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A new concept of the c-distance in cone metric space has been introduced recently in 2011. The
aim of this paper is to extend and generalize some fixed point results in literature for c-distance
in cone metric spaces by replacing the constants in contractive conditions with functions. Some
supporting examples are given.

1. Introduction

The concept of cone metric spaces is a generalization of metric spaces, where each pair of
points is assigned to a member of a real Banach space with a cone, for new results on cone
metric spaces see [1–8]. This cone naturally induces a partial order in the Banach spaces. The
concept of cone metric space was introduced in the work of Huang and Zhang [9] where
they also established the Banach contraction mapping principle in this space. Then, several
authors have studied fixed point problems in cone metric spaces. Some of these works are
noted in [10–15].

In [16], Cho et al. introduced a new concept of the c-distance in cone metric spaces
(also see [17]) and proved some fixed point theorems in ordered cone metric spaces. This is
more general than the classical Banach contraction mapping principle. Then, Sintunavarat et
al. [18] extended and developed the Banach contraction theorem on c-distance of Cho et al.
[16]. They gave some illustrative examples of main results. Their results improve, generalize,
and unify the results of Cho et al. [16] and some results of the fundamental metrical fixed
point theorems in the literature, for some new results for c-distance see [19–24].

In [21], Fadail et al. proved the following theorems for c-distance in conemetric spaces.
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Theorem 1.1. Let (X, d) be a complete cone metric space and q is a c-distance on X. Suppose the
mapping f : X → X satisfies the following contractive condition:

q
(
fx, fy

) � kq
(
x, y

)
, (1.1)

for all x, y ∈ X, where k ∈ [0, 1) is a constant. Then f has a fixed point x∗ ∈ X and for any x ∈ X,
iterative sequence {fnx} converges to the fixed point. If v = fv, then q(v, v) = θ. The fixed point is
unique.

Theorem 1.2. Let (X, d) be a complete cone metric space and q is a c-distance on X. Suppose the
mapping f : X → X is continuous and satisfies the following contractive condition:

q
(
fx, fy

) � kq
(
x, y

)
+ lq

(
x, fx

)
+ rq

(
y, fy

)
, (1.2)

for all x, y ∈ X, where k, l, r are none negative real numbers such that k+ l+r < 1. Then f has a fixed
point x∗ ∈ X and for any x ∈ X, iterative sequence {fnx} converges to the fixed point. If v = fv,
then q(v, v) = θ. The fixed point is unique.

Theorem 1.3. Let (X, d) be a complete cone metric space and q is a c-distance on X. Suppose the
mapping f : X → X satisfies the folowing contractive condition:

(1 − r)q
(
fx, fy

) � kq
(
x, fy

)
+ lq

(
x, fx

)
, (1.3)

for all x, y ∈ X, where k, l, r are none negative real numbers such that 2k + l + r < 1. Then f has
a fixed point x∗ ∈ X and for any x ∈ X, iterative sequence {fnx} converges to the fixed point. If
v = fv, then q(v, v) = θ. The fixed point is unique.

The aim of this paper is to continue the study of common coupled fixed points of
mappings but now for c-distance in cone metric space. Our results extend and develop some
theorems on c-distance of Fadail et al. [21]. In this paper, we do not impose the normality
condition for the cones; the only assumption is that the cone P is solid, that is, intP /= ∅.

2. Preliminaries

Let E be a real Banach space and θ denote to the zero element in E. A cone P is a subset of E
such that

(1) P is nonempty set closed and P /= {θ},
(2) if a, b are nonnegative real numbers and x, y ∈ P , then ax + by ∈ P ,

(3) x ∈ P and −x ∈ P implies x = θ.

For any cone P ⊂ E, the partial ordering � with respect to P is defined by x � y if and only if
y − x ∈ P . The notation of ≺ stand for x � y but x /=y. Also, we used x 	 y to indicate that
y − x ∈ intP , where intP denotes the interior of P . A cone P is called normal if there exists a
number K such that

θ � x � y =⇒ ‖x‖ ≤ K
∥∥y

∥∥, (2.1)
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for all x, y ∈ E. The least positive number K satisfying the above condition is called the
normal constant of P . It is clear that K ≥ 1.

Definition 2.1 (see [9]). Let X be a nonempty set and E a real Banach space equipped with
the partial ordering � with respect to the cone P . Suppose that the mapping d : X × X → E
satisfies the following conditions:

(1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y,

(2) d(x, y) = d(y, x) for all x, y ∈ X,

(3) d(x, y) � d(x, y) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 2.2 (see [9]). Let (X, d) be a cone metric space, {xn} a sequence in X, and x ∈ X.

(1) For all c ∈ E with θ 	 c, if there exists a positive integer N such that d(xn, x) 	 c
for all n > N, then xn is said to be convergent and x is the limit of {xn}. We denote
this by xn → x.

(2) For all c ∈ E with θ 	 c, if there exists a positive integer N such that d(xn, xm) 	 c
for all n,m > N, then {xn} is called a Cauchy sequence in X.

(3) A cone metric space (X, d) is called complete if every Cauchy sequence in X is
convergent.

Lemma 2.3 (see [25]). (1) If E be a real Banach space with a cone P and a � λa where a ∈ P and
0 ≤ λ < 1, then a = θ.

(2) If c ∈ intP , θ � an and an → θ, then there exists a positive integer N such that an 	 c
for all n ≥ N.

Nextwe give the notation of c-distance on a conemetric spacewhich is a generalization
of ω-distance of Kada et al. [26] with some properties.

Definition 2.4 (see [16]). Let (X, d) be a cone metric space. A function q : X ×X → E is called
a c-distance on X if the following conditions hold:

(q1) θ � q(x, y) for all x, y ∈ X,

(q2) q(x, y) � q(x, y) + q(y, z) for all x, y, z ∈ X,

(q3) for each x ∈ X and n ≥ 1, if q(x, yn) � u for some u = ux ∈ P , then q(x, y) � u
whenever {yn} is a sequence in X converging to a point y ∈ X,

(q4) for all c ∈ E with θ 	 c, there exists e ∈ E with θ 	 e such that q(z, x) 	 e and
q(z, y) 	 e imply d(x, y) 	 c.

Example 2.5 (see [16]). Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0,∞) and define a
mapping d : X × X → E by d(x, y) = |x − y| for all x, y ∈ X. Then (X, d) is a cone metric
space. Define a mapping q : X ×X → E by q(x, y) = y for all x, y ∈ X. Then q is a c-distance
on X.
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Lemma 2.6 (see [16]). Let (X, d) be a cone metric space and q is a c-distance on X. Let {xn} and
{yn} be sequences in X and x, y, z ∈ X. Suppose that un is a sequences in P converging to θ. Then
the following hold.

(1) If q(xn, y) � un and q(xn, z) � un, then y = z.

(2) If q(xn, yn) � un and q(xn, z) � un, then {yn} converges to z.

(3) If q(xn, xm) � un form > n, then {xn}is a Cauchy sequence in X.

(4) If q(y, xn) � un, then {xn} is a Cauchy sequence in X.

Remark 2.7 (see [16]). (1) q(x, y) = q(y, x) does not necessarily for all x, y ∈ X.
(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

3. Main Results

In this section, we generalize some fixed point results from [21] by replacing the constants in
contractive conditions with functions.

Theorem 3.1. Let (X, d) be a complete cone metric space and q is a c-distance on X. Let f : X → X
be a mapping and suppose that there exists mapping k : X → [0, 1) such that the following hold:

(a) k(fx) ≤ k(x) for all x ∈ X,

(b) q(fx, fy) � k(x)q(x, y) for all x, y ∈ X.

Then f has a fixed point x∗ ∈ X and for any x ∈ X, iterative sequence {fnx} converges to the fixed
point. If v = fv, then q(v, v) = θ. The fixed point is unique.

Proof. Choose x0 ∈ X. Set x1 = fx0, x2 = fx1 = f2x0, . . . , xn+1 = fxn = fn+1x0. Then we have

q(xn, xn+1) = q
(
fxn−1, fxn

)

� k(xn−1)q(xn−1, xn)

= k
(
fxn−2

)
q(xn−1, xn)

� k(xn−2)q(xn−1, xn)

· · ·
� k(x0)q(xn−1, xn)

� k2(x0)q(xn−2, xn−1)

� · · ·
� (k(x0))

nq(x0, x1).

(3.1)
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Let m > n ≥ 1. Then it follows that

q(xn, xm) � q(xn, xn+1) + q(xn+1, xn+2) + · · · + q(xm−1, xm)

�
(
(k(x0))

n + (k(x0))
n+1 + · · · + (k(x0))

m−1
)
q(x0, x1)

� (k(x0))
n

1 − k(x0)
q(x0, x1).

(3.2)

Thus, Lemma 2.6(3) shows that {xn} is a Cauchy sequence in X. Since X is complete, there
exists x∗ ∈ X such that xn → x∗ as n → ∞. By q3, we have

q(xn, x
∗) � (k(x0))

n

1 − k(x0)
q(x0, x1). (3.3)

On the other hand, we have

q
(
xn, fx

∗) = q
(
fxn−1, fx∗)

� k(xn−1)q(xn−1, x∗)

= k
(
fxn−2

)
q(xn−1, x∗)

� k(xn−2)q(xn−1, x∗)

· · ·
� k(x0)q(xn−1, x∗)

� k(x0)
(k(x0))

n−1

1 − k(x0)
q(x0, x1)

=
(k(x0))

n

1 − k(x0)
q(x0, x1).

(3.4)

By Lemma 2.6(3), (3.3), and (3.4), we have x∗ = fx∗. Thus, x∗ is a fixed point of f .
Suppose that v = fv, then we have q(v, v) = q(fv, fv) � k(v)q(v, v). Since k(v) < 1,

Lemma 2.3(1) shows that q(v, v) = θ.
Finally, suppose there is another fixed point y∗ of f , then we have: q(x∗, y∗) =

q(fx∗, fy∗) � k(x∗)q(x∗, y∗). Since k(x∗) < 1, Lemma 2.3(1) shows that q(x∗, y∗) = θ, and
also we have q(x∗, x∗) = θ, hence by Lemma 2.6(1), x∗ = y∗. Therefore, the fixed point is
unique.

In the above theorem, if k(x) is constant, then we have the following corollary.

Corollary 3.2 ([21, theorem 3.1]). Let (X, d) be a complete cone metric space and q is a c-distance
on X. Suppose the mapping f : X → X satisfies the following contractive condition:

q
(
fx, fy

) � kq
(
x, y

)
, (3.5)



6 Abstract and Applied Analysis

for all x, y ∈ X, where k ∈ [0, 1) is a constant. Then f has a fixed point x∗ ∈ X and for any x ∈ X,
iterative sequence {fnx} converges to the fixed point. If v = fv, then q(v, v) = θ. The fixed point is
unique.

Theorem 3.3. Let (X, d) be a complete cone metric space and q is a c-distance on X. Let f : X → X
be a continuous mapping and suppose that there exists mapping k, l, r : X → [0, 1) such that the
following hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x), r(fx) ≤ r(x) for all x ∈ X,

(b) (k + l + r)(x) < 1 for all x ∈ X,

(c) q(fx, fy) � k(x)q(x, y) + l(x)q(x, fx) + r(x)q(y, fy) for all x, y ∈ X.

Then f has a fixed point x∗ ∈ X and for any x ∈ X, iterative sequence {fnx} converges to the fixed
point. If v = fv, then q(v, v) = θ. The fixed point is unique.

Proof. Choose x0 ∈ X. Set x1 = fx0, x2 = fx1 = f2x0, . . . , xn+1 = fxn = fn+1x0. Then we have

q(xn, xn+1) = q
(
fxn−1, fxn

)

� k(xn−1)q(xn−1, xn) + l(xn−1)q
(
xn−1, fxn−1

)
+ r(xn−1)q

(
xn, fxn

)

= k
(
fxn−2

)
q(xn−1, xn) + l

(
fxn−2

)
q(xn−1, xn) + r

(
fxn−2

)
q(xn, xn+1)

� k(xn−2)q(xn−1, xn) + l(xn−2)q(xn−1, xn) + r(xn−2)q(xn, xn+1)

· · ·
� k(x0)q(xn−1, xn) + l(x0)q(xn−1, xn) + r(x0)q(xn, xn+1).

(3.6)

So

q(xn, xn+1) � k(x0) + l(x0)
1 − r(x0)

q(xn−1, xn)

= hq(xn−1, xn)

� h2q(xn−2, xn−1)

� · · ·
� hnq(x0, x1),

(3.7)

where h = (k(x0) + l(x0))/(1 − r(x0)) < 1.
Let m > n ≥ 1. Then it follows that

q(xn, xm) � q(xn, xn+1) + q(xn+1, xn+2) + · · · + q(xm−1, xm)

�
(
hn(x0) + hn+1(x0) + · · · + hm−1(x0)

)
q(x0, x1)

� hn(x0)
1 − h(x0)

q(x0, x1).

(3.8)
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Thus, Lemma 2.6(3) shows that {xn} is a Cauchy sequence in X. Since X is complete, there
exists x∗ ∈ X such that xn → x∗ as n → ∞. Since f is continuous, then x∗ = limxn+1 =
lim f(xn) = f(limxn) = f(x∗). Therefore x∗ is a fixed point of f .

Suppose that v = fv, then q(v, v) = q(fv, fv) � k(x0)q(v, v) + l(x0)q(v, fv) +
r(x0)q(v, fv) = (k + l + r)(x0)q(v, v). Since (k + l + r)(x0) < 1, Lemma 2.3(1) shows that
q(v, v) = θ.

Finally, suppose there is another fixed point y∗ of f , then we have

q
(
x∗, y∗) = q

(
fx∗, fy∗)

� k(x∗)q
(
x∗, y∗) + l(x∗)q

(
x∗, fx∗) + r(x∗)q

(
y∗, fy∗)

= k(x∗)q
(
x∗, y∗) + l(x∗)q(x∗, x∗) + r(x∗)q

(
y∗, y∗)

= k(x∗)q
(
x∗, y∗)

� k(x∗)q
(
x∗, y∗) + l(x∗)q

(
x∗, y∗) + r(x∗)q

(
x∗, y∗)

= (k + l + r)(x∗)q
(
x∗, y∗).

(3.9)

Since (k+l+r)(x0) < 1, Lemma 2.3(1) shows that q(x∗, y∗) = θ, and also we have q(x∗, x∗) = θ,
hence by Lemma 2.6(1), x∗ = y∗. Therefore, the fixed point is unique.

In Theorem 3.3, if k(x), l(x), and r(x) are constant, then we have the following
corollary.

Corollary 3.4 ([21, theorem 3.3]). Let (X, d) be a complete cone metric space and q is a c-distance on
X. Suppose the mapping f : X → X is continuous and satisfies the following contractive condition:

q
(
fx, fy

) � kq
(
x, y

)
+ lq

(
x, fx

)
+ rq

(
y, fy

)
, (3.10)

for all x, y ∈ X, where k, l, r are none negative real numbers such that k+ l+r < 1. Then f has a fixed
point x∗ ∈ X and for any x ∈ X, iterative sequence {fnx} converges to the fixed point. If v = fv,
then q(v, v) = θ. The fixed point is unique.

Theorem 3.5. Let (X, d) be a complete cone metric space and q is a c-distance on X. Let f : X → X
be a mapping and suppose that there exists mapping k, l, r : X → [0, 1) such that the following hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x), r(fx) ≤ r(x) for all x ∈ X,

(b) (2k + l + r)(x) < 1 for all x ∈ X,

(c) (1 − r(x))q(fx, fy) � k(x)q(x, fy) + l(x)q(x, fx) for all x, y ∈ X.

Then f has a fixed point x∗ ∈ X and for any x ∈ X, iterative sequence {fnx} converges to the fixed
point. If v = fv, then q(v, v) = θ. The fixed point is unique.

Proof. Choose x0 ∈ X. Set x1 = fx0, x2 = fx1 = f2x0, . . . , xn+1 = fxn = fn+1x0. Observe that

(1 − r(x))q
(
fx, fy

) � k(x)q
(
x, fy

)
+ l(x)q

(
x, fx

)
, (3.11)
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equivalently

q
(
fx, fy

) � k(x)q
(
x, fy

)
+ l(x)q

(
x, fx

)
+ r(x)q

(
fx, fy

)
. (3.12)

Then we have

q(xn, xn+1) = q
(
fxn−1, fxn

)

� k(xn−1)q
(
xn−1, fxn

)
+ l(xn−1)q

(
xn−1, fxn−1

)
+ r(xn−1)q

(
fxn−1, fxn

)

= k
(
fxn−2

)
q(xn−1, xn+1) + l

(
fxn−2

)
q(xn−1, xn) + r

(
fxn−2

)
q(xn, xn+1)

� k(xn−2)q(xn−1, xn+1) + l(xn−2)q(xn−1, xn) + r(xn−2)q(xn, xn+1)

· · ·
� k(x0)q(xn−1, xn+1) + l(x0)q(xn−1, xn) + r(x0)q(xn, xn+1)

� k(x0)q(xn−1, xn) + k(x0)q(xn, xn+1) + l(x0)q(xn−1, xn) + r(x0)q(xn, xn+1).

(3.13)

So

q(xn, xn+1) � k(x0) + l(x0)
1 − k(x0) − r(x0)

q(xn−1, xn)

= hq(xn−1, xn)

� h2q(xn−2, xn−1)

� · · ·
� hnq(x0, x1),

(3.14)

where h = (k(x0) + l(x0))/(1 − k(x0) − r(x0)) < 1.
Let m > n ≥ 1. Then it follows that

q(xn, xm) � q(xn, xn+1) + q(xn+1, xn+2) + · · · + q(xm−1, xm)

�
(
hn + hn+1 + · · · + hm−1

)
q(x0, x1)

� hn

1 − h
q(x0, x1).

(3.15)

Thus, Lemma 2.6(3) shows that {xn} is a Cauchy sequence in X. Since X is complete, there
exists x∗ ∈ X such that xn → x∗ as n → ∞.

By q3, we have

q(xn, x
∗) � hn

1 − h
q(x0, x1). (3.16)
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On the other hand, we have

q
(
xn, fx

∗) = q
(
fxn−1, fx∗)

� k(xn−1)q
(
xn−1, fx∗) + l(xn−1)q

(
xn−1, fxn−1

)
+ r(xn−1)q

(
fxn−1, fx∗)

= k
(
fxn−2

)
q
(
xn−1, fx∗) + l

(
fxn−2

)
q(xn−1, xn) + r

(
fxn−2

)
q(xn, xn+1)

� k(xn−2)q
(
xn−1, fx∗) + l(xn−2)q(xn−1, xn) + r(xn−2)q(xn, xn+1)

· · ·
� k(x0)q

(
xn−1, fx∗) + l(x0)q(xn−1, xn) + r(x0)q(xn, xn+1)

� k(x0)q(xn−1, xn) + k(x0)q
(
xn, fx

∗) + l(x0)q(xn−1, xn) + r(x0)q
(
xn, fx

∗).

(3.17)

So

q
(
xn, fx

∗) � k(x0) + l(x0)
1 − k(x0) − r(x0)

q(xn−1, xn)

� k(x0) + l(x0)
1 − k(x0) − r(x0)

hn−1q(x0, x1)

= hhn−1q(x0, x1)

= hnq(x0, x1)

� hn

1 − h
q(x0, x1).

(3.18)

By Lemma 2.6(1), (3.16), and (3.18), we have x∗ = fx∗. Thus, x∗ is a fixed point of f .
Suppose that v = fv, then we have

q(v, v) = q
(
fv, fv

)

� k(v)q
(
v, fv

)
+ l(v)q

(
v, fv

)
+ r(v)q

(
v, fv

)

= k(v)q(v, v) + l(v)q(v, v) + r(v)q(v, v)

� k(v)q(v, v) + k(v)q(v, v) + l(v)q(v, v) + r(v)q(v, v)

= (2k + l + r)(v)q(v, v).

(3.19)

Since (2k + l + r)(v) < 1, Lemma 2.3 (1) shows that q(v, v) = θ.
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Finally, suppose there is another fixed point y∗ of f , then we have

q
(
x∗, y∗) = q

(
fx∗, fy∗)

� k(x∗)q
(
x∗, fy∗) + l(x∗)q

(
x∗, fx∗) + r(x∗)q

(
fx∗, fy∗)

� k(x∗)q
(
x∗, fy∗) + k(x∗)q

(
x∗, fy∗) + l(x∗)q

(
x∗, fx∗) + r(x∗)q

(
fx∗, fy∗)

= k(x∗)q
(
x∗, y∗) + k(x∗)q

(
x∗, y∗) + l(x∗)q(x∗, x∗) + r(x∗)q

(
x∗, y∗)

= k(x∗)q
(
x∗, y∗) + k(x∗)q

(
x∗, y∗) + r(x∗)q

(
x∗, y∗)

� k(x∗)q
(
x∗, y∗) + k(x∗)q

(
x∗, y∗) + l(x∗)q

(
x∗, y∗) + r(x∗)q

(
x∗, y∗)

= (2k + l + r)(x∗)q
(
x∗, y∗).

(3.20)

Since (2k+l+r)(x∗) < 1, Lemma 2.3(1) shows that q(x∗, y∗) = θ and also we have q(x∗, x∗) = θ,
hence by Lemma 2.6(1), x∗ = y∗. Therefore, the fixed point is unique.

In Theorem 3.5, if k(x), l(x), and r(x) are constants, then we have the following
corollary.

Corollary 3.6 ([21, Theorem 3.5]). Let (X, d) be a complete cone metric space and q is a c-distance
on X. Suppose the mapping f : X → X satisfies the following contractive condition:

(1 − r)q
(
fx, fy

) � kq
(
x, fy

)
+ lq

(
x, fx

)
, (3.21)

for all x, y ∈ X, where k, l, r are none negative real numbers such that 2k + l + r < 1. Then f has
a fixed point x∗ ∈ X and for any x ∈ X, iterative sequence {fnx} converges to the fixed point. If
v = fv, then q(v, v) = θ. The fixed point is unique.

Example 3.7. Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0, 1] and define a mapping
d : X × X → E by d(x, y) = |x − y| for all x, y ∈ X. Then (X, d) is a complete cone metric
space. Define a mapping q : X ×X → E by q(x, y) = y for all x, y ∈ X. Then q is a c-distance
on X. Define the mapping f : X → X by fx = x2/4 for all x ∈ X. Take k(x) = (x + 2)/4,
x ∈ X. Observe that

(a) k(fx) = ((x2/4) + 2)/4 = (1/4)((x2/4) + 2) ≤ (1/4)(x + 2) = k(x) for all x ∈ X.

(b) For all x ∈ X, we have

q
(
fx, fy

)
= fy

=
y2

4

� y

2

�
(
x

4
+
1
2

)
y
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=
1
4
(x + 2)y

= k(x)y

= k(x)q
(
x, y

)
.

(3.22)

Therefore, the conditions of Theorem 3.1 are satisfied. Hence f has a unique fixed point x = 0
with q(0, 0) = 0.
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