
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 312536, 17 pages
doi:10.1155/2012/312536

Research Article
Asymptotic Behavior of Approximated Solutions to
Parabolic Equations with Irregular Data

Weisheng Niu1 and Hongtao Li2

1 School of Mathematical Sciences, Anhui University, Hefei 230039, China
2 School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

Correspondence should be addressed to Weisheng Niu, weisheng.niu@gmail.com

Received 10 July 2012; Accepted 17 August 2012

Academic Editor: Sergey V. Zelik

Copyright q 2012 W. Niu and H. Li. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Let Ω be a smooth bounded domain in R
N, (N ≥ 3). We consider the asymptotic behavior of

solutions to the following problem ut − div(a(x)∇u) + λf(u) = μ in Ω × R
+, u = 0 on ∂Ω ×

R
+, u(x, 0) = u0(x) in Ω, where u0 ∈ L1(Ω), μ is a finite Radon measure independent of time. We

provide the existence and uniqueness results on the approximated solutions. Then we establish
some regularity results on the solutions and consider the long-time behavior.

1. Introduction

We consider the asymptotic behavior of solutions to the following equations

ut − div(a(x)∇u) + λf(u) = μ, in Ω × R
+,

u = 0, on ∂Ω × R
+,

u(x, 0) = u0(x), in Ω,

(1.1)

whereΩ is a bounded domain in R
N (N ≥ 2)with smooth boundary ∂Ω, u0 ∈ L1(Ω), λ ≥ 0,μ

is a finite Radon measure independent of time, a(x) is a matrix with bounded, measurable
entries, and satisfying the ellipticity assumption

a(x)ξ · ξ ≥ c|ξ|2, for any ξ ∈ R
N,with c > 0. (1.2)
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Concerning the nonlinear term, we assume that f is a C1 function satisfying,

f ′(s) ≥ −l, (1.3)

∣
∣f ′(s)

∣
∣ ≤ C

(

1 + |s|p−2
)

, p ≥ 2, (1.4)

C|s|p − k ≤ f(s)s ≤ C|s|p + k, p ≥ 2, (1.5)

both for all s ∈ R, where l, C, k are positive constants.
Parabolic equations with L1 or measure data arise in many physical models, control

problems, and inmodels of turbulent flows in oceanography and climatology [1–4]. Existence
and regularity results for parabolic equations with L1 and measure data have been studied
widely by many authors in the past decades, see [5–10]. The usual approach to study
problems with these kinds of data is approximation. The basic reference for these arguments
is [7], where the authors obtained weak solutions (in distribution sense) to nonlinear
parabolic equations. In our setting, such a solution is a function u ∈ L1((0, T);W1,1

0 (Ω)) such
that f(u) ∈ L1(QT ) for any T > 0, and

−
∫

QT

uϕtdx dt +
∫

QT

a(x)∇u∇ϕdx dt + λ
∫

QT

f(u)ϕdx dt =
∫

QT

ϕdμ +
∫

Ω
u0(x)ϕ(0, x)dx,

(1.6)

for any ϕ ∈ C∞
c ([0, T) ×Ω).

Generally, the regularity of weak solutions (in distribution sense) is not strong enough
to ensure uniqueness [8]. But one may select a weak solution which is “better” than the
others. Since one may prove that the weak solution obtained from approximation does not
depend on the approximation chosen for the irregular data. In such a sense, it is the only
weak solution which is found by means of approximations; we may call it approximated
solutions. Such a concept was first introduced by [9]. Here in the present paper, we will focus
ourselves to the scope of approximated solutions, that is, weak solutions obtained as limits
of approximations.

The long-time behavior of parabolic problems with irregular data (such as L1 data,
measure data) have been considered by many authors [11–16]. In [11, 12], existence of global
attractors for porous media equations and m-Laplacian equations with irregular initial data
were deeply studied, while in [13, 14] the convergence to the equilibrium for the solutions
of parabolic problems with measrued data were thoroughly investigated. In [15, 16], we
considered the existence of global attractors for the parabolic equations with L1 data.

In this paper, we intend to consider the asymptotic behavior of approximated solutions
to problem (1.1) with measure data. Precisely speaking, we assume that the forcing term in
the equations is just a finite Radon measure. For the case λ > 0, to ensure the existence result
for large p in (1.5) [17], we restrict ourselves to diffuse measures, that is, μ does not charge the
sets of zero parabolic 2-capacity (see details for parabolic p-capacity in [18]). We first provide
the existence result for problem (1.1) and prove the uniqueness of the approximated solution.
Then using some decomposition techniques, we establish some new regularity results and
show the existence of a global attractorA in Lp−1(Ω)∩W1,q

0 (Ω)with q < max{N/(N−1), (2p−
2)/p}, which attracts every bounded subset of L1(Ω) in the norm of Lr(Ω) ∩H1

0(Ω), for any
r ∈ [1,∞).
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For the case λ = 0, we consider general bounded Radon measure μ which is
independent of time. We provide the uniqueness of approximated solutions for the parabolic
problem and its corresponding elliptic problem. Then we prove that the approximated
solution of the parabolic equations converges to the unique approximated solution of the
corresponding elliptic equations in the norm topology of Lr(Ω) ∩H1

0(Ω), for any r ∈ [1,∞),
though they all lie in some less regular spaces.

Our main results can be stated as follows.

Theorem 1.1. Assume that u0 ∈ L1(Ω), λ > 0, μ is a bounded Radon measure, which does not
charge the sets of zero parabolic 2-capacity and is independent of time, f is a C1 function satisfying
assumptions (1.3)–(1.5). Then the semigroup {S(t)}t≥0, generated by approximated solutions of
problem (1.1), possesses a global attractor A in L1(Ω). Moreover, A is compact and invariant in
Lp−1(Ω) ∩W1,q

0 (Ω) with q < max{N/(N − 1), (2p − 2)/p}, and attracts every bounded subset of
L1(Ω) in the norm topology of Lr(Ω) ∩H1

0(Ω), 1 ≤ r <∞.

Theorem 1.2. Assume that u0 ∈ L1(Ω), λ = 0, μ is a bounded Radon measure independent of
time. Then the approximated solution u(t) of problem (1.1) is unique and converges to the unique
approximated solution of the corresponding elliptic equations in the norm topology of Lr(Ω)∩H1

0(Ω),
for any 1 ≤ r <∞.

Remark 1.3. Though u(t) and v all lie in some less-regular spaces, u(t) converges to v in
stronger norm, that is, u(t) − v converges to 0 in Lr(Ω) ∩H1

0(Ω), 1 ≤ r < ∞. Such a result, in
some sense, sharpens the result of [13], where the author showed that u(t) converges to v in
L1(Ω).

We organize the paper as follows: in Section 2, we provide the existence of
approximated solutions, prove the uniqueness result and some useful lemmas; in Section 3,
we establish some improved regularity results on the approximated solutions. At last, in
Section 4, we prove the main theorems.

For convenience, for any T > 0 we use QT to denote Ω × (0, T) hereafter. Also, we
denote by |E| the Lebesgue measure of the set E, and denote by C any positive constant
which may be different from each other even in the same line.

2. Existence Results and Useful Lemmas

We begin this section by providing some existence results on the approximated solutions.

Definition 2.1. A function u is called an approximated solution of problem (1.1), if u ∈
L1((0, T);W1,1

0 (Ω)), f(u) ∈ L1(QT ) for any T > 0, and

−
∫

QT

uϕtdx dt +
∫

QT

a(x)∇u∇ϕdx dt + λ
∫

QT

f(u)ϕdx dt =
∫

QT

ϕdμ +
∫

Ω
u0(x)ϕ(0, x)dx,

(2.1)
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for any ϕ ∈ C∞
c ([0, T) ×Ω), and moreover, u is obtained as limit of solutions to the following

approximated problem

unt − div(a(x)∇un) + λf(un) = μn, in Ω × R
+,

u = 0, on ∂Ω × R
+,

u(x, 0) = un0 , in Ω,

(2.2)

where {μn}, {un0} is a smooth approximation of data μ, u0.

Theorem 2.2. Under the assumptions of Theorem 1.1, problem (1.1) has a unique approximated
solution u ∈ C([0, T];L1(Ω)), for any T > 0, satisfying

(i) if p ≥ (2N + 2)/N, then u ∈ Lq((0, T);W1,q
0 (Ω)) with q < (2p − 2)/p;

(ii) if 2 ≤ p < (2N + 2)/N, then u ∈ Lq((0, T);W1,q
0 (Ω)) with q < (N + 2)/(N + 1).

Proof. According to [18, Theorem 2.12], if a Radon measure μ on QT does not charge the
sets of zero parabolic 2-capacity and is independent of time, μ can actually be identified as a
Radon measure which is absolutely continuous with respect to the elliptic 2-capacity. Using
Theorem 2.1 of [19], μ can be decomposed as μ = g + divG, where g ∈ L1(Ω), G ∈ (L2(Ω))N .
Hence, we need only to consider the following problem

ut − div(a(x)∇u) + λf(u) = g + divG, in Ω × R
+,

u = 0, on ∂Ω × R
+,

u(x, 0) = u0, in Ω.

(2.3)

The proof of existence part of the theorem is similar to [9]. Besides, one can prove u ∈
C([0, T];L1(Ω)) using arguments similar to CLAIM 2 in [8]. So we omit the details of them
and only prove the uniqueness result.

Let {gn}n∈N
, {un0}n∈N

be a smooth approximation of data g and u0 with

∥
∥un0

∥
∥
L1(Ω) ≤ ‖u0‖L1(Ω),

∥
∥g̃n

∥
∥
L1(Ω) ≤

∥
∥g

∥
∥
L1(Ω), (2.4)

and let {g̃n}n∈N
, {ũn0}n∈N

be another smooth approximation of the data with

∥
∥ũn0

∥
∥
L1(Ω) ≤ ‖u0‖L1(Ω),

∥
∥g̃n

∥
∥
L1(Ω) ≤

∥
∥g

∥
∥
L1(Ω). (2.5)
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Assume that u, ũ are two approximated solutions to problem (1.1), obtained as limit of the
solutions to the following two approximated problems, respectively,

unt − div(a(x)∇un) + λf(un) = gn + divG, in Ω × R
+,

u = 0, on ∂Ω × R
+,

u(x, 0) = un0 , in Ω,

(2.6)

ũnt − div(a(x)∇ũn) + λf(ũn) = g̃n + divG, in Ω × R
+,

u = 0, on ∂Ω × R
+,

u(x, 0) = ũn0 , in Ω.

(2.7)

Now we prove that u = ũ. For any k > 0, define ψk(s) as

ψk(s) =

⎧

⎪⎪
⎨

⎪⎪⎩

k, s > k

s, |s| ≤ k
−k, s < −k.

(2.8)

Let Ψk(σ) =
∫σ

0 ψk(s)ds be its primitive function. Taking ψk(un − ũn) as a test function in (2.6)
and (2.7), we deduce that

∫

Ω
Ψk(un − ũn)(t)dx −

∫

Ω
Ψk

(

un0 − ũn0
)

dx +
∫

QT

a(x)
(∇ψk(un − ũn)

)2
dx dt

= λ
∫

QT

(

f(ũn) − f(un))ψk(un − ũn)dx dt +
∫

QT

(

gn − g̃n)ψk(un − ũn)dx dt

≤
∫

QT

λl(un − ũn)ψk(un − ũn)dx dt +
∫

QT

∣
∣gn − g̃n∣∣dx dt.

(2.9)

Hence, from the assumptions on f , we get

∫

Ω
Ψk(un − ũn)(t)dx ≤ 2lλ

∫T

0

∫

Ω
Ψk(un − ũn)dx dt +

∫

QT

∣
∣gn − g̃n∣∣dx dt +

∫

Ω
Ψk

(

un0 − ũn0
)

dx.

(2.10)

Let n → ∞, we have

∫

Ω
Ψk(u − ũ)(t)dx ≤ 2lλ

∫T

0

∫

Ω
Ψk(u − ũ)(t)dx dt. (2.11)
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Thus for all k > 0, we have

sup
[0,T]

∫

Ω
Ψk(ũ − u)(t)dx ≤ 2lT sup

[0,T]

∫

Ω
Ψk(ũ − u)dx. (2.12)

Taking T ′ small enough such that 2lλT ′ < 1, we deduce that Ψk(u − u) = 0 for all k > 0 in QT ′ ,
thus u ≡ u in QT ′ . Dividing [0, T] into several intervals to carry out the same arguments, we
obtain the uniqueness of the approximated solution.

Similar to [20], we can prove the following.

Theorem 2.3. Under the assumptions of Theorem 1.1, there exists at least one approximated solution
v to the stationary problem of corresponding to problem (1.1), with

(i) if p ≥ (2N − 2)/(N − 2), we have v ∈W1,q
0 (Ω) for q < (2p − 2)/p;

(ii) if 2 ≤ p < (2N − 2)/(N − 2), we have v ∈W1,q
0 (Ω) for q < N/(N − 1).

Remark 2.4. Note that if v is an approximated solution to following problem

−div(a(x)∇v) + λf(v) = g + divG, in Ω,

v = 0, on ∂Ω,
(2.13)

then there is a sequence {vn} converges to v, where vn is the solution of the corresponding
approximated problem

−div(a(x)∇vn) + λf(vn) = gn + divG, in Ω,

vn = 0, on ∂Ω.
(2.14)

And hence vn is a solution of parabolic equations

vnt − div(a(x)∇vn) + λf(vn) = gn + divG, in Ω × R
+,

vn = 0, on ∂Ω × R
+,

vn(0) = vn(x), in Ω.

(2.15)

Thus, v is an approximated solution of problem (1.1) with initial data u0 = v(x).

Under the assumptions of Theorem 1.2, the problem turns out to be

ut − div(a(x)∇u) = μ, in Ω × R
+,

u = 0, on ∂Ω × R
+,

u(x, 0) = u0, in Ω.

(2.16)

The existence of approximated solutions to problem (1.1) and the elliptic equations
corresponding to it follows directly from Sections IV and II of [7]. Form Section 2.3 of [21], we
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know that the approximated solution to the stationary equations is actually a duality solution,
and hence unique. Furthermore, it is not difficult to prove that an approximated solution for
linear parabolic equations turns out to be a duality solution, and hence unique too.

Lemma 2.5. Under the assumptions of Theorem 1.2, an approximated solution to the parabolic
problem (1.1), (2.16) turns out to be a duality solution, and conversely.

Proof. The proof is mainly similar to that of Theorem 6 in [22]. We just sketch it. Let u be an
approximated solution, then there exist a smooth approximation {μn}n∈N

, {un0}n∈N
of data μ

and u0, such that the solution of the approximated problem of (2.16) with data μn and un0
converges to u. Let h ∈ C∞

c (QT ) and ω be the solution of the the following parabolic problem

−ωt − div(a∗(x)∇ω) = h, in Ω × (0, T),

ω = 0, on ∂Ω × (0, T),

ω(x, T) = 0, in Ω,

(2.17)

where a∗(x) is the transposed matrix of a(x). Taking ω as a test function in the approximated
problem and taking un as a test function in the problem above, then let n go to infinity we
obtain that the approximated solution is a duality solution. Form the uniqueness of duality
solutions [13], we get the conclusion.

Now we provide two lemmas which are useful in analyzing the regularity and
asymptotic behavior of the solutions to problem (1.1).

Lemma 2.6 (see [15]). Let X, Y be two Banach spaces, let X be separable, reflexive, and let X ⊂ Y
with dual X∗. Suppose that {un} is uniformly bounded in L∞((0, T);X) with

ess sup
t∈[0,T]

‖un(t)‖X ≤ C, (2.18)

and that un → u weakly in Lr((0, T);X) for some r ∈ (1,∞). Then

ess sup
t∈[0,T]

‖u(t)‖X ≤ C. (2.19)

Moreover, if u ∈ C([0, T];Y ), then in fact

sup
t∈[0,T]

‖u(t)‖X ≤ C. (2.20)

Lemma 2.7 (see [16]). Let X,Y be two Banach spaces with imbedding X ↪→ Y , let {S(t)}t≥0 be
a continuous semigroup on Y . Assume that {S(t)}t≥0 is asymptotically compact in X and has an
absorbing set B0 ⊂ X, that is, for any bounded set B ⊂ Y , there exists a T = T(B) such that

S(t)B ⊂ B0, ∀t ≥ T. (2.21)

Then {S(t)}t≥0 has a global attractor A in X, which is compact, invariant in X and attracts every
bounded sets of Y in the topology of X.
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Remark 2.8. To obtain global attractors, one usually needs the semigroup to be norm-to-
norm continuous, weak-to-weak, or norm-to-weak continuous [23–27]. Here, to obtain global
attractors in the space X, we need neither of them. We only need the semigroup to be
continuous in a less-regular space Y .

3. Improved Regularity Results on the Approximated Solutions

In this section, we prove the following regularity results on the approximated solution u to
problem (1.1).

Theorem 3.1. Under the assumptions of Theorem 2.2, let u(t) be the approximated solution to
problem (1.1). Then u admits the decomposition u(x, t) = w(x, t) + v(x), with v being an
approximated solution to problem (2.13), and w being an approximated solution of the following
problem

wt − div(a(x)∇w) + λf(v +w) − λf(v) = 0, in Ω × R
+,

w = 0, on ∂Ω × R
+,

w(x, 0) = u0 − v, in Ω.

(3.1)

Moreover, we have

(i) w ∈ L∞((δ, T);Lq(Ω)) for any 0 < δ < T, 1 ≤ q < ∞. Moreover, there exists a constant
Mq and a time tq(u0, g, G) such that ‖w(t)‖Lq(Ω) ≤Mq for all t ≥ tq(u0, g, G).

(ii) w ∈ L∞((δ, T);H1
0(Ω)) for any 0 < δ < T . Moreover, there exists a constant ρ and a time

T0(u0, g, G) such that ‖w(t)‖H1
0 (Ω) ≤ ρ for all t ≥ T0(u0, g, G).

Proof. We follow the lines of [15, 28]. Let {gn} be a sequence of smooth data which converges
to g in L1(Ω) and ‖gn‖L1(Ω) ≤ ‖g‖L1(Ω). Let vn be a solution of the following approximated
problem for each n,

−div(a(x)∇vn) + λf(vn) = gn + divG, in Ω,

vn = 0, on ∂Ω.
(3.2)

Then vn converges (up to subsequences) to an approximated solution v strongly in L1(Ω),
andweakly inW1,q

0 (Ω), 1 ≤ q < N/(N−1). Let {un} be a sequence of solutions to the following
approximated problem

unt − div(a(x)∇un) + λf(un) = gn(x) + divG, in Ω × R
+,

un(x) = 0, on ∂Ω × R
+,

un(x, 0) = un0 , in Ω,

(3.3)
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where un0 converges to u0 with ‖un0‖L1(Ω) ≤ ‖u0‖L1(Ω). Similar to [8, 29], we know that

un −→ u weakly in Lq
(

(0, T);W1,q
0 (Ω)

)

, q <
N + 2
N + 1

,

un −→ u in C
(

[0, T];L1(Ω)
)

.

(3.4)

Now let wn(t) = un(t) − vn. Then wn satisfies

wn
t − div(a(x)∇wn) + λf(vn +wn) − λf(vn) = 0, in Ω × R

+,

wn = 0, on ∂Ω × R
+,

wn(x, 0) = un0 − vn, in Ω.

(3.5)

Similarly, we have wn (up to subsequences) converges to the approximated solution w of
problem (3.1) in C([0, T];L1(Ω)) and weakly in Lq((0, T);W1,q

0 (Ω)), q < (N + 2)/(N + 1).
Nowwe prove (i). Taking ψ1(un) as test function in (3.3) (for simplicity we take λ = 1),

we deduce that

d

dt

∫

Ω
Ψ1(un)dx +

∫

Ω
f(un)ψ1(un)dx ≤ ∥

∥g
∥
∥
L1(Ω) + C‖G‖L2(Ω). (3.6)

Since

f(un)ψ1(un) ≥
(

C|un|p−1 − C
)∣
∣ψ1(un)

∣
∣, (3.7)

we have

d

dt

∫

Ω
Ψ1(un)dx + C

∫

Ω
|Ψ1(un)|dx ≤ ∥

∥g
∥
∥
L1(Ω) + C‖G‖L2(Ω) + C|Ω|. (3.8)

The Gronwall’s inequality implies that

∫

Ω
Ψ1(un(t))dx ≤ ‖u0‖L1(Ω)e

−Ct + C|Ω| + C∥∥g∥∥L1(Ω) + C‖G‖L2(Ω). (3.9)

Noticing that

∫

Ω
|un(t)|dx ≤

∫

Ω
Ψ1(un(t))dx + |Ω|, (3.10)

we obtain that

∫

Ω
|un(t)|dx ≤ ‖u0‖L1(Ω)e

−Ct + C|Ω| + C∥∥g∥∥L1(Ω) + C‖G‖L2(Ω), t ≥ 0. (3.11)
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Moreover, integrating (3.6) between t and t + 1 and using (3.7)we have

∫ t+1

t

∫

Ω
|un|p−1dx dξ ≤ C

(

‖u0‖L1(Ω)e
−Ct + |Ω| + ∥

∥g
∥
∥
L1(Ω) + ‖G‖L2(Ω)

)

. (3.12)

Similarly, taking ψ1(vn) as test function in (3.2), we can deduce that

∫

Ω

∣
∣f(vn)

∣
∣dx ≤ C

∫

Ω

(

|vn|p−1 + 1
)

dx ≤ C
(∥
∥g

∥
∥
L1(Ω) + ‖G‖L2(Ω) + |Ω|

)

. (3.13)

Hence,

∫ t+1

t

∫

Ω
|wn|p−1dx dξ ≤ C

(∥
∥g

∥
∥
L1(Ω) + ‖G‖L2(Ω) + ‖u0‖L1(Ω) + |Ω|

)

, (3.14)

with C independent of n, for t ≥ 0.
Now we use bootstrap method in the case p ≥ 3. The case 2 ≤ p < 3 can be treated

similarly with minor modifications. Multiplying (3.5) by |wn|q0−2wn, q0 = p − 1 ≥ 2, and
integrating on Ω, we obtain

1
q0

d

dt

∫

Ω
|wn|q0dx +

(

q0 − 1
)

c

∫

Ω
|∇wn|2|wn|q0−2dx ≤ l

∫

Ω
|wn|q0dx. (3.15)

Since |∇wn|2|wn|q0−2 = (2/q0)
2|∇(|wn|(q0−2)/2wn)|2, we deduce that

d

dt

∫

Ω
|wn|q0dx +

∫

Ω

∣
∣
∣∇

(

|wn|(q0−2)/2wn
)∣
∣
∣

2
dx ≤ C

∫

Ω
|wn|q0dx. (3.16)

Integrating (3.16) between s and t + 1 (t ≤ s < t + 1), it yields

∫

Ω
|wn(t + 1)|q0dx ≤ C

∫ t+1

s

∫

Ω
|wn|q0dx dξ +

∫

Ω
|wn(s)|q0dx. (3.17)

Integrating the above inequality with respect to s between t and t + 1, we get

∫

Ω
|wn(t + 1)|q0dx ≤ C

∫ t+1

t

∫

Ω
|wn|q0dx dξ. (3.18)

Therefore,

∫

Ω
|wn(t)|q0dx ≤ C, ∀t ≥ 1. (3.19)
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Integrating (3.16) on [t, t + 1] for t ≥ 1, we deduce that

∫ t+1

t

∫

Ω
|∇

(

|wn|(q0−2)/2wn
)

|2dx dξ ≤ C
∫ t+1

t

∫

Ω
|wn(ξ)|q0dx dξ + C

∫

Ω
|wn(t)|q0dx ≤ C. (3.20)

Note that (3.20) insures that, for any t ≥ 1, there exists at least a t0 ∈ [t, t + 1] such that

∫

Ω

∣
∣
∣∇

(

|wn(t0)|(q0−2)/2wn(t0)
)∣
∣
∣

2
dx ≤ C. (3.21)

Standard Sobolev imbedding implies that

∫

Ω
|wn(t0)|q0(N/(N−2))dx ≤ C. (3.22)

Now multiplying (3.5) by |wn|q1−2wn, q1 = (N/(N − 2))q0, we have

N − 2
Nq0

d

dt

∫

Ω
|wn|(N/(N−2))q0dx + C

(

c, q0,N
)
∫

Ω

∣
∣
∣∇

(

|wn|(Nq0−2N+4)/(2N−4)wn
)∣
∣
∣

2
dx

≤ l
∫

Ω
|wn|(N/(N−2))q0dx.

(3.23)

Using Hölder inequality, and Young inequality we deduce that

∫

Ω
|wn|(N/(N−2))q0dx ≤ ε′

∫

Ω

∣
∣
∣∇

(

|wn|(Nq0−2N+4)/(2N−4)wn
)∣
∣
∣

2
dx + Cε

(∫

Ω
|wn|q0dx

)N/(N−2)
.

(3.24)

Taking (3.24) into (3.23), it yields

d

dt

∫

Ω
|wn|(N/(N−2))q0dx + C′(c, q0,N

)
∫

Ω

∣
∣
∣∇

(

|wn|(Nq0−2N+4)/(2N−4)wn
)∣
∣
∣

2
dx

≤ C′
ε

(∫

Ω
|wn|q0dx

)N/(N−2)
.

(3.25)

Integrating (3.25) between t0 and t0 + s, 0 < s ≤ 1, we have

∫

Ω
|wn(t0 + s)|(N/(N−2))q0dx ≤

∫

Ω
|wn(t0)|(N/(N−2))q0dx + C′

ε

(∫

Ω
|wn|q0dx

)N/(N−2)
. (3.26)

Therefore, from (3.19) and (3.22) we get

∫

Ω
|wn(t)|(N/(N−2))q0dx =

∫

Ω
|wn(t)|q1dx ≤ C, ∀t ≥ 2, (3.27)
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with C independent of n. Integrating (3.25) between t and t + 1 for t ≥ 2, we obtain

∫ t+1

t

∫

Ω

∣
∣
∣∇

(

|wn|(q1−2)/2wn
)∣
∣
∣

2
dx dξ =

∫ t+1

t

∫

Ω
|∇(|wn|(Nq0−2N+4)/(2N−4)wn)|2dx dξ ≤ C. (3.28)

Similar to (3.22), for any t ≥ 2, there exists at least a t0 ∈ [t, t + 1] such that

∫

Ω
|wn(t0)|q0(N

2/(N−2)2)dx ≤ C. (3.29)

Bootstrap the above processes, we can deduce that

∫

Ω
|wn(t)|qkdx ≤ C, ∀t ≥ Tk, (3.30)

with qk = (N/(N − 2))kq0, and C independent of n. Note that wn → w in C([0, T];L1(Ω))
and w ∈ C([0, T];L1(Ω)). From Lemma 2.6, we have

‖w(t)‖qkLqk (Ω) =
∫

Ω
|w(t)|qkdx ≤ C, ∀t ≥ Tk. (3.31)

Taking k large enough, we get the second part of (i) proved. If the integration are taken over
[t, t + δ0] instead of [t, t + 1], we get the first part of (i).

Now we are in the position to prove (ii). We multiply (3.5)with wn and deduce that

1
2
d

dt

∫

Ω
|wn|2dx + c

∫

Ω
|∇wn|2dx ≤ l

∫

Ω
|wn|2dx, (3.32)

integrating over [t, t + 1], t ≥ T ′, we get

∫ t+1

t

∫

Ω
|∇wn|2dx dt ≤ C, (3.33)

with C independent of n. Now, multiplying (3.5) with wn
t , we obtain

∫

Ω

∣
∣wn

t

∣
∣
2
dx +

d

dt

∫

Ω
a(x)|∇wn|2dx +

d

dt

∫

Ω

(

F(wn + vn) − F(vn) − f(vn)wn)dx = 0, (3.34)

where F(v + σ) =
∫σ

0 f(v + s)ds. Integrating (3.34) between s and t + 1 (t ≤ s < t + 1) gives

∫

Ω
|∇wn(t + 1)|2dx +

∫

Ω

(

F(wn(t + 1) + vn) − F(vn) − f(vn)wn(t + 1)
)

dx

≤ C
∫

Ω
|∇wn(s)|2dx + C

∫

Ω

(

F(wn(s) + vn) − F(vn) − f(vn)wn(s)
)

dx.

(3.35)
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Now, integrating the above inequality with respect to s between t and t + 1 we have

∫

Ω
|∇wn(t + 1)|2dx +

∫

Ω

(

F(wn(t + 1) + vn) − F(vn) − f(vn)wn(t + 1)
)

dx

≤ C
∫ t+1

t

∫

Ω
|∇wn|2dx dξ + C

∫ t+1

t

∣
∣
∣
∣

∫

Ω

(

F(wn + vn) − F(vn) − f(vn)wn)dx

∣
∣
∣
∣
dξ.

(3.36)

Since

∫

Ω

(

F(wn + vn) − F(vn) − f(vn)wn)dx =
∫

Ω

∫1

0

(

f(vn + swn) − f(vn))wndsdx,

f(vn + τwn) − f(vn) =
∫1

0
f ′(vn + θτwn)τwndθ, 0 ≤ τ ≤ 1.

(3.37)

We deduce that

∣
∣
∣
∣

∫

Ω

(

F(wn + vn) − F(vn) − f(vn)wn)dx

∣
∣
∣
∣
≤
∫

Ω

∣
∣f ′(vn + τ ′wn)

∣
∣|wn|2dx, 0 ≤ τ ′ ≤ 1. (3.38)

From the assumption (1.4) on f , we have

∣
∣
∣
∣

∫

Ω

(

F(wn + vn) − F(vn) − f(vn)wn)dx

∣
∣
∣
∣

≤
∫

Ω
C
(

|vn|p−2 + |wn|p−2 + 1
)

|wn|2dx

≤ C
(

‖vn‖p−2
Lp−1(Ω) + ‖wn‖2L2p−2(Ω) + ‖wn‖pLp(Ω) + 1

)

.

(3.39)

Using results in (3.13) and (3.30), we know that

∣
∣
∣
∣

∫

Ω

(

F(wn + vn) − F(vn) − f(vn)wn)dx

∣
∣
∣
∣
≤ C, ∀t ≥ T ′′. (3.40)

Set T0 = max{T ′, T ′′}. Combining (3.33), (3.34), (3.36), and (3.40) we have

∫

Ω
|∇wn(t)|2dx ≤ C, ∀t ≥ T0 + 1, (3.41)

∫ t+1

t

∫

Ω

∣
∣wn

t

∣
∣
2
dx dξ ≤ C, ∀t ≥ T0 + 1. (3.42)
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From Lemma 2.6, we obtain

‖w‖H1
0 (Ω) ≤ C, ∀t ≥ T0 + 1. (3.43)

Thus we get the second part of (ii) proved. Taking integration over [t, t+δ0] instead of [t, t+1],
the first part of (ii) follows. The proof is completed now.

4. Proof of the Main Theorems

Let {S(t)}t≥0 be the semigroup generated by problem (1.1) and let v(x) be an approximated
solution to problem (2.3). Define

S1(t)(u0 − v(x)) = S(t)u0 − v(x). (4.1)

Then it is easy to verify that {S1(t)}t≥0 is a continuous semigroup in (L1(Ω) − v) and hence
in L1(Ω). From the results in Section 3, we know that the semigroup {S(t)}t≥0 possesses a
global attractorA in L1(Ω). To verify the second part of Theorem 1.1, we prove the following
theorem.

Theorem 4.1. Under the assumptions of Theorem 1.1, the semigroup {S1(t)}t≥0 possesses a global
attractorAv in Lr(Ω)∩H1

0(Ω), 1 ≤ r <∞, that is,Av is compact, invariant in Lr(Ω)∩H1
0(Ω), 1 ≤

r < ∞, and attracts every bounded initial set of L1(Ω) in the norm topology of Lr(Ω) ∩H1
0(Ω), 1 ≤

r <∞.

Proof. From Theorem 3.1, we know that {S(t)}t≥0 possesses an absorbing set B0 in L1(Ω). Also
{S1(t)}t≥0 possesses absorbing sets B1(= B0 −v), B2, respectively, in L1(Ω) and Lr(Ω)∩H1

0(Ω)
for any 1 ≤ r <∞.

In the next, we prove the asymptotic compactness of {S1(t)}t≥0. Before that we establish
the following estimate

∫

Ω

∣
∣wn

t

∣
∣
2
dx ≤ C, for t large enough. (4.2)

Actually, differentiating (3.5) in time and denoting w̃n = wn
t , we have

w̃n
t − div

(

a(x)∇w̃n
)

+ f ′(vn +wn)w̃n = 0. (4.3)

Multiplying (4.3) by w̃n and using (1.3), we deduce that

d

dt

∫

Ω

∣
∣
∣w̃n

∣
∣
∣

2
dx ≤ l

∫

Ω

∣
∣
∣w̃n

∣
∣
∣

2
dx. (4.4)
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Integrating the above inequality between s and t + 1 (t ≤ s < t + 1) gives

∫

Ω

∣
∣
∣w̃n(t + 1)

∣
∣
∣

2
dx ≤ 2l

∫ t+1

s

∫

Ω

∣
∣
∣w̃n

∣
∣
∣

2
dx dξ +

∫

Ω

∣
∣
∣w̃n(s)

∣
∣
∣

2
dx. (4.5)

Integrating the above inequality with respect to s between t and t + 1, using (3.42) we obtain

∫

Ω

∣
∣
∣w̃n(t)

∣
∣
∣

2
dx ≤ (2l + 1)

∫ t+1

t

∫

Ω

∣
∣
∣w̃n

∣
∣
∣

2
dx dξ ≤ (2l + 1)C, ∀t ≥ T0 + 1. (4.6)

Now we prove the asymptotic compactness of the semigroup {S1(t)}t≥0, that is, for any
sequences {w0,k} ⊂ B1, tk → ∞, sequence {wk(tk)} has convergent subsequences, where
wk(t) = S1(t)w0,k. Since {S1(t)}t≥0 is compact in Lr(Ω), 1 ≤ r < ∞, there is a subsequence
{wki(tki)}, which is a Cauchy sequence in Lr(Ω), 1 ≤ r < ∞. Denoting uki(tki) = wki(tki) +
v, ukj (tkj ) = wkj (tkj ) + v, we deduce that

c
∥
∥
∥wki(tki) −wkj

(

tkj

)∥
∥
∥

2

H1
0 (Ω)

≤
〈

div(a(x)∇(wki(tki) + v)) − div
(

a(x)∇
(

wkj

(

tkj

)

+ v
))

, wki(tki) −wkj

(

tkj

)〉

=
〈

∂twki(tki) − ∂twkj

(

tkj

)

+ f(uki(tki)) − f
(

ukj

(

tkj

))

, wki(tki) −wkj

(

tkj

)〉

≤
∥
∥
∥∂twki(tki) − ∂twkj (tkj )

∥
∥
∥
L2(Ω)

∥
∥
∥wki(tki) −wkj

(

tkj

)∥
∥
∥
L2(Ω)

+
∥
∥
∥f(wki(tki) + v) − f

(

wkj

(

tkj

)

+ v
)∥
∥
∥
Lσ(Ω)

∥
∥
∥wki(tki) −wkj

(

tkj

)∥
∥
∥
Lσ′ (Ω)

.

(4.7)

We then conclude form (4.6) that {wki(tki)} is a Cauchy sequence in H1
0(Ω), and thus

{S1(t)}t≥0 is asymptotically compact in Lr(Ω) ∩H1
0(Ω), 1 ≤ r <∞.

Using Lemma 2.7, we conclude that {S1(t)}t≥0 possesses a global attractor Av, which
is compact, invariant in Lr(Ω) ∩ H1

0(Ω), and attracts every bounded initial sets of L1(Ω) in
the topology of Lr(Ω) ∩H1

0(Ω).

Completion of the Proof of Theorem 1.1

Note that

Av = ∩s≥0∪t≥sS1(t)B2
L1(Ω)

= ∩s≥0∪t≥sS1(t)B1
L1(Ω)

= ∩s≥0∪t≥s(S(t)B0 − v)
L1(Ω)

,

A = ∩s≥0∪t≥sS(t)B0
L1(Ω)

.

(4.8)
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Thus we have

A = Av + v. (4.9)

The above relation between A and Av implies the conclusion of Theorem 1.1 directly.

Proof of Theorem 1.2. Let u(t), v be the approximated solution to the parabolic and its
corresponding elliptic problem respectively. Since the approximated solution is a duality
solution and conversely, we conclude that u(t) converges to v in L1(Ω) as t → ∞. Using
arguments similar to Section 3, we can prove similar regularity results for w(= u − v) and
then prove the asymptotic compactness of the semigroup S1(t) as in Theorem 4.1. Thus, we
obtain thatw(t) converges to 0 in Lr(Ω), 1 ≤ r <∞, as t → ∞. Moreover from the asymptotic
compactness of the semigroup S1(t), we know that w(t) converges to 0 in H1

0(Ω) as t → ∞.
Else, we have a sequence tn → ∞, such that C > ‖w(tn)‖H1

0 (Ω) ≥ ε > 0. Since the semigroup
S1(t) is asymptotically compact, there is a subsequence tnj → ∞, such that w(tnj ) converges
to a function χ inH1

0(Ω) and hence in L1(Ω). Thus χ = 0. A contradiction!
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