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The numerical approximation of exponential Euler method is constructed for semilinear stochastic
differential equations (SDEs). The convergence and mean-square (MS) stability of exponential
Euler method are investigated. It is proved that the exponential Euler method is convergent with
the strong order 1/2 for semilinear SDEs. A mean-square linear stability analysis shows that the
stability region of exponential Euler method contains that of EM method and stochastic Theta
method (0 ≤ θ < 1) and also contains that of the scale linear SDE, that is, exponential Euler method
is analogue mean-square A-stable. Then the exponential stability of the exponential Euler method
for scalar semi-linear SDEs is considered. Under the conditions that guarantee the analytic solution
is exponentially stable in mean-square sense, the exponential Euler method can reproduce the
mean-square exponential stability for any nonzero stepsize. Numerical experiments are given to
verify the conclusions.

1. Introduction

Stochastic differential equations are utilized as mathematical models for physical application
that possesses inherent noise and uncertainty. Such models have played an important role
in a range of applications, including biology, chemistry, epidemiology, microelectronics, and
finance. Many mathematicians have devoted their effort to develop it and have obtained
a substantial body of achievements. In order to understand the dynamics of stochastic
system, it is important to construct an efficient numerical simulation of SDEs. There are many
results for numerical solutions of stochastic differential equations. The general introduction
to numerical methods for SDEs can be found in [1–3].

The related concepts of pth moment stability (0 < p ≤ 2) are attractive in its own right
for analytical solution and numerical solution (see [4, 5]). Especially, MS stability (p = 2) is
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considered in a vast array of the literature [6, 7]. Themean-square and almost sure asymptotic
stability analysis of stochastic Theta method (0 ≤ θ < 1) for test equation are investigated in
[8, 9].

The phenomenon of stiffness appears in the process of applying a certain numerical
method to solve ODEs and SEDs. Stiffness was also the reason for the introduction of
exponential integrators, which have been proposed independently by many authors. The
main contribution of exponential integrators is that it can solve exactly the linear part of
the problem [10]. Due to the cost of computing, the Jacobian, and the exponential or related
function of Jacobian, many work was directed at the semi-linear problems.

Lawson [11] firstly combined the exponential function with explicit Runge-Kutta
(RK) methods to obtain A-stability, as the well-known Lawson-Euler method aiming to
overcome the stiffness in the semi-linear problems. The exponential RK numerical scheme
was considered for the time integration of semi-linear parabolic problems in [12] and the
numerical schemes allowed the construction of methods of arbitrarily high order with good
stability properties [13]. In [14] sufficient conditions that guarantee exponential RK methods
is contractive and asymptotically stable were given for semi-linear systems of ordinary
differential equations. However, little is hitherto known about the convergence and stability
of exponential RK methods when it is applied to SDEs.

In this paper, the exponential Euler method as one of the simplest forms of exponential
RK method is extended to semi-linear SDEs. The exponential Euler method is based on a
discrete version of the variation of constants formula.

In Section 2, the exponential Euler method is proposed to semi-linear SDEs and the
convergence analysis of this method is investigated on any bounded interval [0, T].

In Section 3.1, the scalar linear stochastic differential equation as test equation is used
to calculate the MS stability region of exponential Euler method. One surprising observation
is that the exponential Euler as a kind of explicit numerical method has a good stability
property, that is, the MS stability region of this method contains that of the test equation
and contains that of EM method and stochastic Theta method (0 ≤ θ < 1). In another word,
if the test equation is MS stable, then so is the exponential Euler method applied to the
systems for any stepsize. However, the classical explicit numerical methods such as Euler-
Maruyama (EM) method in [5, 15] and Milstein method [16] and the semi-explicit method
such as stochastic Theta method (0 ≤ θ < 1/2) in [8, 9] usually have some limitations to the
stepsize.

We then consider the exponentially MS stability of the exponential Euler method for
scalar semi-linear SDEs in Section 3.2. It is proved that under the conditions that guarantee
semi-linear SDEs are exponentially MS stable, the exponential Euler method can preserve
stability property for any stepsize. Some numerical examples are provided in Section 4 to
illustrate the theoretic results.

2. Exponential Euler Method and Strong Convergence

Throughout this paper, unless otherwise specified, let | · | be the Euclidean norm in R
n. IfA is

a vector or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is denoted
by |A| =

√
trace(ATA). Let (Ω,F,P) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions, that is right continuous and increasing, while F0 contains all
p-null sets. LetW(t) be a scalarWiener process defined on the probability space. Let p > 0 and
L
p

F0
(Ω;Rn) denote the family of R

n-valued F0-measurable random variables ξwith E|ξ|p < ∞.
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2.1. Exponential Euler Method

We consider the n-dimensional semi-linear SDEs

dX(t) = FX(t) + f(t, X(t))dt + g(t, X(t))dW(t),

X(0) = X0,
(2.1)

where initial dataX0 ∈ L
p

F0
(Ω;Rn), F ∈ R

n×n is the generator of a strongly continuous analytic
semigroup S = (S(t))t≥0 on a Banach space [17], f : [0, T] × R

n → R
n, g : [0, T] × R

n → R
n

and W(t) is a scalar Wiener process.
In our analysis, it will be more natural to work with the equivalent expression

X(t) = eFtX0 +
∫ t

0
eF(t−s)f(s,X(s))ds +

∫ t

0
eF(t−s)g(s,X(s))dW(s). (2.2)

Now, we introduce the exponential Euler method for (2.1). Given a stepsize h > 0, the
exponential Euler approximate solution is defined by

yk+1 = eFhyk + eFhf
(
tk, yk

)
h + eFhg

(
tk, yk

)
ΔWk, (2.3)

where yk is an approximation to X(tk) with tk = kh, y0 = X0 and ΔWk = W(tk+1) −W(tk) is
the Wiener increment. It is convenient to use the continuous exponential Euler approximate
solution and hence y(t) is defined by

y(t) := eFty0 +
∫ t

0
eF(t−s)f(s, Y (s))ds +

∫ t

0
eF(t−s)g(s, Y (s))dW(s), (2.4)

where s = [s/h]h and [x] denote the largest integer, which is smaller than x and Y (t) is the
step function which defined by

Y (t) :=
∞∑

k=0

I[tk ,tk+1)(t)yk, (2.5)

where I[A] is the indicator function of set A. Obviously, y(tk) = Y (tk) = yk for any integer k ≥
0; that is the continuous exponential Euler solution y(t) and the step function Y (t) coincide
with the discrete solution at the grid point.

2.2. Strong Convergence

In this subsection, we are taking aim at the convergence of exponential Euler method
applying to (2.1). To show this, some conditions are imposed to the functions f and g in
(2.1).
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Assumption 2.1. Assume that f and g satisfy the globally Lipschitz condition and the linear
growth condition, that is, there exist two constants L1, L2 such that

∣
∣f(t, X) − f(t, Y )

∣
∣2 ∨ ∣

∣g(t, X) − g(t, Y )
∣
∣2 ≤ L1|X − Y |2, (2.6)

∣
∣f(t, X)

∣
∣2 ∨ ∣

∣g(t, Y )
∣
∣2 ≤ L2

(
1 + |X|2

)
, (2.7)

for allX,Y ∈ L
p

F0
(Ω;Rn). Furthermore, f and g are supposed to satisfy the following property:

∣
∣f(t, X) − f(s,X)

∣
∣2 ∨ ∣

∣g(t, X) − g(s,X)
∣
∣2 ≤ L3

(
1 + |X|2

)
|t − s|, (2.8)

where L3 is a constant and t, s ∈ [0, T]with t > s.

The following lemma illustrates that the continuous exponential Euler approximate
solution (2.4) is bounded in MS sense and the relationship between continuous approximate
solution (2.4) and the step function Y (t).

Lemma 2.2. Under Assumption 2.1, there exist two constants C1, C2 independent of h such that

E

(

sup
0≤t≤T

∣∣y(t)
∣∣2
)

≤ C1, (2.9)

E

(∣∣y(t) − Y (t)
∣∣2
)
≤ C2h, (2.10)

for any t ∈ [0, T].

Proof. From (2.4) and the elementary inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), we have

∣∣y(t)
∣∣2 ≤ 3

⎡

⎣
∣∣∣eFty0

∣∣∣
2
+

∣∣∣∣∣

∫ t

0
eF(t−s)f(s, Y (s))ds

∣∣∣∣∣

2

+

∣∣∣∣∣

∫ t

0
eF(t−s)g(s, Y (s))dW(s)

∣∣∣∣∣

2
⎤

⎦. (2.11)

Taking the expectation on both sides and using the Hölder inequality and Doom’s martingale
inequality yields

E

(

sup
0≤s≤t

∣∣y(s)
∣∣2
)

≤ 3

[∣∣∣eFt
∣∣∣
2
E
∣∣y0

∣∣2 + TE

∫ t

0

∣∣∣eF(t−s)
∣∣∣
2∣∣f(s, Y (s))

∣∣2ds

+4E

(∫ t

0

∣∣∣eF(t−s)
∣∣∣
2∣∣g(s, Y (s))

∣∣2ds

)]

.

(2.12)
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Letting M = max{|eFT |2, 1}, by the linear growth condition (2.7), then

E

(

sup
0≤s≤t

∣
∣y(s)

∣
∣2
)

≤ 3M

[

E
∣
∣y0

∣
∣2 + T

∫ t

0
E
∣
∣f(s, Y (s))

∣
∣2ds + 4E

∫ t

0
E
∣
∣g(s, Y (s))

∣
∣2ds

]

≤ 3M

[

E
∣∣y0

∣∣2 + L2T

∫ t

0

(
1 + E|Y (s)|2

)
ds + 4L2

∫ t

0

(
1 + E|Y (s)|2ds

)]

≤ 3M

[

E
∣
∣y0

∣
∣2 + L2T(T + 4) + L2(T + 4)

∫ t

0

(
E|Y (s)|2ds

)]

≤ 3M
(
E
∣∣y0

∣∣2 + L2T(T + 4)
)
+ 3ML2(T + 4)

∫ t

0
E

(

sup
0≤r≤s

∣∣y(r)
∣∣2
)

ds.

(2.13)

Now using the Gronwall inequality yields that

E

(

sup
0≤s≤t

∣∣y(s)
∣∣2
)

≤ C1, (2.14)

where C1 = 3M(E|y0|2 + L2T(T + 4))e3ML2(T+4)T .
From the definition of Y (t) and (2.4), for t ∈ [tk, tk+1), we can obtain

y(t) − Y (t) = eF(t−tk)yk +
∫ t

tk

eF(t−s)f
(
tk, yk

)
ds +

∫ t

tk

eF(t−s)g
(
tk, yk

)
dW(s) − yk. (2.15)

Using Hölder inequality gives

|y(t) − Y (t)|2

≤ 3

⎡

⎣
∣∣∣eF(t−tk) − In

∣∣∣
2∣∣yk

∣∣2 + h

∫ t

tk

∣∣∣eF(t−s)
∣∣∣
2∣∣f

(
tk, yk

)∣∣2ds +

∣∣∣∣∣

∫ t

tk

eF(t−s)g
(
tk, yk

)
dW(s)

∣∣∣∣∣

2
⎤

⎦,

(2.16)

where In is the n dimension identity matrix. Taking the expectation of both sides, we have

E
∣∣y(t) − Y (t)

∣∣2 ≤ 3

[∣∣∣eF(t−tk) − In
∣∣∣
2
E
∣∣yk

∣∣2 + hE

∫ t

tk

∣∣∣eF(t−s)
∣∣∣
2∣∣f

(
tk, yk

)∣∣2ds

+E

∫ t

tk

∣∣∣eF(t−s)
∣∣∣
2∣∣g

(
tk, yk

)∣∣2ds

]

.

(2.17)
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In view of (2.7), (2.9), and |eF(t−tk) − In|2 ∼ O(h2), we can obtain

E
∣
∣y(t) − Y (t)

∣
∣2 ≤ 3

[∣
∣
∣eF(t−tk) − In

∣
∣
∣
2
C1 + hML2(1 + C1)h +ML2(1 + C1)h

]

≤ 3M(1 + C1)L2h +O
(
h2

)
.

(2.18)

Therefore,

E
∣
∣y(t) − Y (t)

∣
∣2 ≤ C2h, (2.19)

where C2 = 3M(1 + C1)L2.

In the following, we show the convergence result of exponential Euler method for
semi-linear SDE (2.1).

Theorem 2.3. Under Assumption 2.1, the numerical solution produced by the exponential Euler
method converges to the exact solution of (2.1) in MS sense with the strong order 1/2, that is, there
exist a positive constant C such that

E

(

sup
0≤t≤T

∣∣X(t) − y(t)
∣∣2
)

≤ Ch, as h −→ 0. (2.20)

Proof. From (2.2) and (2.4) we know

X(t) − y(t) =
∫ t

0

[
eF(t−s)f(s,X(s)) − eF(t−s)f(s, Y (s))

]
ds

+
∫ t

0

[
eF(t−s)g(s,X(s)) − eF(t−s)g(s, Y (s))

]
dW(s),

(2.21)

∣∣X(t) − y(t)
∣∣2 ≤ 2

⎧
⎨

⎩

∣∣∣∣∣

∫ t

0

[
eF(t−s)f(s,X(s)) − eF(t−s)f(s, Y (s))

]
ds

∣∣∣∣∣

2

+

∣∣∣∣∣

∫ t

0

[
eF(t−s)g(s,X(s)) − eF(t−s)g(s, Y (s))

]
dW(s)

∣∣∣∣∣

2
⎫
⎬

⎭
.

(2.22)

By the Hölder inequality and Doom’s martingale inequality, we have

E

(

sup
0≤r≤t

∣∣X(r) − y(r)
∣∣2
)

≤ 2

[

TE

∫ t

0

∣∣∣eF(t−s)f(s,X(s)) − eF(t−s)f(s, Y (s))
∣∣∣
2
ds

+4E
∫ t

0

∣∣∣eF(t−s)g(s,X(s)) − eF(t−s)g(s, Y (s))
∣∣∣
2
ds

]

.

(2.23)
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Consider the first argument in (2.23)

E

∫ t

0

∣
∣
∣eF(t−s)f(s,X(s)) − eF(t−s)f(s, Y (s))

∣
∣
∣
2
ds

= E

∫ t

0

∣
∣
∣
[
eF(t−s)f(s,X(s)) − eF(t−s)f(s,X(s))

]
+
[
eF(t−s)f(s,X(s)) − eF(t−s)f(s,X(s))

]

+
[
eF(t−s)f(s,X(s)) − eF(t−s)f(s, Y (s))

]∣∣
∣
2
ds

≤ 3
∫ t

0

∣
∣
∣eF(t−s) − eF(t−s)

∣
∣
∣
2
E
∣∣f(s,X(s))

∣∣2ds + 3E
∫ t

0

∣
∣
∣eF(t−s)

∣
∣
∣
2∣∣f(s,X(s)) − f(s,X(s))

∣∣2ds

+ 3E
∫ t

0

∣
∣∣eF(t−s)

∣
∣∣
2∣
∣f(s,X(s)) − f(s, Y (s))

∣
∣2ds.

(2.24)

By Assumption 2.1 and Lemma 2.2, it is obvious that

E

∫ t

0

∣∣∣eF(t−s)f(s,X(s)) − eF(t−s)f(s, Y (s))
∣∣∣
2
ds

≤ 3L2

∫ t

0

∣∣∣eF(t−s)
∣∣∣
2∣∣∣eF(s−s) − In

∣∣∣
2[
1 + E|X(t)|2

]
ds

+ 3L3(s − s)ME

∫ t

0

[
1 + |X(s)|2

]
ds + 3ML1

∫ t

0
E|X(s) − Y (s)|2ds

≤ 3L2M
∣∣∣eFh − In

∣∣∣
2
[1 + C1]T + 3ML3(1 + C1)Th

+ 6L1M

∫ t

0
E

{∣∣X(s) − y(s)
∣∣2 +

∣∣y(s) − Y (s)
∣∣2
}
ds

≤ 3M(1 + C1)T
[∣∣∣eFh − In

∣∣∣
2
L2 + L3h

]
+ 6L1MTC2h + 6L1M

∫ t

0
E
∣∣X(s) − y(s)

∣∣2ds.

(2.25)

This implies

E

∫ t

0

∣∣∣eF(t−s)f(s,X(s)) − eF(t−s)f(s, Y (s))
∣∣∣
2
ds

≤ 3M(1 + C1)T
[
L2

∣∣∣eFh − In
∣∣∣
2
+ L3h

]
+ 6L1MC2Th + 6L1M

∫ t

0
E

(

sup
0≤r≤s

∣∣X(r) − y(r)
∣∣2
)

ds.

(2.26)
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By the similar procedure, we can observe that

E

∫ t

0

∣
∣
∣eF(t−s)g(s,X(s)) − eF(t−s)g(s, Y (s))

∣
∣
∣
2
ds

≤ 3M(1 + C1)T
[
L2

∣
∣
∣eFh − In

∣
∣
∣
2
+ L3h

]
+ 6L1MC2Th + 6L1M

∫ t

0
E

(

sup
0≤r≤s

∣
∣X(r) − y(r)

∣
∣2
)

ds.

(2.27)

Substituting (2.26) and (2.27) into (2.23) gives

E

(

sup
0≤r≤t

∣
∣X(r) − y(r)

∣
∣2
)

≤ 6M(1 + C1)T
[
L2

∣∣∣eFh − In
∣∣∣
2
+ L3h

]
(T + 4) + 12L1MC2T(T + 4)h

+ 12L1M(T + 4)
∫ t

0
Esup
0≤r≤s

∣∣X(r) − y(r)
∣∣2ds.

(2.28)

Since |eFh − In| ∼ O(h2), we can show the following result by Gronwall inequality:

E

(

sup
0≤r≤t

∣∣X(r) − y(r)
∣∣2
)

≤ 6MT(T + 4)[L3(1 + C1) + 2L1C2]e12L1M(T+4)Th. (2.29)

Choosing C = 6MT(T + 4)[L3(1 + C1) + 2L1C2]e12L1M(T+4)T , we can obtain the convergence
result for any 0 ≤ t ≤ T .

3. Mean-Square Stability

In this section, we focus on the MS stability of the exponential Euler as it is applied to
scalar semi-linear SDEs. It is significantly helpful to describe the MS stability region of the
exponential Euler method. In the following, scalar linear SDE as the test equation is used to
calculate the MS stability region.

3.1. Test Equation

Consider the test equation

dy(t) = λy(t)dt + μy(t)dW(t), (3.1)

where λ, μ ∈ R and W(t) is the scalar Wiener process.
It is well known [18] that the solution of (3.1) is MS stable if and only if

2λ +
∣∣μ

∣∣2 < 0. (3.2)
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The MS stability region of (3.1) is denoted by SSDE = SSDE(λ, μ) and represents the set
of parameter values for which the equilibrium solution of (3.1) is MS stable. The exponential
Euler method for test equation (3.1) leads to the following type:

Xn+1 = eλhXn + eλhμXnΔWn

= eλhXn + eλhμXn

√
hZ

= eλh
(
1 + μ

√
hZ

)
Xn,

(3.3)

where Xn is the approximation of y(tn) with X0 = y(0). Now we define MS stability region
for the numerical method applied to (3.1). The notations and definitions are similar to those
in [8].

Definition 3.1. If the adaptation of a numerical method to (3.1) leads to a numerical process
of the following type:

Xn+1 = R
(
h, λ, μ, Z

)
Xn, (3.4)

R(h, λ, μ) := E|R(h, λ, μ, Z)|2 is called the MS stability function of the numerical solution.
Furthermore, if R(h, λ, μ) < 1, the numerical method is MS stable and the region of parameter
values that satisfy R(h, λ, μ) < 1 is called the MS stability region of the numerical method,
where Z ∼ N(0, 1).

The MS stability regions of EM method and exponential Euler method are denoted by
SEM, SEE, respectively.

Definition 3.2. The exponential Euler method described by (2.3) is mean-squareA-stable if for
all h,

SSDE ⊆ SEE. (3.5)

Higham [19] proposed that theMS stability region for EMmethod is SEM = {(p, q) | 0 <
q < −p(p+ 2)}, where p = λh and q = |μ|2h. According to (3.2), the SDE (3.1) is MS stable only
and if only the pair of parameters λ and μ belong to the region of SSDE = {(p, q) | 0 < q < −2p}.

The MS stability region of exponential Euler method for (3.1) is given in the following
theorem. By the comparingwith the Euler method and stochastic Thetamethod, it is observed
that the exponential Euler method as an explicit numerical method has desired property.

Theorem 3.3. The mean-square stability region of exponential Euler method for (3.1) is

SEE =
{(

p, q
) | 0 < q < e−2p − 1

}
, (3.6)

where p = λh and q = |μ|2h.
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Proof. From (3.3), by using EZ = 0 and EZ2 = 1, the MS stability function of exponential
Euler method is

R
(
h, λ, μ, Z

)
= E

∣
∣R

(
h, λ, μ, Z

)∣∣2

= E

∣
∣
∣eλh

(
1 + μ

√
hZ

)∣∣
∣
2

= e2λh
(
1 +

∣
∣μ

∣
∣2h

)
.

(3.7)

Letting p = λh and q = |μ|2h,

R
(
h, λ, μ, Z

)
= e2p

(
1 + q

)
. (3.8)

If e2p(1 + q) < 1, exponential Euler method for (3.1) is MS stable, that is,

q < e−2p − 1. (3.9)

Clearly, the MS stability region of exponential Euler method is SEE = {(p, q) | 0 < q < e−2p −
1}.

Remark 3.4. From the inequality −p(p+2) < −2p < e−2p−1, we can find that MS stability region
of exponential Euler method contains that of EM method and contains MS stability region of
the exact solution for (3.1), that is,

SEM ⊂ SSDE ⊂ SEE. (3.10)

According to the Definition 3.2, the exponential Euler method is mean-square A-stable.

Remark 3.5. In [9] the MS stability region of stochastic Theta method is denoted by SSTM(θ, h)
and had the conclusions that SSTM(θ, h) ⊂ SSDE if 0 ≤ θ < 1/2 and SSDE ⊂ SSTM(θ, h) if
1/2 < θ < 1. We know that stochastic Theta method is MS stable if and only if

|1 + (1 − θ)hλ|2 + h
∣∣μ

∣∣2

|1 − θhλ|2
< 1. (3.11)

Letting p = λh and q = |μ|2h; therefore, the stochastic Theta method is MS stable if and only if
q < (2θ − 1)p2 − 2p. Derived from the inequality (2θ − 1)p2 − 2p < e−2p − 1, we find that

SSTM(θ, h) ⊂ SSDE ⊂ SEE if 0 ≤ θ <
1
2
,

SSDE ⊂ SSTM(θ, h) ⊂ SEE if
1
2
< θ < 1.

(3.12)
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3.2. Scalar Semilinear SDEs

This subsection presents new result on the MS exponentially stability for scalar semi-linear
stochastic differential equation

dX(t) =
[
aX(t) + f(t, X(t))

]
dt + g(t, X(t))dW(t), (3.13)

with initial value X(0) = X0, where a < 0 is the linear argument of the drift coefficient.
We have proved that the exponential Euler approximation solution preserves the MS

exponential stability of the exact solution for any stepsize h under the following conditions.

Assumption 3.6. Assume that there exist a positive constant K such that

∣
∣f(t, X)

∣
∣2 ∨ ∣

∣g(t, X)
∣
∣2 ≤ K|X|2. (3.14)

The condition (3.14) implies f(t, 0) = 0, g(t, 0) = 0 and ensures that the analytical
solution will never reach the origin with probability one.

Definition 3.7 (see [20]). The solution of (3.13) is said to be exponentially stable in MS sense
if there is a pair of positive constants γ and C such that

E|X(t)|2 ≤ C|X0|2e−γt. (3.15)

Lemma 3.8. Under Assumption 3.6, if

ρ := 2a + 2
√
K +K < 0, (3.16)

the analytic solution of (3.13) is exponentially stable in MS sense, that is,

E|X(t)|2 ≤
√
2
(
1 + E|X0|2

)
e2ρt. (3.17)

This lemma can be proved in the similar way as Theorem 4.1 proved in [20]. We can
obtain that if ρ < 0, the analytic solution is exponentially stable in MS sense.

Now the original result about the MS exponential stability of exponential Euler
method is given in the following theorem.

Theorem 3.9. If (3.14) and (3.16) hold, then for any stepsize h > 0, the exponential Euler method
for (3.13) is exponentially stable in MS sense, that is,

lim
n→∞

1
nh

lnE
∣∣yn

∣∣2 ≤ β < 0, (3.18)

where β = 2a + (1/h) ln(1 +Kh2 +Kh + 2
√
Kh).
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Proof. The adaptation of exponential Euler method to (3.13) leads to a numerical process of
the following type:

yn+1 = eahyn + eahf
(
tn, yn

)
h + eahg

(
tn, yn

)
ΔWn, (3.19)

where ΔWn ∼ N(0, h). Clearly,

∣
∣yn+1

∣
∣2 = e2ah

∣
∣yn

∣
∣2 + e2ah

∣
∣f

(
tn, yn

)∣∣2h2 + e2ah
∣
∣g

(
tn, yn

)∣∣2ΔW2
n

+ 2e2ah
〈
yn, f

(
tn, yn

)〉
h + 2e2ah

〈
yn, g

(
tn, yn

)〉
ΔWn

+ 2e2ah
〈
f
(
tn, yn

)
, g

(
tn, yn

)〉
hΔWn.

(3.20)

Taking the conditional expectation of both sides yields

E

(∣∣yn+1
∣∣2 | Fnh

)
= e2ah

∣∣yn

∣∣2I{yn /= 0}E

{(

1 +

∣∣f
(
tn, yn

)∣∣2h2

∣∣yn

∣∣2
+

∣∣g
(
tn, yn

)∣∣2

∣∣yn

∣∣2
ΔW2

n

+ 2

〈
yn, f

(
tn, yn

)〉

∣∣yn

∣∣2
h + 2

〈
yn, g

(
tn, yn

)〉

∣∣yn

∣∣2
ΔWn

+2

〈
f
(
tn, yn

)
, g

(
tn, yn

)〉

∣∣yn

∣∣2
hΔWn

)

| Fkh

}

.

(3.21)

Note that ΔWn is independent of Fnh, E(ΔWn | Fnh) = E(ΔWn) = 0 and E(ΔW2
n | Fnh) =

E(ΔW2
n) = h. We can obtain that

E

(∣∣yn+1
∣∣2 | Fnh

)
= e2ah

∣∣yn

∣∣2I{yn /= 0}

(

1 +

∣∣f
(
tn, yn

)∣∣2h2

∣∣yn

∣∣2
+

∣∣g
(
tn, yn

)∣∣2

∣∣yn

∣∣2
h

+2

〈
yn, f

(
tn, yn

)〉

∣
∣yn

∣
∣2

h

)

.

(3.22)

From the linear condition (3.14), we obtain that

E

(∣∣yn+1
∣∣2 | Fnh

)
≤ e2ah

∣∣yn

∣∣2I{yn /= 0}
(
1 +Kh2 +Kh + 2

√
Kh

)
. (3.23)

Taking expectations on both sides yields

E
∣∣yn+1

∣∣2 ≤ E
∣∣yn

∣∣2e2ah
(
1 +Kh2 +Kh + 2

√
Kh

)
. (3.24)

If

2ah + ln
(
1 +Kh2 + kh + 2

√
Kh

)
< 0, (3.25)



Abstract and Applied Analysis 13

exponential Euler method is exponentially MS stable. Subsequently, we proof that (3.25)
holds under the condition (3.14) and (3.16).

Recall the inequality 1 + x + x2/2! + x3/3! < ex. If

(
1 +Kh2 +Kh + 2

√
Kh

)
< 1 − 2ah +

(−2ah)2
2!

+
(−2ah)3

3!
, (3.26)

then (1 +Kh2 + kh + 2
√
Kh) < e−2ah and (3.25) holds. Simplifying the (3.26), we have

4
3
a3h2 +

(
K − 2a2

)
h + 2

√
K +K + 2a < 0. (3.27)

Let f(h) = (4/3)a3h2 + (K − 2a2)h + 2
√
K + 2a +K. From a < 0 and ρ < 0, it is easy to observe

that f ′(h) = (8/3)a3h + (K − 2a2) < 0 when h > 0 and f(0) = ρ < 0. Hence (3.26) holds and
this implies (3.25) always holds when h > 0.

From(3.24), it follows that

E
∣∣yn

∣∣2 ≤ E
∣∣y0

∣∣2e2ahn
(
1 +Kh2 +Kh + 2

√
Kh

)n
. (3.28)

Then

lim
n→∞

1
nh

lnE
∣∣yn

∣∣2 < β, (3.29)

where β = 2a + (1/h) ln(1 +Kh2 +Kh + 2
√
Kh). From (3.25), we can obtain that β < 0 for any

stepsize h > 0.

Remark 3.10. If 2a + 2
√
K + K < 0, the analytic solution of (3.13) is exponentially stable in

MS sense. Under the same conditions, the numerical solution of exponential Euler method
can preserve the exponential stable in MS sense for any stepsize h > 0, that is, the stability of
exponential Euler method for (3.13) has no limitation to the stepsize h.

4. Numerical Experiments

In this section, several numerical experiments are given to verify the conclusions of
convergence and MS stability of exponential Euler method for semi-linear stochastic
differential equations.

4.1. Strong Convergence of Exponential Euler Method

In order to make the notion of convergence precise, we must decide how to measure their
difference. Using E|yn −X(τn)| leads to the concept of strong convergence [19].
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Figure 1: Numerical approximation for strong convergence order of exponential Euler method.

Definition 4.1. A method is said to have strong order of convergence equal to 1/2 if there
exists a constant C, such that

e(h) := E
∣∣yn −X(τ)

∣∣ ≤ Ch1/2, (4.1)

for any sufficiently small stepsize h and fixed τ = nh ∈ [0, T].

The parameter λ = 2, μ = 1 and X0 = 1 is used to look at the strong convergence
of exponential Euler method for (3.1). We compute 5000 different discrete Brownian paths
over [0, 1] with δ = 2−9. For each path, exponential Euler method is applied with differential
stepsizes: h = 2p−1δ for 1 ≤ p ≤ 5. We denote by yk,p the value of kth generated trajectory of
numerical solution at the endpoint with h = 2p−1δ for 1 ≤ p ≤ 5 and byXk,p the corresponding
value of exact solution. It is easy to obtain the analytical solution of (3.1). The average errors

e(h) =
1

5000

5000∑

k=1

∣∣yk,p −Xk,p

∣∣ (4.2)

at the endpoint over 5000 sample paths are approximation for h = 2p−1δ, 1 ≤ p ≤ 5. We plot
the approximation to e(h) against h in blue on a log-log scale in Figure 1. For reference, a
dashed red line of slope one-half is added. In Figure 1, we can see that the slopes of the two
curves appear to match well.

If the inequality (4.1) holds with approximate equality, taking logs of both sides,

log e(h) ≈ logC +
1
2
logh. (4.3)

Furthermore, we see that the slope of the curve appears to 1/2. A least-squares power law
fit produces the slope = 0.5218, residual = 0.0435 of the blue curve in Figure 1. This suggests
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Figure 2: The numerical solutions with λ = −3, μ =
√
3.

that (4.1) is valid. Therefore, our results are consistent with a strong order of exponential
Euler method equal to 1/2 from numerical experience.

4.2. Mean-Square Stability Region

Consider the linear scaler stochastic differential equation

dX(t) = λX(t)dt + μX(t)dW(t), X(0) = X0. (4.4)

To examine MS stability of exponential Euler method, we solve (4.4) with X0 = 1 over
[0, 20] for two parameters sets. The first set is λ = −3 and μ =

√
3. These values satisfy

(3.2), hence the problem is MS stable. Firstly, We apply EM method over 50000 discrete
Brownian paths for the three differential stepsizes: h = 1, h = 1/2, h = 1/4. Secondly, we
apply exponential Euler method with the same stepsizes. Figure 2 depicts the plot of the
sample average of y2

j against tj = jh. Note that the vertical axis is logarithmically scaled.
In the upper curves of Figure 2, h = 1 and h = 1/2 curves increase with t while the

h = 1/4 curve decays toward zero. However, in the lower curves of Figure 2, all the curves
decay toward zero whether h = 1, h = 1/2, or h = 1/4. This implies that the MS stability
region of exponential Euler method contains that of EM method.

Next, we use the parameter set λ = −3 and μ = 3. It is observed that (4.4) is not MS
stable. The upper curves of Figure 3 are approximated by the EM method and the lower
curves in Figure 3 are approximated by the exponential Euler method. The curves in the
upper picture increase with t, while all the curves in the lower picture decrease toward zero.
This implies that the MS stability region of exponential Euler method contains the MS region
of test equation (4.4).
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Figure 3: The numerical solutions with λ = −3, μ = 3.
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Figure 4: Exponential Euler method.

4.3. Mean-Square Exponential Stability

Consider the scalar semi-linear stochastic differential equation:

dx(t) = (−3x(t) + sin(x(t)))dt + x(t)dW(t). (4.5)

It is easy to verify that (4.5) has the properties of (3.14) and (3.16). According to Theorem 3.9,
the problem is exponentially stable in MS sense. To test MS exponential stability, we solve
(4.5) with X0 = 1 over [0, 100]. We apply the exponential Euler method and EM method,
respectively, over 5000 different discrete Brownian paths with different large stepsize h =
4, h = 8, and the average over 5000 sample paths is approximated to |yn|2.
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Figure 5: EM method.
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Figure 6: Exponential Euler method.

The solutions of exponential Euler method and EM method with h = 4 can be found
in Figures 4 and 5. We can find that the curve in Figure 4 decreases significantly while the
curve in Figure 5 increases sharply with t. It is observed that the exponential Euler method
can preserve the MS exponential stability, but EM method does not have this property when
h = 4. Figures 6 and 7 demonstrate numerical solutions of the twomethods when stepsize h =
23 and the similar result can be obtained. Hence exponential Euler approximation solution
shares the MS exponential stability of the exact solution.

From Figures 5 and 7, it is manifest that EM method does not preserve the stability
with h = 22 and h = 23.
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Figure 7: EM method.

5. Conclusions

The classical explicit numerical methods for SDEs such as EM method and Milstein method
and the semi-implicit method such as stochastic Theta method (0 ≤ θ < 1/2) usually have
limitations to the stepsize h, and the stability results are given for sufficient small stepsize h.
In this paper, the exponential Euler method is extended to semi-linear SDEs and we proved
that the stability results have fewer restrictions of stepsize and preserve the stability of SDEs.

It is proved that under the conditions where scalar semi-linear SDEs is MS
exponentially stable, the exponential Euler method can preserve the MS stability for all
stepsize h > 0. For scaler linear test equation, the MS stable region of exponential Euler
method is calculated, and it is observed that theMS stable region of exponential Euler method
contains that of EMmethod and stochastic Theta method (0 ≤ θ < 1) and also contains that of
the scalar linear test equation. According to Definition 3.2, exponential Euler method is MS
A-stable.

In this paper, the scalar Wiener process is considered and the corresponding results
can be generalized to the multidimensional Winer process.

The MS exponential stability is investigated for scalar semi-linear SDEs in this paper.
For n-dimensional SDEs (n ≥ 2),

dX(t) = f(X(t))dt + g(X(t))dW(t),

X(0) = X0,
(5.1)

whether exponential Euler method can be applied to obtain the numerical solution is our
future work.
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