebesgue space (L1([0, 1],R), ‖ · ‖L1). To
solve these extremal problems, we will reveal some deep results on the dependence of eigenvalues
on potentials. Moreover, the variational method for the approximating extremal problems on the
balls of the spaces Lα([0, 1],R), 1 < α < ∞ will be used. Then the L1 problems will be solved
by passing α ↓ 1. Corresponding extremal problems for eigenvalues of the one-dimensional p-
Laplacian with integrable potentials have also been solved. The results can yield optimal lower
and upper bounds for these eigenvalues. This paper will review the most important ideas and
techniques in solving these difficult and interesting extremal problems. Some open problems will
also be imposed.

1. Introduction

Minimization and maximization problems for eigenvalues are important in applied sciences
like optimal control theory, population dynamics [1–3], and propagation speeds of traveling
waves [4, 5]. They are also interesting mathematical problems [6, 7] because the solutions
to them involve many different branches of mathematics. In recent years, some fundamental
properties of eigenvalues have been revealed [8–16], such as strong continuity of eigenvalues
in potentials/weights in the sense of weak topologies and continuous differentiability of
eigenvalues in potentials/weights in the sense of the usual Lα norms. Based on such
eigenvalue properties and some topological facts on Lα spaces, several interesting extremal
problems for eigenvalues with L1 potentials/weights have been solved via variational
methods and limiting approaches [17–23]. This paper will give a brief survey of the
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papers mentioned above and outline the ideas wherein to solve the extremal problems of
eigenvalues.

To illustrate the problems and the ideas more explicitly, let us first focus on one typical
model. It is well known that for any integrable potential q ∈ L1 := L1([0, 1],R), all eigenvalues
of the Sturm-Liouville operator

x′′ +
(
λ + q(t)

)
x = 0, t ∈ [0, 1], (1.1)

associated with the Dirichlet boundary conditions x(0) = x(1) = 0 are given by a sequence

λ1
(
q
)
< λ2

(
q
)
< · · · < λn

(
q
)
< · · · , (1.2)

with limn→∞λn(q) = +∞. Let us consider such extremal problems as

In(r) := inf
q∈B1[r]

λn
(
q
)
, Mn(r) := sup

q∈B1[r]
λn
(
q
)

(1.3)

for any n ∈ N, where B1[r] is a ball of radius r in L1. These problems are interesting and
of difficulty, because λn(·) are implicit functionals of q ∈ L1, while, topologically, B1[r] is
not compact or sequentially compact even in the weak topology w1 of L1 [24, 25], and,
geometrically, B1[r] is also nonsmooth in the space (L1, ‖ · ‖1). Therefore, they cannot be
solved directly by using the standard variational method.

The main ideas developed in recent papers [17–23] to solve such extremal problems
for implicit functionals on noncompact nonsmooth sets are in two steps.

Firstly, for any α > 1, we consider the counterparts of In and Mn with potentials
confined to Bα[r] (balls in Lα := Lα([0, 1],R) of radius r), denoted by In,α and Mn,α,
respectively. Since the functional λn(·) is continuous (in weak topology) and continuously
differentiable (in the usual Lα norm) in potential q ∈ L1 (and hence in q ∈ Lα, α > 1), and the
balls Bα[r], α > 1, are compact in weak topology and smooth in the usual Lα norm ‖ · ‖α, both
the minimum and the maximum can be obtained, and one can study the critical potentials
via standard variational methods. In this step, one can find a critical equation, in which the
critical potential, denoted by qα, the critical eigenfunction, denoted by yα, and the extremal
value In,α or Mn,α are all involved.

Secondly, we will employ the limiting approach α ↓ 1 to obtain In and Mn. This step
is based on some topological facts that balls and spheres in L1 space can be approximated
by balls and spheres in Lα spaces as α ↓ 1. Then the strong continuity of eigenvalue λn(·)
in potentials ensures that limα↓1In,α = In and limα↓1Mn,α = Mn. In this step, besides critical
equations in Lα spaces, properties of critical potentials and critical eigen-functions should
also be sufficiently utilized to get a final solution to In and Mn.
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The final solution to problems in (1.3) can yield optimal lower and upper bounds of
eigenvalues. Actually, from (1.3), we have

In
(∥∥q
∥
∥
1

)
≤ λn

(
q
)
≤ Mn

(∥∥q
∥
∥
1

)
∀q ∈ L1, (1.4)

which are optimal.
Several extremal problems on (Dirichlet, Neumann, and periodic) eigenvalues (of the

Sturm-Liouville operator and the p-Laplace operator) have been studied recently, where the
potentials are confined to different sets such as balls or spheres in L1. For definition of these
problems, see (4.1). In the following sections, we give a slightly detailed description on these
results. Some topological facts about Lα, α ≥ 1, are listed in Section 2. The essential of this
section is that those “bad” balls or spheres in L1 (neither smooth nor weak compact) can
be approximated by “good” balls or spheres in Lα, α > 1 (smooth and weak compact).
Section 3 is devoted to some properties of eigenvalues, including the scaling results which
enable us to consider only those integrable potentials defined on the interval [0, 1], the
relationship between the first and higher-order eigenvalues which plays a role to enable us
to consider only the first order, and the strong continuity (in weak topology) together with
the continuous differentiability (in strong topology)which enable us to apply the variational
method to problems confined on those “good” balls or spheres in Lα, α > 1. In Section 4
we introduce how variational method is applied to get critical equations for the extremal
problems for cases α > 1. After analysis on the critical equations, these extremal values are
determined by some singular integrals. However, they cannot be expressed by elementary
functions. Section 5 deals with the extremal problems in L1 spaces via limiting approaches.
Final results of extremal values in L1 case are stated in this section. For the Sturm-Liouville
operator, these extremal values can be expressed by elementary functions of the radius r.
In Section 6, the corresponding extremal problems for eigenvalues of measure differential
equations [26, 27] are discussed briefly. The minimizing measures for the problems in (1.3)
are explained. In Section 7, two open problems for further study are imposed. One is on the
eigenvalue gaps and the other is on the corresponding extremal problems of eigenvalues of
the beam equation with integrable potentials.

2. Some Topological Facts on Lα Spaces

In the Lebesgue space Lα, 1 ≤ α ≤ ∞, the usual Lα topology is induced by Lα norm ‖ · ‖α.
Besides this strong topology, one has also the weak topology wα which is defined as follows
[24, 25].

Definition 2.1. Let qn, q ∈ Lα. We say that qn is weakly convergent to q, written as qn
wα−−→ q in

Lα, or qn → q in (Lα,wα), if

lim
n→∞

∫1

0
qn(t)u(t)dt =

∫1

0
q(t)u(t)dt ∀u ∈ Lα∗

. (2.1)

Here α∗ is the conjugate exponent of α: α∗ = α/(α − 1) ∈ [1,∞].



4 Abstract and Applied Analysis

For α ∈ [1,∞), r ∈ [0,∞) and h ∈ [−r, r], let us take the following notations:

Sα[r] =
{
q ∈ Lα :

∥
∥q
∥
∥
α = r

}
,

Bα[r] =
{
q ∈ Lα :

∥
∥q
∥
∥
α ≤ r

}
,

Sα[r, h] =
{
q ∈ Lα :

∥
∥q
∥
∥
α = r, q = h

}
,

Bα[r, h] =
{
q ∈ Lα :

∥
∥q
∥
∥
α ≤ r, q = h

}
,

(2.2)

where q =
∫1
0 q(t)dt is the mean value of q.

2.1. Approximation to L1 Balls/Spheres in Strong Topology

Lemma 2.2 (see [21, Lemma 2.1]). Given that r > 0 and q ∈ S1[r], there exists qα ∈ Sα[r] such
that limα↓1‖qα − q‖1 = 0.

Lemma 2.3 (see [19, Lemma 2.3]). Let r > 0 and h ∈ (−r, r). For any q ∈ S1[r, h], there exists
{qα} ∈ Sα[r, h], 1 < α < ∞, such that limα↓1‖qα − q‖1 = 0.

Lemmas 2.2 and 2.3 give very nice topological approximation to spheres in L1 space
because the spheres inLα (1 < α < ∞) space have nicer topological and geometric properties.

Remark 2.4. A direct consequence from Lemmas 2.2 and 2.3 is that,L1 balls B1[r] and B1[r, h]
can be approximated, in the sense of L1 norm, by Lα balls Bα[r] and Bα[r, h], respectively.

2.2. Approximation to L1 Balls/Spheres in Weak Topology

For any α ∈ (1,∞), it is well known that Bα[r] is compact and sequentially compact in the
space (Lα,wα) [24, 25].

Lemma 2.5 (see [19, Lemma 2.5]). Suppose that α ∈ (1,∞). Then, for any r > 0 and h ∈ [−r, r],
Bα[r, h] is compact and sequentially compact in the space (Lα,wα).

The balls B1[r] and B1[r, h] are not compact or sequentially compact even in weak
topology. Remark 2.4 tells us that such “bad” balls can be approximated, in the sense of
L1 norm, by “good” balls Bα[r] and Bα[r, h], which are compact in weak topology wα and
smooth in geometry. In fact, there hold the following stronger topological facts.

Lemma 2.6 (see [19, Lemma 2.6]). (i) Let α ∈ [1,∞), r ∈ (0,∞) and h ∈ (−r, r). For any
q ∈ Bα[r, h], there exists a sequence {qn} ⊂ Sα[r, h] such that qn → q in (Lα,wα). In other words,
the closure of Sα[r, h] in the space (Lα,wα) is Bα[r, h].

(ii) Consequently, for any q ∈ Sα[r, h], 1 ≤ α < ∞, there exists a sequence {qn} ⊂ S1[r, h]
such that qn → q in (L1, w1).
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3. Properties of Eigenvalues on Potentials/Weights

Denote by φp(·) the scalar p-Laplacian, that is, φp(x) = |x|p−2x for any x /= 0 and φp(0) = 0. For
any integrable potential q ∈ L1([a, b],R), it is well known that all eigenvalues of

(
φp

(
x′))′ +

(
λ + q(t)

)
φp(x) = 0, t ∈ [a, b] (3.1)

associated with the Dirichlet boundary condition x(a) = x(b) = 0 consist of a sequence

λD1
(
q
)
< λD2

(
q
)
< · · · < λDn

(
q
)
< · · · , (3.2)

and all eigenvalues associated with the Neumann boundary condition x′(a) = x′(b) = 0
consist of a sequence as follows:

λN0
(
q
)
< λN1

(
q
)
< · · · < λNn

(
q
)
< · · · , (3.3)

see [28, 29]. To emphasize the dependence on the interval [a, b] and the boundary conditions,
we also write the eigenvalues as λσn(q, [a, b]), where the superscript σ can be chosen asD (for
the Dirichlet eigenvalues) or N (for the Neumann eigenvalues).

3.1. Scaling Results on Eigenvalues

Let I = [a, b] be a finite interval of length |I| = b − a. Given that α ∈ [1,∞] and q ∈ Lα :=
Lα([0, 1],R), define a potential qI ∈ Lα(I,R) by the following:

qI(t) := |I|−pq
(
(t − a)
|I|

)
, t ∈ I. (3.4)

Lemma 3.1 (see [17, Lemma 2.1]). Let q and qI be as in (3.4). Then for any admissible n, there hold

∥∥qI
∥∥
Lα(I) = |I|−p+1/α

∥∥q
∥∥
α, λσn

(
qI, I
)
= |I|−pλσn

(
q, [0, 1]

)
, (3.5)

where the superscript σ can be chosen to be D or N.

By this lemma, we need only to consider eigenvalues for those potentials defined on
the interval [0, 1], that is, for q ∈ Lα.

3.2. Relationship between the First- and Higher-Order Eigenvalues

Let us identify Lα = Lα([0, 1],R) with Lα(R/Z,R), where α ∈ [1,∞]. For n ≥ 2, define the
mapping Tn : Lα → Lα by

Tn

(
q
)
= qn, qn(t) := npq(nt), t ∈ R. (3.6)
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Lemma 3.2 (see [17, Lemma 2.2]). For any integer n ≥ 2, let q and qn be as in (3.6). Then there
hold

qn = npq,
∥
∥qn
∥
∥
α = np

∥
∥q
∥
∥
α, λσn

(
qn
)
= npλσ1

(
q
)
, (3.7)

where the superscript σ can be chosen to be D or N.

When n ≥ 2, Tn of (3.6) is only injective but not surjective from Bα[r/np] to Bα[r]. It
followed from the last two equalities in (3.7) that

sup
q∈Bα[r]

λσn
(
q
)
≥ np · sup

q∈Bα[r/np]
λσ1
(
q
)
,

inf
q∈Bα[r]

λσn
(
q
)
≤ np · inf

q∈Bα[r/np]
λσ1
(
q
)
,

(3.8)

for any α ∈ [1,∞], n ≥ 2, and σ chosen as D or N.
In fact, (3.8) can be proved to be equalities. Therefore, we need only to consider

extremal values of the first eigenvalues. For cases α > 1, the converse inequalities can be
proved by using critical equations (4.16). See Remark 4.1. Moreover, results for case α = 1 can
be obtained by limiting approaches α ↓ 1. Case α = ∞ is trivial.

3.3. Continuous Differentiability in Strong Topology

Theorem 3.3 (see [14, Theorem 1.2]). Given α ∈ [1,∞] and an admissible n. The functional

(Lα, ‖·‖α) −→ R, q −→ λσn
(
q
)

(3.9)

is continuously Fréchet differentiable. The Fréchet derivative ∂qλσn(q) ∈ (Lα, ‖ · ‖α)∗ is the following
bounded linear functional:

Lα � h −→ −
∫1

0
|Eσ

n(t)|
ph(t)dt ∈ R, (3.10)

or written simply as

∂qλ
σ
n

(
q
)
= −|Eσ

n |
p. (3.11)

Here Eσ
n(t) = Eσ

n(t; q) is a normalized eigenfunction associated with λσn(q) so that the Lp norm
‖Eσ

n‖p = 1.

Remark 3.4. Since (3.11) is always a negative functional ofLα, α ∈ [1,∞], eigenvalues possess
the following monotonicity:

q1, q2 ∈ L1, q1 ≤ q2 =⇒ λσn
(
q1
)
≥ λσn

(
q2
)
. (3.12)
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Moreover, if in addition, q1(t) < q2(t) holds on a subset of [0, 1] of positive measure, the
conclusion inequality in (3.12) is strict.

3.4. Strong Continuity in Weak Topology

Theorem 3.5 (see [14, Theorem 1.1]). Given α ∈ [1,∞] and an admissible n, the following
functional is continuous:

(Lα,wα) −→ R, q −→ λσn
(
q
)
. (3.13)

This theorem shows that eigenvalues λσn(q) have very strong continuous dependence
on potentials. For other differential operators, similar results can be found in [9–11, 13, 16, 26,
30].

4. Extremal Problems in Lα Balls, 1 < α < ∞

In this section, we always assume that 1 < α < ∞, r > 0, |h| < r and σ = D or N.

4.1. Preliminary Results for Minimization/Maximization Problems

For any admissible integer n, let us take some notations as follows

In,α(r) := inf
q∈Bα[r]

λσn
(
q
)
, Mn,α(r) := sup

q∈Bα[r]
λσn
(
q
)
,

�n,α(r, h) := inf
q∈Bα[r,h]

λσn
(
q
)
, Mn,α(r, h) := sup

q∈Bα[r,h]
λσn
(
q
)
.

(4.1)

If n = 0, then σ can only be chosen as N. For any positive integers n, these notations are
still reasonable, and the extremal values are independent of the choice of σ = N or σ =
D due to the relationship between Dirichlet and Neumann eigenvalues [29, Theorem 4.3].
Furthermore, these extremal values on balls with radius r are exactly the same as those on
spheres with radius r, that is,

In,α(r) = inf
q∈Sα[r]

λσn
(
q
)
, Mn,α(r) = sup

q∈Sα[r]
λσn
(
q
)
, (4.2)

�n,α(r, h) = inf
q∈Sα[r,h]

λσn
(
q
)
, Mn,α(r, h) = sup

q∈Sα[r,h]
λσn
(
q
)
. (4.3)

Equation (4.2) follows immediately from (3.12), the monotonicity of eigenvalues. Equation
(4.3) follows from the facts that the closure of Sα[r, h] in the space (Lα,wα) is Bα[r, h] (See
Lemma 2.6(i)), and λn(q) is strongly continuous in q ∈ (Lα,wα).

Note that Bα[r] and Bα[r, h] are compact and sequentially compact in the space
(Lα,wα) (see Lemma 2.5). Then all these extremal values in balls are actually minima
or maxima. Among all these extremal values, the supremum of the principal Neumann
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eigenvalues with potentials on Sα[r, h] is a case apart, unlike any other. It is well known
that [31, Lemma 3.3]

λN0
(
q
)
≤ −q ∀q, λN0

(
q
)
= −q ⇐⇒ q is constant. (4.4)

Therefore one has

M0,α(r, h) = max
q∈Bα[r,h]

λN0
(
q
)
= sup

q∈Sα[r,h]
λN0
(
q
)
= λN0 (h) = −h. (4.5)

Moreover, M0,α(r, h) cannot be attained by any potential on Sα[r, h]. Consequently,

M0,α(r) = max
q∈Bα[r]

λN0
(
q
)
= λN0 (−r) = r = max

q∈Sα[r]
λN0
(
q
)
. (4.6)

All other minimizers and maximizers are located exactly on the boundaries of the balls, that
is,

In,α(r) = min
q∈Sα[r]

λσn
(
q
)
, n = 0, 1, 2, . . . (4.7)

Mn,α(r) = max
q∈Sα[r]

λσn
(
q
)
, n = 1, 2, 3, . . . (4.8)

�n,α(r, h) = min
q∈Sα[r,h]

λσn
(
q
)
, n = 0, 1, 2, . . . (4.9)

Mn,α(r, h) = max
q∈Sα[r,h]

λσn
(
q
)
, n = 1, 2, 3, . . . . (4.10)

Again, (4.7) and (4.8) are immediate consequences from monotonicity of eigenvalues.
Especially, the minimizers/maximizers on the sphere Sα[r] are nonnegative/nonpositive. It
is natural to use the Lagrangian Multiplier Method (LMM for short) to deal with extremal
value problems (4.7) and (4.8). Due to the restriction q = h, it is not easy to obtain
monotonicity of eigenvalues on q ∈ Bα[r, h]. We refer the proof of (4.9) and (4.10) to [19,
Lemma 3.1], where LMM is applied to exclude any minimizer or maximizer in the interior of
Bα[r, h].

4.2. Variational Construction for Minimizer/Maximizer in Bα[r]

The arguments in this subsection follow in part those of [17, 18, 20, 21].
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The extremal value problems (4.7) and (4.8) can be considered uniformly. The only
constraint wherein is ‖q‖α = r. As α ∈ (1,∞), the norm ‖q‖α is continuously Fréchet
differentiable in q ∈ (Lα, ‖ · ‖α), with the Fréchet derivative as follows:

∂q
∥
∥q
∥
∥
α =
∥
∥q
∥
∥1−α
α φα

(
q
)
, (4.11)

where φα : R → R is φα(x) := |x|α−2x. The eigenvalues λσn(q) are also Fréchet differentiable in
q, and the Fréchet derivative is as in (3.11). By the Lagrangian Multiplier Method, the critical
potential qα = qn,r,α satisfies the following equation:

−|Eα(t)|p = cαφα

(
qα(t)

)
a.e. t ∈ [0, 1] (4.12)

for some constant cα = cn,r,α. Here Eα(t) = Eσ
n,r,α(t) is a normalized eigen-function associated

with λσn(qα) = �α. Since the minimizer is nonnegative and the maximizer is nonpositive, cα < 0
for the minimization problem (4.7) and cα > 0 for the maximization problem (4.8). Let sα =
sign cα = ±1 and

yα(t) =
sαEα(t)

p
√
|cα|

. (4.13)

Then yα = yσ
n,r,α is also an eigenfunction associated with �α. Specifically, we identify it by

y′
α(0) > 0 for Dirichlet case and yα(0) > 0 for Neumann case. This identified yα is called the

critical eigenfunction, and it satisfies the original ODE (3.1), that is,

(
φp

(
y′
α

))′ + �αφp

(
yα

)
+ qα(t)φp

(
yα

)
= 0, (4.14)

and corresponding boundary conditions. By (4.12), the critical potential can also be written
as

qα(t) = −sαφα∗
(∣∣yα(t)

∣∣p) = −sα
∣∣yα(t)

∣∣p(α∗−1)
. (4.15)

Substituting (4.15) into (4.14), one has

(
φp

(
y′
α

))′ + �αφp

(
yα

)
− sαφpα∗

(
yα

)
= 0, (4.16)

which is the critical equation to problem (4.7) and problem (4.8). Note that this is a stationary
Schrödinger equation, and it is independent of the orders n of eigenvalues λn(q). By (4.15),
the constraint ‖qα‖α = r is transformed to

∫1

0

∣∣yα(t)
∣∣pα∗

dt = rα. (4.17)

Remark 4.1. Due to the autonomy and the symmetry of critical equation (4.16), yn,r,α(t) is a
periodic solution of (4.16)with minimal period 2/n. In fact, one has yn,r,α(t+1/n) ≡ −yn,r,α(t)
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Figure 1: Phase portrait of critical equation (4.16), where sα = 1.

(we refer the proof of this to Lemma 3.2 in [20]). By (4.15), qn,r,α(t) is periodic with minimal
period 1/n. Therefore, the maximizer qn,r,α is in the range of Tn. See (3.6). This tells us that
the converse inequalities of (3.8) are also true. More precisely, there hold

In,α(r) = npI1,α
(

r

np

)
, Mn,α(r) = npM1,α

(
r

np

)
(4.18)

for any integer n ≥ 2 and any r > 0. This is why we need only to consider extremal values of
λN0 (q) and λσ1 (q).

The phase portraits of (4.16) are distinguished in three cases. See Figures 1–3. In
Figure 1, sα = 1. This figure corresponds to the maximization problem M1,α, and the eigen-
function yα is certain nonconstant periodic orbit surrounding the equilibrium (0, 0). In
Figure 2, sα = −1 and �α < 0. The minimization problem I0,α is illustrated in this figure, and
the positive eigen-function yα corresponds to some non-constant periodic orbit surrounding
the rightmost equilibrium. In Figure 3, sα = −1 and �α ≥ 0. When the minimization problem
I1,α is considered, both Figures 2 and 3 should be taken into account. In fact, the bigger r
is, the smaller I1,α(r) is. For r large enough, I1,α(r) is negative and yα should be some sign-
changing periodic orbit outside the homoclinic orbits in Figure 2. For r > 0 small enough,
I1,α(r) is nonnegative, and yα should be some non-constant periodic orbit surrounding the
equilibrium (0, 0) in Figure 3.

To study the parameter �α in (4.16), introduce an additional parameter as follows:

bα := max
t∈[0,1]

yα(t) =
∥∥yα

∥∥
∞, (4.19)

and besides, for case n = 0 one more parameter as follows:

aα := min
t∈[0,1]

yα(t). (4.20)
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y
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Figure 2: Phase portrait of critical equation (4.16), where sα = −1 and �α < 0.

A first integral of (4.16) is

∣∣y′
α(t)
∣∣p + Fα

(
yα(t)

)
= Fα(bα), t ∈ [0, 1], (4.21)

where

Fα(x) = Fα(x, �α) :=
(
p − 1

)−1
(

�α|x|p −
sα|x|pα

∗

α∗

)

, x ∈ R. (4.22)

Note that the minimal period of yα is 2, and yα satisfies the constraint (4.17).
Theoretically, �α = M1,α (or �α = I1,α) and bα are implicitly determined by singular integrals
as follows:

∫bα

0

dx

(Fα(bα) − Fα(x))
1/p

=
1
2
,

∫bα

0

xpα∗
dx

(Fα(bα) − Fα(x))
1/p

=
rα

2
,

(4.23)

where sα = 1 in (4.22) for M1,α, and sα = −1 for I1,α.
Choose sα = −1 in (4.22). Then �α = I0,α, aα and bα are implicitly determined by

∫bα

aα

dx

(Fα(bα) − Fα(x))
1/p

= 1,

∫bα

aα

xpα∗
dx

(Fα(bα) − Fα(x))
1/p

= rα,

Fα(aα) = Fα(bα).

(4.24)
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Figure 3: Phase portrait of critical equation (4.16), where sα = −1 and �α ≥ 0.

4.3. Variational Construction for Minimizer/Maximizer in Bα[r, h]

The extremal value problems (4.9) and (4.10) can be considered uniformly by LMM as in the
previous subsection. The critical equation is

(
φp

(
y′
α

))′ + �αφp

(
yα

)
− sαφα∗

(
y
p
α − mα

)
yα = 0, (4.25)

where sα = 1 for maximization problems and sα = −1 for minimization problems. The
existence of the new constant mα is caused by the constraint q = h. The critical potential
is

qα(t) ≡ −sαφα∗

(
y
p
α(t) − mα

)
. (4.26)

The constraint ‖qα‖α = r is

∫1

0

∣∣∣y
p
α(t) − mα

∣∣∣
α∗

dt = rα. (4.27)

The constraint qα = h is

∫1

0
φα∗

(
y
p
α(t) − mα

)
dt = −sαh. (4.28)

A first integral of the critical equation is

∣∣y′
α

∣∣p +
�α

p − 1
∣∣yα

∣∣p −
sα

∣∣∣y
p
α − mα

∣∣∣
α∗

(
p − 1

)
α∗ = const. (4.29)
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The existence of mα brings more complexity and difficulties. For the case of the Sturm-
Liouville operator, we refer the readers to [19, 23] for more details.

5. Extremal Problems in L1 Balls

In this section we will solve the following extremal problems:

In(r) = inf
q∈B1[r]

λσn
(
q
)
, Mn(r) = sup

q∈B1[r]
λσn
(
q
)
, (5.1)

�n(r, h) := inf
q∈B1[r,h]

λσn
(
q
)
, Mn(r, h) := sup

q∈B1[r,h]
λσn
(
q
)
. (5.2)

By the topological facts in Section 2 and the strong continuity of eigenvalues in weak
topology (see Theorem 3.5), the extremal values inL1 balls are limits of those extremal values
in Lα balls, that is,

In(r) = lim
α↓1

In,α(r), Mn(r) = lim
α↓1

Mn,α(r),

�n(r, h) = lim
α↓1

�n,α(r, h), Mn(r, h) = lim
α↓1

Mn,α(r, h),
(5.3)

for any r > 0, |h| < r and any admissible integer n. By relationship (4.18), we need only
consider for cases n = 0 and n = 1 in (5.1). Similar arguments hold for (5.2).

For simplicity, we only illustrate the extremal value problems (5.1) with potentials
varied in B1[r] and refer to [19, 23] for (5.2) with potentials varied in B1[r, h].

Let us use a uniform notation �0 to denote the extremal values I0(r), I1(r), or M1(r),
respectively, in different extremal values problems, that is,

�0 = lim
α↓1

�α. (5.4)

Note that I0(r) > −∞ (see [18, Lemma 2.3]) and M1(r) < ∞ due to the asymptotical
distribution of large eigenvalues [29, 32]. Thus in each case, �0 is finite and {�α}α>1 is bounded.

Two different limiting approaches to this limit �0 are reviewed in the following two
subsections. One is from the viewpoint of singular integrals as in [20, 21], where singular
integrals involving extremal values for the Sturm-Liouville operator are analyzed directly
and delicately. To overcome the difficulties caused by the presence of the p-Laplace operator,
the other limiting approach is from the viewpoint of conservation laws (involving eigen-
functions and extremal values) as in [10, 17, 18, 23]. Compared with the singular integral
method, the conservation law method can simplify and refine the limiting process because
more information from eigen-functions can be used.

5.1. Limiting Approach from the Viewpoint of Singular Integrals (p = 2)

By (5.4), to obtain the extremal values �0 in L1 balls, it is natural to compute firstly the
extremal values �α in Lα balls and then let α ↓ 1. Since �α will finally be formulated by singular
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integrals, we say that such a limiting approach is from the viewpoint of singular integrals. We
have only applied such amethod to the Sturm-Liouville operator because of the complexity in
analyzing singular integrals. More difficulties will be added to such a process by the presence
of p-Laplacian.

Extremal values I1(r) and M1(r) for the Sturm-Liouville operator are studied in [20].
As stated in the previous section, �α = M1,α (or �α = I1,α) and bα are implicitly determined
by (4.23), where the exponent p = 2. After some transformation, (4.23) is analyzed in [20],
and these extremal values in Lα balls are finally expressed by some singular integrals. More
precisely, for any d ∈ (0,∞), let

A = Aα(d) =
d2(α∗−1)

α∗ ,

Tα(d) = 4
∫1

0

dx
√
1 − x2 +A(1 − x2α∗)

,

Uα(d) = 4(α∗A)α
∫1

0

x2α∗
dx

√
1 − x2 +A(1 − x2α∗)

,

T̂α(d) = 4
∫1

0

dx
√
x2 − 1 +A(1 − x2α∗)

,

Ûα(d) = 4(α∗A)α
∫1

0

x2α∗
dx

√
x2 − 1 +A(1 − x2α∗)

,

(5.5)

and for any d ∈ (0, 1), let

B = Bα(d) = d2(α∗−1) = d2/(α−1),

Ťα(d) = 4
∫1

0

dx
√
1 − x2 − B(1 − x2α∗)/α∗

,

Ǔα(d) = 4Bα

∫1

0

x2α∗
dx

√
1 − x2 − B(1 − x2α∗)/α∗

,

(5.6)

and we define

Z1,α(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x = π2,

1
4
(
2
√
x
)2−1/α(Uα(T−1

α (2
√
x))
)1/α for x ∈

(
0, π2),

R1,α = K(2α∗) for x = 0,
1
4
(
2
√
−x
)2−1/α(Ûα(T̂−1

α (2
√
−x))

)1/α
for x ∈ (−∞, 0),

Y̌1,α =
1
4
(
2
√
x
)2−1/α(Ǔα

(
Ǔ−1

α T̆−1
α

(
2
√
x
)))1/α

for x ∈
[
π2,∞

)
.

(5.7)
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Then there hold

I1,α(r) = Z−1
1,α(r), M1,α(r) = Y̌−1

1,α(r). (5.8)

Note that I1,α(r) and M1,α(r) cannot be written as elementary functions of the radius r.
However, after some delicate analysis on the singular integrals Tα, Uα, T̂α, Ûα, Ťα and Ǔα,
the limits of I1,α(r) and M1,α(r) as α ↓ 1 are proved to be elementary functions of r, that is,

M1(r) =
1
4

(
π +
√
π2 + 4r

)2
, (5.9)

I1(r) = Z−1
1 (r), (5.10)

where

Z1(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2
√
−x coth

(√
−x
2

)
for x ∈ (−∞, 0),

4 for x = 0,

2
√
x cot

(√
x

2

)
for x ∈

(
0, π2]

(5.11)

is a decreasing diffeomorphism mapping (−∞, π2] onto [0,∞).
Extremal values I0(r) for the Sturm-Liouville operator are studied in [21], again by

singular integral method in the limiting approach. Now �α = I0,α, aα, and bα are implicitly
determined by (4.24)with p = 2. One can imagine that difficulty increases due to the presence
of the additional new parameter aα. We only state the final results here and refer the readers
to [21] for details. Let

Z0(x) = 2
√
−x tanh

(√
−x
2

)
, x ≤ 0, (5.12)

which is a decreasing diffeomorphism from (−∞, 0] onto [0,∞). Then there holds

I0(r) = Z−1
0 (r). (5.13)

5.2. Limiting Approach from the Viewpoint of Conservation Laws (p > 1)

The first integral (4.21) of the critical equation (4.16) can also be written as

∣∣y′
α(t)
∣∣p +

�α
p − 1

∣∣yα(t)
∣∣p − sα(

p − 1
)
α∗

∣∣yα(t)
∣∣pα∗

=
eα

p − 1
, t ∈ [0, 1], (5.14)
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where

eα :=
(
p − 1

)
Fα(bα) = �α|bα|p −

sα

α∗ |bα|
pα∗

(5.15)

is a constant. We call (5.14) a conservation law of (4.16).
Define

Gα(t) :=

∣
∣yα(t)

∣
∣pα∗

α∗ , t ∈ [0, 1]. (5.16)

It follows from (4.17) that ‖Gα‖1 = rα/α∗ → 0 as α ↓ 1. Passing to a subsequence if necessary,

lim
α↓1

Gα(t) = 0 a.e. t ∈ [0, 1]. (5.17)

Motivated by (5.17), one attempt to compute �0 in (5.4) is to consider the limit equation
of the conservation law (5.14). Intuitively, if we assume that eα → e0 and yα → y0 in
appropriate sense, then it followed from (5.4) and (5.17) that the limit equation of (5.14)
should be of the form (5.29), which is a first-order ODE simpler than (5.14). Boundary
conditions on the critical eigen-functions yα and the restriction that the critical potentials
qα ∈ Sα[r] will give more information on y0. All these conditions on y0 and the solution to
(5.29) will finally lead to the answer to the extremal value �0. Compared with the previous
singular integral method, such a limiting approach to �0 from the viewpoint of conservation
laws cannot only greatly simplify the analysis but also deal with the p-Laplace operator.

In the limiting approach from the viewpoint of conservation laws, it is natural to study
the convergence of critical eigen-functions yα as α ↓ 1. To this end, the boundedness of ‖yα‖p
and ‖y′

α‖p as α ↓ 1 should be taken into consideration.
For both Neumann and Dirichlet eigenvalues, multiplying (4.16) by yα(t), integrating

over [0, 1] and taking use of the restriction (4.17), that is, ‖yα‖
pα∗

pα∗ = rα, one has

−
∥∥y′

α

∥∥p
p + �α

∥∥yα

∥∥p
p − sαr

α = 0. (5.18)

Integrating (5.14) over [0, 1], one has

∥∥y′
α

∥∥p
p +

�α
p − 1

∥∥yα

∥∥p
p −

sα(
p − 1

)
α∗ r

α =
eα

p − 1
. (5.19)

Eliminating ‖y′
α‖

p
p from the above two equalities, one has

p�α
∥∥yα

∥∥p
p = eα + sα

(
p − 1

α

)
rα. (5.20)
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For the principal Neumann eigenvalues, there hold an additional equality as follows:

eα

∥
∥
∥
∥
1
yα

∥
∥
∥
∥

p

p

= −
∥
∥qα
∥
∥
1

α
. (5.21)

This equality can be deduced from (4.14), (5.14), and (4.17).
Note that ‖�α + qα‖1 ≤ |�α| + ‖qα‖1 ≤ |�α| + ‖qα‖α = |�α| + r is bounded as α ↓ 1. The

boundedness of ‖�α + qα‖1 and the restriction (4.17) guarantees (passing to a subsequence if
necessary) the convergence of limα↓1bα ∈ (0,∞) and

yα −→ y0 /= 0 in (C, ‖·‖∞) as α ↓ 1. (5.22)

Here C = C([0, 1],R). For detailed proof, see Lemmas 2.1 and 4.1 in [18]. Consequently, ‖yα‖p
is bounded as α ↓ 1, and by (5.20),

eα =
(
p − 1

)
Fα(bα) = �α|bα|p − sα

|bα|pα
∗

α∗ (−→ e0 as α ↓ 1). (5.23)

By (4.17), there holds rα ≤ b
pα∗

α , and hence

lim
α↓1

b
pα∗

α ≥ 1. (5.24)

It followed from (5.23) and (5.24) that

lim
α↓1

bα = 1, e0 = �0 − lim
α↓1

sα|bα|pα
∗

α∗ . (5.25)

Note that ‖qα‖1 ≤ ‖qα‖α = r. On the other hand, it follows from (4.15) and (4.17) that

∥∥qα
∥∥
1 =
∫1

0

∣∣yα(t)
∣∣pα∗

∣∣yα(t)
∣∣p

dt ≥ 1
∥∥yα

∥∥p
∞

∫1

0

∣∣yα(t)
∣∣pα∗

dt =
rα

b
p
α

−→ r (5.26)

as α ↓ 1. Thus one has

s- lim
α↓1

∥∥qα
∥∥
1 = r. (5.27)

By the monotonicity and the symmetry of the eigen-function yα, (4.21) can be written
as

y′
α(t) = κ−1

p

(
eα − �αy

p
α(t) − sαGα(t)

)1/p
, t ∈ Iσ, (5.28)
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where κp := (p − 1)1/p. For the Dirichlet eigen-function, yα(0) = 0, yα(1/2) = bα and Iσ =
ID = [0, 1/2]. For the Neumann eigen-function, yα(0) = aα = mint∈[0,1]yα(t), yα(1) = bα and
Iσ = IN = [0, 1]. Since there holds (5.17), the Lebesgue-dominated convergence theorem
can be applied to the integral equation equivalent to (5.28) with corresponding boundary
conditions. Then it can be proved that y0 = limα↓1yα ∈ C1(Iσ) and

y′
0 = κ−1

p

(
e0 − �0y

p

0

)1/p
, t ∈ Iσ. (5.29)

As the limit of Dirichlet eigen-functions yD
α , y0 satisfies the boundary conditions as follows:

y0(0) = 0, y0

(
1
2

)
= 1. (5.30)

As the limit of Neumann eigen-functions yN
α , y0 satisfies the boundary conditions as follows:

y0(0) = a0 = min
t∈[0,1]

y0(t) ∈ (0, 1), y0(1) = 1. (5.31)

The limiting equality of (5.20) is

p�0
∥∥y0
∥∥p
p = e0 +

(
p − 1

)
r. (5.32)

By (5.27), the limiting equality of (5.21) is

e0

∥∥∥∥
1
y0

∥∥∥∥

p

p

= −r. (5.33)

Either �0 = M1(r) or �0 = I1(r) is determined by ODE (5.29), the boundary conditions
(5.30) and the restriction (5.32). Meanwhile, �0 = I0(r) is determined by (5.29), (5.31), (5.32)
and (5.33). To solve (5.29) and compute �0, we need more information about e0, �0, and a0.

Case 1 (maximization problem M1(r)). In this case, there holds e0 = �0 > 0. In fact, we have

�0 = M1(r) ≥ λ1(−r) = r > 0. (5.34)

The rightmost equilibrium in the phase portrait Figure 1 is (�(α−1)/pα , 0). Thus we have

0 < bα < �
(α−1)/p
α , lim

α↓1

b
pα∗

α

α∗ ≤ lim
α↓1

�αα
α∗ = 0. (5.35)

Consequently, e0 = �0 by (5.25).
Finally, �0 = M1(r) can be proved to be the unique root of

x − πpx
1/p∗ = r, x ∈ [0,∞), (5.36)
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where

πp =
2π
(
p − 1

)1/p

p sin
(
π/p

) . (5.37)

We refer to [17] for details. Note that if p = 2, result (5.36) is consistent with (5.9).

Case 2 (Minimization problem I1(r)). In this case, there hold e0 > 0 and e0 > �0. In fact, sα = −1
for the minimization problems. It follows from (5.14) that

eα =
(
p − 1

)
Fα(bα) ≥ �α

∣
∣yα(t)

∣
∣p, ∀t ∈ [0, 1]. (5.38)

Set t = 0 and 1/2 in (5.38), respectively, and let α ↓ 1. We see that e0 ≥ 0 and e0 ≥ �0.
Furthermore, cases e0 = 0 and e0 = �0 can be excluded by checking (5.32) after solving (5.29)-
(5.30) and taking into account that

�0 = I1(r) ≤ λ1(r) = π
p
p − r. (5.39)

In this case, till now there is no such restrictions as positivity or negativity on �0. This
is consistent to the phase portrait analysis in Section 4.2.

Finally, (e0, �0) (e0 > 0, e0 > �0) can be uniquely determined by

∫1

0

κpdu

(e0 − �0up)1/p
=

1
2
,

r = 2
(
p − 1

)−1/p∗(e0 − �0)
1/p∗ .

(5.40)

For details we refer to [18]. Note that if p = 2, the integral in (5.40) can be evaluated explicitly,
and one can get (5.10).

Case 3 (minimization problem I0(r)). In this case, there hold �0 < 0 and e0 = �0a
p

0 < 0. In fact,
it follows from (4.4) that

�0 = I0(r) < −r < 0. (5.41)

By (5.33), e0 < 0. Note that (5.38) still holds for this minimization problem. Let t = 0 in (5.38)
and α ↓ 1. One has e0 ≥ �0a

p

0. One can exclude the case e0 > �0a
p

0 by checking (5.33) after
solving (5.29)–(5.31).

Finally, (a0, �0) (0 < a0 < 1, �0 < 0) can be uniquely determined by

κp

∫1

a0

du
(
�0a

p

0 − �0up
)1/p = 1,

(
p − 1

)−1/p∗(
�0a

p

0 − �0
)1/p∗

= r.

(5.42)
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For details we refer to [18]. Note that if p = 2, the integral in (5.42) can be evaluated explicitly,
and one can get (5.13).

6. Extremal Problems for Eigenvalues of
Measure Differential Equations

Generalized ordinary differential equations (GODEs for short) [33, 34] can describe the jumps
of solutions caused by impulses, and so forth. In this paper wewill only consider the so-called
measure differential equations (MDEs for short) [26, 27], a special class of GODE.

By a real measure μ on [0, 1], it means that it is an element of the dual space M0 :=
(C, ‖ · ‖∞)∗ of the Banach space (C, ‖ · ‖∞). Then, for any u ∈ C and any subinterval J of [0, 1],
the Riemann-Stieltjes integral and the Lebesgue-Stieltjes integral [35]

∫

[0,1]
udμ

∫

J

udμ (6.1)

are defined. Given a measure μ ∈ M0, following the notations in [27], the second-order linear
MDE with the measure μ is written as

dx• + xdμ(t) = 0, t ∈ [0, 1]. (6.2)

The solution x(t) of MDE (6.2) with the initial value (x(0), x•(0)) = (x0, v0) ∈ R
2 is explained

using the system of integral equations as follows:

x(t) = x0 +
∫

[0,t]
v(s)ds, t ∈ [0, 1],

v(t) =

{
v0, t = 0,
v0 −

∫
[0,t] x(s)dμ(s), t ∈ (0, 1].

(6.3)

Here v(t) := x•(t) is the generalized right-hand derivative of y(t) or the velocity of y(t). By
(6.3), it is well known that solutions of initial value problems of (6.2) are uniquely defined
on [0, 1] [33, 34]. See also [26, 27]. From (6.3), one sees that the solutions themselves are
continuous, that is, x ∈ C. However, v(t) = x•(t) may have discontinuity at those t such that
the density dμ(t)/dt does not exist. In case μ ∈ M0 is absolutely continuous with respect to
the Lebesgue measure � on [0, 1], that is, dμ(t)/dt = q(t) ∈ L1, solutions of MDE (6.2) reduce
to that for ODE

x′′ + q(t)x = 0. (6.4)

Let μ ∈ M0 be a (real) measure on [0, 1]. The corresponding eigenvalue problem

dx• + λxdt + xdμ(t) = 0, t ∈ [0, 1] (6.5)
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has been studied in [26, 27]. Like problem (1.1), eigenvalues of (6.5) with the Dirichlet
boundary condition x(0) = x(1) = 0 are a real, increasing sequence {λDn (μ)}n∈N

, accumulating
at +∞. With the Neumann boundary condition x•(0) = x•(1) = 0, eigenvalues of (6.5) are a
real, increasing sequence {λNn (μ)}n∈Z+ , again accumulating at +∞.

By the Riesz representation theorem [25], the measure space M0 can be characterized
using real functions of [0, 1] of bounded variations. For μ ∈ M0, we use ‖μ‖V to denote the
total variation of μ on [0, 1]. Then (M0, ‖ · ‖V) is a Banach space. SinceM0 is the dual space of
(C, ‖ · ‖∞), one has also inM0 the weak∗ topology w∗ defined as follows: μn → μ in (M0, w∗)
if and only if

lim
n→∞

∫

[0,1]
udμn =

∫

[0,1]
udμ ∀u ∈ C. (6.6)

It is well known that bounded subsets of (M0, ‖ · ‖V) are relatively compact and relatively
sequentially compact in (M0, w∗) [24, 25].

Some deep results on the dependence of eigenvalues λσn(μ) of MDE on measures μ are
as follows.

Theorem 6.1 (see [26, 27]). (i) In the norm topology ‖ · ‖V, λσn(μ) is continuously Fréchet
differentiable in μ ∈ (M0, ‖ · ‖V). Moreover, the formula for the Fréchet derivative ∂μλσn(μ) is similar
to (3.11).

(ii) In the weak∗ topology w∗, λσn(μ) are continuous in μ ∈ (M0, w∗).

Let us introduce spheres and balls of measures as follows:

S0[r] :=
{
μ ∈ M0 :

∥∥μ
∥∥
V = r

}
, B0[r] :=

{
μ ∈ M0 :

∥∥μ
∥∥
V ≤ r

}
, (6.7)

where r ≥ 0. Because of Theorem 6.1 and the compactness of B0[r] in (M0, w∗), the following
extremal problems

In(r) := min
μ∈B0[r]

λσn
(
μ
)
, Mn(r) := max

μ∈B0[r]
λσn
(
μ
)
, (6.8)

where n ∈ Z
+ are well posed. Moreover, both the minimum and the maximum can be realized

by some measures from B0[r]. Here, when n ∈ N, the values In(r) and Mn(r) are the same
for the Dirichlet and the Neumann eigenvalues. Since the Fréchet derivatives ∂μλ

σ
n(μ) are

nonzero, one sees that problems (6.8) are the same as

In(r) ≡ min
μ∈S0[r]

λσn
(
μ
)
, Mn(r) ≡ max

μ∈S0[r]
λσn
(
μ
)
. (6.9)

That is, the minimizing and maximizing measures of (6.8)must be on the sphere S0[r].
Recall from Theorem 6.1 that the functionals λσn(μ) we are minimizing/maximizing

are continuously differentiable. However, S0[r] is not differentiable in the space (M0, ‖ · ‖V).
The solution of problems (6.9) appeals for the LMM using the sub-differentials [36, 37].

For the zeroth Neumann eigenvalues λN0 (μ), problems (6.9) have been solved using
this idea in [22]. The results are as follows.
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Theorem 6.2 (see [22]). For any r ≥ 0, one has

I0(r) = min
μ∈S0[r]

λN0
(
μ
)
= λN0 (rδ0) = λN0 (rδ1) = Z−1

0 (r),

M0(r) = max
μ∈S0[r]

λN0
(
μ
)
= λN0 (−r�) = r,

(6.10)

where Z0 is defined by (5.12), and for a ∈ [0, 1], δa denotes the unit Dirac measure located at a, and
� is the Lebesgue measure of [0, 1].

Remark 6.3. Result (6.10) can give another explanation to result (5.13) in Section 5. To see this,
one can notice that any integrable potential q ∈ L1 induces an absolutely continuous measure
μq defined by

μq(t) :=
∫

[0,t]
q(s)ds for t ∈ [0, 1]. (6.11)

Since ‖μq‖V = ‖q‖1, one sees that B1[r] ⊂ (L1, ‖ · ‖1) can be isometrically embedded into
B0[r] ⊂ (M0, ‖ · ‖V). Hence one has

inf
q∈B1[r]

λN0
(
q
)
≥ min

μ∈S0[r]
λN0
(
μ
)
. (6.12)

On the other hand, the minimizing (singular) measures rδ0 and rδ1 in (6.9) can be
approximated by sequences {μqn} in the weak∗ topology w∗ where qn are smooth potentials
from B1[r]. Hence we have

min
μ∈S0[r]

λN0
(
μ
)
= lim

n→∞
λN0
(
μqn

)
≥ inf

q∈B1[r]
λN0
(
q
)
. (6.13)

Thus one has (5.13).

Let us return to theminimizing/maximizing problems of eigenvalues of (1.1) and (3.1)
for potentials q in B1[r]. Though B1[r] ⊂ L1 has no compactness in ‖ · ‖1 or w1, it has been
shown that all maximizing problems

sup
q∈B1[r]

λσn
(
q
)

(6.14)

can be realized by potentials from S1[r] ⊂ B1[r]. In fact, these maximizing potentials are step
potentials. For detailed construction, we refer to [17] for general p ∈ (1,∞).

On the other hand, because of the noncompactness of B1[r], r > 0, the corresponding
minimizing problems

inf
q∈B1[r]

λσn
(
q
)

(6.15)
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cannot be realized by any potential from B1[r], but by some singular measures from S0[r] ⊂
B0[r]. The following results hold for eigenvalues of (1.1), that is, p = 2 in (3.1). For example,
from (6.10) and (5.13), one has

inf
q∈B1[r]

λN0
(
q
)
= λN0 (rδ0) = λN0 (rδ1). (6.16)

For the first Dirichlet eigenvalues λD1 (q), one has from [20, 26] that

inf
q∈B1[r]

λD1
(
q
)
= λD1 (rδ1/2). (6.17)

The main result of [23] states that

inf
q∈B̃1[r]

λN0
(
q
)
= λN0

(
± r
2
(δ0 − δ1)

)
= −r

2

4
, (6.18)

where B̃1[r] = {q ∈ L1 : ‖q‖1 = r, q = 0}. Results (6.16)–(6.18) can yield a natural explanation
to what kinds of integrable potentials in B1[r]will decrease the eigenvalues.

7. Some Open Problems

We end this paper with two open problems.

Problem 1 (eigenvalue gaps). Let us consider, for example, the Dirichlet eigenvalues λn(q),
n ∈ N, of problem (1.1) with integrable potentials q ∈ L1. In applied sciences, it is important
to study eigenvalue gaps like λn+1(q) − λn(q), n ∈ N. See [38–42]. In most literature, only
single-well and symmetric potentials are considered, and lower and upper bounds for these
gaps are obtained. Because of the boundedness of λn(q) for q in bounded subsets of (L1, ‖·‖1),
the following extremal problems for eigenvalue gaps:

inf
q∈S1[r]

(
λn+1
(
q
)
− λn

(
q
))

sup
q∈S1[r]

(
λn+1
(
q
)
− λn

(
q
))
, n ∈ N, (7.1)

are well posed. The problem is how to solve these explicitly, including the extremal values
and the corresponding minimizers/maximizers.

Problem 2 (eigenvalues of the beam equation with integrable potentials). Given an integrable
potential q ∈ L1, consider the eigenvalue problem of the beam equation, or the Euler-
Bernoulli equation [43–45],

x(4) + q(t)x = λx, t ∈ [0, 1], (7.2)

with the Lidstone boundary condition

x(0) = x(1) = 0, x′′(0) = x′′(1) = 0. (7.3)
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Eigenvalues of problem (7.2)-(7.3) are still denoted by {λn(q)}n∈N
. Like the second-order

Sturm-Liouville operator (1.1), it is desirable to develop analogous ideas so that the following
extremal problems for eigenvalues:

inf
q∈S1[r]

λn
(
q
)
, sup

q∈S1[r]
λn
(
q
)
, (7.4)

and the extremal problems for eigenvalue gaps like

inf
q∈S1[r]

(
λ2
(
q
)
− λ1
(
q
))
, sup

q∈S1[r]

(
λ2
(
q
)
− λ1
(
q
))
, (7.5)

can be solved in a complete way.
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