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The aim of this paper is to present new results related to the convergence of the sequence of the
q-Bernstein polynomials {Bn,q(f ;x)} in the case q > 1, where f is a continuous function on [0, 1].
It is shown that the polynomials converge to f uniformly on the time scale Jq = {q−j}∞j=0 ∪ {0},
and that this result is sharp in the sense that the sequence {Bn,q(f ;x)}∞n=1 may be divergent for
all x ∈ R \ Jq. Further, the impossibility of the uniform approximation for the Weierstrass-type
functions is established. Throughout the paper, the results are illustrated by numerical examples.

1. Introduction

Let f : [0, 1] → C, q > 0, and n ∈ N. Then, the q-Bernstein polynomial of f is defined by

Bn,q

(
f ;x
)
=

n∑

k=0

f

(
[k]q
[n]q

)

pnk
(
q;x
)
, (1.1)

where

pnk
(
q;x
)
=
[
n
k

]

q

xk(x; q
)
n−k, k = 0, 1, . . . n, (1.2)

with [ n
k ]q being the q-binomial coefficients given by

[
n
k

]

q

=
[n]q!

[k]q![n − k]q!
, (1.3)
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and (x; q)m being the q-Pochhammer symbol:

(
x; q
)
0 = 1,

(
x; q
)
m =

m−1∏

s=0

(
1 − xqs

)
,

(
x; q
)
∞ =

∞∏

s=0

(
1 − xqs

)
. (1.4)

Here, for any nonnegative integer k,

[k]q! = [1]q[2]q · · · [k]q (k = 1, 2, . . .), [0]q! := 1 (1.5)

are the q-factorialswith [k]q being the q-integer given by

[k]q = 1 + q + · · · + qk−1 (k = 1, 2, . . .), [0]q := 0. (1.6)

We use the notation from [[1], Ch. 10].
The polynomials pn0(q;x), pn1(q;x), . . . , pnn(q;x), called the q-Bernstein basic polynomi-

als, form the q-Bernstein basis in the linear space of polynomials of degree at most n.
Although, for q = 1, the q-Bernstein polynomial Bn,q(f ;x) turns into the classical

Bernstein polynomial Bn(f ;x):

Bn

(
f ;x
)
=

n∑

k=0

f

(
k

n

)(
n
k

)
xk(1 − x)n−k, (1.7)

conventionally, the name “q-Bernstein polynomials” is reserved for the case q /= 1.
Based on the q-Bernstein polynomials, the q-Bernstein operator on C[0, 1] is given by

Bn,q : f �−→ Bn,q

(
f ; ·). (1.8)

A detailed review of the results on the q-Bernstein polynomials along with an extensive
bibliography has been provided in [2]. In this field, new results concerning the properties
of the q-Bernstein polynomials and/or their various generalizations are still coming out (see,
e.g, papers [3–8], all of which have appeared after [2]).

The popularity of the q-Bernstein polynomials is attributed to the fact that they are
closely related to the q-binomial and the q-deformed Poisson probability distributions (cf.
[9]). The q-binomial distribution plays an important role in the q-boson theory, providing
a q-deformation for the quantum harmonic formalism. More specifically, it has been used to
construct the binomial state for the q-boson. Meanwhile, the q-deformed Poisson distribution,
which is the limit form of q-binomial one, defines the energy distribution in a q-analogue of
the coherent state [10]. Another motivation for this study is that various estimates related to
the natural sequences of functions and operators in functional spaces, convergence theorems,
and estimates for the rates of convergence are of decisive nature in the modern functional
analysis and its applications (see, e.g., [4, 11, 12]).

The q-Bernstein polynomials retain some of the properties of the classical Bernstein
polynomials. For example, they possess the end-point interpolation property:

Bn,q

(
f ; 0
)
= f(0), Bn,q

(
f ; 1
)
= f(1), n = 1, 2, . . . , q > 0, (1.9)
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and leave the linear functions invariant:

Bn,q(at + b;x) = ax + b, n = 1, 2, . . . , q > 0. (1.10)

In addition, the q-Bernstein basic polynomials (1.2) satisfy the identity

n∑

k=0

pnk
(
q;x
)
= 1 ∀n = 1, 2, . . . , ∀q > 0. (1.11)

Furthermore, the q-Bernstein polynomials admit a representation via the divided differences
given by (3.3), as well as demonstrate the saturation phenomenon (see [2, 7, 13]).

Despite the similarities such as those indicated above, the convergence properties of
the q-Bernstein polynomials for q /= 1 are essentially different from those of the classical ones.
What is more, the cases 0 < q < 1 and q > 1 in terms of convergence are not similar to each
other, as shown in [14, 15]. This absence of similarity is brought about by the fact that, for
0 < q < 1, Bn,q are positive linear operators on C[0, 1], whereas for q > 1, no positivity occurs.
In addition, the case q > 1 is aggravated by the rather irregular behavior of basic polynomials
(1.2), which, in this case, combine the fast increase in magnitude with the sign oscillations.
For a detailed examination of this situation, see [16], where, in particular, it has been shown
that the norm ‖Bn,q‖ increases rather rapidly in both n and q. Namely,

∥∥Bn,q

∥∥ ∼ 2
e
· q

n(n−1)/2

n
as n −→ ∞, q −→ +∞. (1.12)

This puts serious obstacles in the analysis of the convergence for q > 1. The challenge has
inspired some papers by a number of authors dealing with the convergence of q-Bernstein
polynomials in the case q > 1 (see, e.g., [7, 17]). However, there are still many open problems
related to the behavior of the q-Bernstein polynomials with q > 1 (see the list of open
problems in [2]).

In this paper, it is shown that the time scale

Jq =
{
q−j
}∞

j=0
∪ {0} (1.13)

is the “minimal” set of convergence for the q-Bernstein polynomials of continuous functions
with q > 1, in the sense that every sequence {Bn,q(f ;x)} converges uniformly on Jq. Moreover,
it is proved that Jq is the only set of convergence for some continuous functions.

The paper is organized as follows. In Section 2, we present results concerning the
convergence of the q-Bernstein polynomials on the time scale Jq. Section 3 is devoted to the
q-Bernstein polynomials of the Weierstrass-type functions. Some of the results throughout
the paper are also illustrated using numerical examples.
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2. The Convergence of the q-Bernstein Polynomials on Jq

In this paper, q > 1 is considered fixed. It has been shown in [15], that, if a function f is
analytic in Dε = {z : |z| < 1 + ε}, then it is uniformly approximated by its q-Bernstein
polynomials on any compact set in Dε, and, in particular, on [0, 1].

In this study, attention is focused on the q-Bernstein polynomials of “bad” functions,
that is, functions which do not have an analytic continuation from [0, 1] to the unit disc.
In general, such functions are not approximated by their q-Bernstein polynomials on [0, 1].
Moreover, their q-Bernstein polynomials may tend to infinity at some points of [0, 1] (a simple
example has been provided in [15]). Here, it is proved that the divergence of {Bn,q(f ;x)}may
occur everywhere outside of Jq, which is a “minimal” set of convergence.

However, in spite of this negative information, it will be shown that, for any f ∈
C[0, 1], the sequence of its q-Bernstein polynomials converges uniformly on the time scale
Jq.

The next statement generalizing Lemma 1 of [15] can be regarded as a discrete ana-
logue of the Popoviciu Theorem.

Theorem 2.1. Let f ∈ C[0, 1]. Then

∣∣∣Bn,q

(
f ; q−j

)
− f
(
q−j
)∣∣∣ ≤ 2ωf

⎛

⎝

√√√
√q−j

(
1 − q−j

)

[n]q

⎞

⎠, j ∈ Z+, (2.1)

where ωf is the modulus of continuity of f on [0, 1].

Corollary 2.2. If j ∈ Z+, then

∣∣∣Bn,q

(
f ; q−j

)
− f
(
q−j
)∣∣∣ ≤ 2ωf

⎛

⎜
⎝

1

2
√
[n]q

⎞

⎟
⎠, (2.2)

that is, Bn,q(f ;x) converges uniformly to f(x) on the time scale Jq.

Proof. The proof is rather straightforward. First, notice that pnk(q; q−j) ≥ 0 for all n, k, j, while∑n
k=0 pnk(q; q

−j) = 1 by virtue of (1.11). Then

∣∣∣Bn,q

(
f ; q−j

)
− f
(
q−j
)∣∣∣ ≤

n∑

k=0

∣∣∣∣∣
f

(
[k]q
[n]q

)

− f
(
q−j
)
∣∣∣∣∣
pnk
(
q; q−j

)

≤
n∑

k=0

ωf

(∣∣∣∣∣

[k]q
[n]q

− q−j
∣∣∣∣∣

)

pnk
(
q; q−j

)

≤ ωf(δ)
n∑

k=0

⎧
⎨

⎩
1 +

1
δ2

(
[k]q
[n]q

− q−j
)2
⎫
⎬

⎭
pnk
(
q; q−j

)

(2.3)
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for any δ > 0. Plain calculations (see, e.g., [13], formula (2.7)) show that

Bn,q

(
(t − x)2;x

)
=

x(1 − x)
[n]q

, (2.4)

which implies that

∣
∣
∣Bn,q

(
f ; q−j

)
− f
(
q−j
)∣∣
∣ ≤ ωf(δ) ·

{

1 +
1
δ2

· q
−j(1 − q−j

)

[n]q

}

. (2.5)

Then, one can immediately derive the result by choosing δ =
√
q−j(1 − q−j)/[n]q.

Remark 2.3. In [7], Wu has shown that if f ∈ C1[0, 1], then for any j ∈ Z+, one has:

∣∣∣Bn,q

(
f ; q−j

)
− f
(
q−j
)∣∣∣ ≤ Cj

(
q−n
)
, n −→ ∞, where Cj −→ ∞ as j → ∞. (2.6)

The condition f ∈ C1[0, 1] cannot be left out completely, as the following example shows.

Example 2.4. Consider a function f ∈ C[0, 1] satisfying

f(x) =

⎧
⎪⎨

⎪⎩

0 if x ∈ [0, q−2] ∪ (q−1, 1],
(
q−1 − x

)α if x ∈
[(

q−2 + q−1
)

2
, q−1
]

,
(2.7)

where 0 < α < 1. Then, for n large enough, we have

Bn,q

(
f ; q−1

)
− f
(
q−1
)
= f

(
[n − 1]q
[n]q

)

pn,n−1
(
q; q−1

)

=
(
q − 1
q

)α

·
(
qn − 1

)1−α

qn
≥ C q−nα,

(2.8)

where C is a positive constant independent from n.

As it has been already mentioned, the behavior of the q-Bernstein polynomials in the
case q > 1 outside of the time scale Jq may be rather unpredictable. The next theorem shows
that the sequence {Bn,q(f ;x)}may be divergent for all x ∈ R \ Jq.

Theorem 2.5. Let f(x) = xα, 0 < α ≤ 1/2. If q ≥ 2, then

Bn,q

(
f ;x
) → ∞ as n → ∞ ∀x ∈ R \ Jq. (2.9)
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Proof. The q-Bernstein polynomial of f is

Bn,q

(
f ;x
)
=

n∑

k=0

(
[k]q
[n]q

)α

pnk
(
q;x
)
=

1
[n]αq

n∑

k=1

[k]αq pnk
(
q;x
)
. (2.10)

Since for k = 1, 2, . . . , n − 1 one has

pnk
(
q;x
)
=

(
qn − 1

) · · · (qn−k+1 − 1
)

(
qk − 1

) · · · (q − 1
) xk(x; q

)
n−k

=
q(2n−k+1)k/2

(
q−n; q

)
k(

qk − 1
) · · · (q − 1

) (−1)n−kq(n−k)(n−k−1)/2xn

(
1
x
;
1
q

)

n−k

= (−1)nqn(n−1)/2xn · (−1)kqk(q−n; q)k(
qk − 1

) · · · (q − 1
) ·
(
1
x
;
1
q

)

n−k
,

(2.11)

it follows that

Bn,q

(
f ;x
)
=

(−1)nqn(n−1)/2xn

[n]αq
· T(n, q, x), (2.12)

where

T
(
n; q;x

)
:=

(−1)n[n]αq
qn(n−1)/2

+
n−1∑

k=0

(−1)k[k]αqqk
(
q−n; q

)
k(

qk − 1
) · · · (q − 1

) ·
(
1
x
;
1
q

)

n−k
. (2.13)

Obviously,

lim
n→∞

qn(n−1)/2xn

[n]αq
= ∞ for any x /= 0. (2.14)

As such, the theorem will be proved if it is shown that

lim
n→∞

T
(
n, q, x

)
/= 0 for x /∈ Jq. (2.15)

As limn→∞(q−n(n−1)/2(−1)n[n]αq) = 0, it suffices to prove that

lim
n→∞

∞∑

k=0

ckn /= 0 when x /∈ Jq, (2.16)
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where

ckn :=

⎧
⎪⎨

⎪⎩

(−1)k[k]αqqk
(
q−n; q

)
k(

qk − 1
) · · · (q − 1

) ·
(
1
x
;
1
q

)

n−k
if k ≤ n − 1,

0 if k ≥ n.

(2.17)

The fact that (q−n; q)k ≤ 1 and the inequality

∣
∣
∣
∣
∣

(
1
x
;
1
q

)

n−k

∣
∣
∣
∣
∣
≤
(
− 1
|x| ;

1
q

)

n−k
≤
(
− 1
|x| ;

1
q

)

∞
(2.18)

lead to

|ckn| ≤
qk[k]αq

(
qk − 1

) · · · (q − 1
)
(
− 1
|x| ;

1
q

)

∞
=: dk. (2.19)

Now, since

lim
n→∞

ckn =
(−1)kqk[k]αq

(
qk − 1

) · · · (q − 1
)
(
1
x
;
1
q

)

∞
, (2.20)

and the series
∑∞

k=0 dk is convergent, the Lebesgues dominated convergence theorem implies

lim
n→∞

∞∑

k=0

ckn =
∞∑

k=0

lim
n→∞

ckn =
1

(
q − 1

)α

(
1
x
;
1
q

)

∞
·

∞∑

k=0

(−1)kak, (2.21)

where ak = qk(qk − 1)α/(qk − 1) · · · (q − 1), k = 1, 2, . . .. Moreover,

1
(
q − 1

)α

(
1
x
;
1
q

)

∞
/= 0 whenever x /∈ Jq. (2.22)

How about the sum of the series in (2.21)? Consider the following two cases.

Case 1. 0 < α < 1/3.
Let us show that ak+1 < ak, k = 1, 2, . . . for q ≥ 2. Since

ak+1

ak
=

q
(
qk+1 − 1

)1−α(
qk − 1

)α , (2.23)
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for k ≥ 2 it follows that

ak+1

ak
≤ q
(
q3 − 1

)1−α(
q2 − 1

)α

≤ q
(
q − 1

)(
q2 + q + 1

)1−α(
q + 1

)α

≤ q
(
q − 1

)(
q + 1

) < 1.

(2.24)

Notice that (2.24) holds for any α ∈ (0, 1). In addition, if k = 1, then

a2

a1
=

q
(
q2 − 1

)1−α(
q − 1

)α =
q

(
q − 1

)(
q + 1

)1−α . (2.25)

The function in the r.h.s. is monotone decreasing in q, so

a2

a1
≤ 2

1 · 31−α ≤ 2
3
√
9
< 1. (2.26)

Thus, {ak}∞k=1 is a strictly decreasing sequence. Since all (a2k−1 − a2k) are strictly positive, it
follows that

∞∑

k=0

(−1)kak = − [(a1 − a2) + (a3 − a4) + · · · + (a2k−1 − a2k) + · · · ] < 0. (2.27)

Case 2. 1/3 ≤ α ≤ 1/2.
Estimate (2.24) implies that

∑∞
k=5 (−1)kak < 0. To prove the theorem, it suffices to show

that a1 − a2 + a3 − a4 > 0 when q ≥ 2. Denoting ai = (q(q − 1)α/(q − 1))gi(q), i = 1, 2, 3, 4, we
write the following:

a1 − a2 + a3 − a4 =
q
(
q − 1

)α

q − 1
[
g1
(
q
) − g2

(
q
)
+ g3
(
q
) − g4

(
q
)]

=:
q
(
q − 1

)α

q − 1
K
(
q
)
. (2.28)

We are left to show that K(q) is strictly positive for the specified values of q and α. First of
all, notice that g1(q) = 1, while g2(q), g3(q), and g4(q) are strictly decreasing in q on (0,+∞).
Hence, for q ∈ [2, 5/2],

K
(
q
) ≥ 1 − g1(2) + g2

(
5
2

)
− g3(2) = 1 − 2

3
· 3α + 200

2457

(
39
4

)α

− 8
315

· 15α =: L(α). (2.29)

The function L(α) is strictly decreasing on [1/3, 1/2]. Indeed,

L′(α) = − 2
3
· 3α ln 3 + 200

2457

(
39
4

)α

ln
(
39
4

)
− 8
315

· 15α ln 15 (2.30)
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and, for α ∈ [1/3, 1/2] ,

L′(α) ≤ − 2
3
· 31/3 ln 3 + 200

2457

(
39
4

)1/2

ln
(
39
4

)
− 8
315

· 151/3 ln 15 ≤ −0.4332 < 0, (2.31)

whence L(α) ≥ L(1/2) ≥ 1.096 × 10−3 > 0 for α ∈ [1/3, 1/2].
Similarly, for q ∈ [5/2, 3],

K
(
q
) ≥ 1 − g1

(
5
2

)
+ g2(3) − g3

(
5
2

)

= 1 − 10
21

·
(
7
2

)α

+
9
208

· 13α − 8000
1496313

·
(
203
8

)α

=: M(α).

(2.32)

Applying the same reasoning as done for L(α), it can be shown that M(α) is strictly
decreasing on [1/3, 1/2]. Since M(1/2) ≥ 0.238 > 0, it follows that M(α) > 0 for all
α ∈ [1/3, 1/2].

Finally, for q ∈ [3,+∞), we obtain

K
(
q
) ≥ 1 − g1(3) − g3(3) = 1 − 3

8
· 4α − 27

16640
· 40α =: N(α). (2.33)

Obviously, N(α) is a strictly decreasing function for all α ∈ R, whence, for α ∈ [1/3, 1/2],

N(α) ≥ N

(
1
2

)
≥ 0.239 > 0, (2.34)

which completes the proof.

Remark 2.6. It can be seen from the proof that, the statement of the theorem is true for any
α ∈ (0, 1) and q ≥ q0(α).

An illustrative example is supplied below.

Example 2.7. Let f(x) = 3
√
x. The graphs of y = f(x) and y = Bn,q(f ;x) for q = 2 and n = 4, 5 are

exhibited in Figure 1. Similarly, Figure 2 represents the graphs of y = f(x) and y = Bn,q(f ;x)
for q = 2 and n = 6, 7 over the subintervals [0, 0.5] and [0.5, 1], respectively. In addition,
Table 1 presents the values of the error function E(n, q, x) := Bn,q(f ;x) − f(x) with q = 2 at
some points x ∈ [0, 1]. The points are taken both in Jq and in [0, 1] \ Jq. It can be observed
from Table 1 that, while at the points x ∈ Jq, the values of the error function are close to 0, at
the points x /∈ Jq, the values of the error function may be very large in magnitude.

Remark 2.8. Table 1 also shows that while the error function changes its sign for different
values of x, for x = q−j ∈ Jq, its values are negative, that is, Bn,q(t1/3; q−j) < f(q−j) for q−j ∈ Jq.
This is a particular case of the following statement.
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1.5

1
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−2.5
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y

x

f(x)
B4,2(f ;x)
B5,2(f ;x)

Figure 1: Graphs of y = f(x) and y = Bn,2(f ;x), n = 4, 5.

Theorem 2.9. Let q > 1. If f(x) is convex (concave) on [0, 1], then

Bn,q

(
f ; q−j

)
≥ f
(
q−j
) (

correspondingly Bn,q

(
f ; q−j

)
≤ f
(
q−j
))

, (2.35)

for all q−j ∈ Jq.

Proof. It can be readily seen from (1.10) and (1.11) that

n∑

k=0

pnk
(
q; q−j

)
= 1,

n∑

k=0

[k]q
[n]q

pnk
(
q; q−j

)
= q−j , (2.36)

while pnk(q; q−j) ≥ 0. By virtue of Jensen’s inequality, if f is convex on [0, 1], then whenever
n ∈ N and x0, x1, . . . , xn ∈ [a, b], there holds the following:

n∑

k=0

λkf(xk) ≥ f

(
n∑

k=0

λkxk

)

. (2.37)

for all λ0, λ1, . . . , λn ≥ 0 satisfying
∑n

k=0 λk = 1. Setting

xk =
[k]q
[n]q

, λk = pnk
(
q; q−j

)
, k = 0, 1, . . . , n, (2.38)

and observing that

n∑

k=0

λkf(xk) = Bn,q

(
f ; q−j

)
, (2.39)

the required result is derived.
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B6,2(f ;x)
B7,2(f ;x)
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Figure 2: Graphs of y = f(x) and y = Bn,2(f ;x), n = 6, 7.

Example 2.10. Let

f(x) =

⎧
⎪⎨

⎪⎩

q2x if 0 ≤ x ≤ q−2,

q2x −
(
q2x − 1

)2

q2 − 1
if q−2 < x ≤ 1.

(2.40)

The function is concave on [0, 1] and, hence, according to the previous results, Bn,q(f ; q−j) →
f(q−j) as n → ∞ from below for all j ∈ Z+. To examine the behavior of polynomials Bn,q(f ;x)
for x /∈ Jq, consider the auxiliary function:

g(x) = f(x) − q2x =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ x ≤ q−2,

−
(
q2x − 1

)2

q2 − 1
if q−2 < x ≤ 1.

(2.41)

Since [n − k]q/[n]q ≤ q−k for k = 0, 1, . . . , n, and [n − 1]q/[n]q ≥ q−2 whenever qn ≥ q + 1, it
follows that, for sufficiently large n,

Bn,q

(
g;x
)
= g

(
[n − 1]q
[n]q

)

pn,n−1
(
q;x
)
+ g(1)pnn(x). (2.42)
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Plain computations reveal

g

(
[n − 1]q
[n]q

)

= −
(
q − 1

)(
qn − q − 1

)2

(
qn − 1

)2(
q + 1

) , (2.43)

yielding

Bn,q

(
g;x
)
= −

(
qn − q − 1

)2
(
qn − 1

)(
q + 1

)xn−1(1 − x) −
(
q2 − 1

)
xn. (2.44)

Consequently, for x /∈ Jq, one obtains

lim
n→∞

Bn,q

(
g;x
)
=
{

0 if |x| < q−1,
∞ if |x| > q−1.

(2.45)

Since, by (1.10), Bn,q(f ;x) = q2x + Bn,q(g;x), it follows that:

lim
n→∞

Bn,q

(
f ;x
)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q2x if |x| < q−1,

∞ if |x| > q−1, x /= 1,
q2 + 1
q + 1

if x = q−1,

1 if x = 1.

(2.46)

For x = −q−1, the limit does not exist. Additionally, it is not difficult to see that Bn,q(f ;x) →
f(x) as n → ∞ uniformly on any compact set inside (−1/q2, 1/q2), while on any
interval outside of (−1/q2, 1/q2), the function f(x) is not approximated by its q-Bernstein
polynomials. This agrees with the result from [17], Theorem 2.3. The graphs of f(x) and
Bn,q(f ;x) for q = 2, n = 5 and 8 on [0, 1] are given in Figure 3. The values of the error function
at some points x ∈ Jq and at some exemplary points x /∈ Jq are given in Table 2.

Remark 2.11. Following Charalambides [9], consider a sequence of random variables
{X(j)

n }∞n=1 possessing the distributions P (j)
n given by

P

{

X
(j)
n =

[n − k]q
[n]q

}

= pn,n−k
(
q; q−j

)
, k = 0, 1, . . . , n. (2.47)

Let I(q−j) denote a random variable with the δ-distribution concentrated at q−j . Theorem 2.1
implies that X(j)

n → I(q−j) in distribution.

Generally speaking, Theorem 2.1 shows that the q-Bernstein polynomials with q > 1
possess an “interpolation-type” property on Jq. Information on interpolation of functions
with nodes on a geometric progression can be found in, for example, [18] by Schoenberg.
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Figure 3: Graphs of y = f(x) andy = Bn,2(f ;x), n = 5, 8.

3. On the q-Bernstein Polynomials of the Weierstrass-Type Functions

In this section, the q-Bernstein polynomials of the functions with “bad” smoothness are
considered. Let ϕ(x) ∈ C[−1, 1] satisfy the condition:

ϕ(0) > ϕ(x) for x ∈ [−1, 1] \ {0}. (3.1)

The letter ϕwill also denote a 2-periodic continuation of ϕ(x) on (−∞,∞).

Definition 3.1. Let a, b ∈ R satisfy 0 < a < 1 < ab. A function f(x) is said to beWeierstrass-type
if

f(x) =
∞∑

k=0

akϕ
(
bkx
)
. (3.2)

Notice that f(x) is continuous if and only if ϕ(−1) = ϕ(1). For ϕ(x) = cosπx and a special
choice of a and b (see, e.g., [19, Section 4]), the classical Weierstrass continuous nowhere
differentiable function is obtained. In [19], one can also find an exhaustive bibliography on
this function and similar ones. For ϕ(x) = 1−|x|, a function analogous to the Van derWaerden
continuous nowhere differentiable function appears.

The aim of this section is to prove the following statement.

Theorem 3.2. If f(x) is a Weierstrass-type function, then the sequence Bn,q(f ;x) of its q-Bernstein
polynomials is not uniformly bounded on any interval [0, c].
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Proof. To prove the theorem, the following representation of q-Bernstein polynomials (see
[15], formulae (6) and (7)) is used:

Bn,q

(
f ;x
)
=

n∑

k=0

λknf

[

0;
1

[n]q
; . . . ;

[k]q
[n]q

]

xk, (3.3)

where

λ0n = λ1n = 1, λkn =

(

1 − 1
[n]q

)

· · ·
(

1 −
[k − 1]q
[n]q

)

, k = 2, . . . , n, (3.4)

and f[x0;x1; . . . ;xk] denote the divided differences of f , that is,

f[x0] = f(x0), f[x0;x1] =
f(x1) − f(x0)

x1 − x0
, . . . ,

f[x0;x1; . . . ;xk] =
f[x1; . . . ;xk] − f[x0; . . . ;xk−1]

xk − x0
.

(3.5)

When q = 1, the well-known representation for the classical Bernstein polynomials is
recovered and the numbers λkn are the eigenvalues of the Bernstein operator, see [20],
Chapter 4, Section 4.1 and [21]. The latter result has been extended to the case q /= 1 in [15].

Clearly, it suffices to consider the case 0 < c < 1. From (3.3), it follows that

B′
n,q

(
f ; 0
)
= λ1nf

[

0;
1

[n]q

]

= [n]q

{

f

(
1

[n]q

)

− f(0)

}

, (3.6)

and, hence,

∣∣∣B′
n,q

(
f ; 0
)∣∣∣ = [n]q

{

f(0) − f

(
1

[n]q

)}

= [n]q
∞∑

k=0

ak

{

ϕ(0) − ϕ

(
bk

[n]q

)}

. (3.7)

What remains is to find a lower bound for |B′
n,q(f ; 0)|. Due to (3.1), all terms of the series are

nonnegative and, therefore,

∣∣∣B′
n,q

(
f ; 0
)∣∣∣ ≥ [n]qa

j

{

ϕ(0) − ϕ

(
bj

[n]q

)}

for any j = 0, 1, . . . (3.8)

Let j = jn be chosen in such a way that

1
b
<

bjn

[n]q
≤ 1. (3.9)
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For n > b, such a choice is possible because, in this case, inequality (3.9) implies that

0 <
ln [n]q
ln b

− 1 < jn ≤
ln [n]q
ln b

. (3.10)

Since the length of the interval (ln [n]q/ ln b − 1, ln [n]q/ ln b] is 1, there is a positive integer,
say, jn, such that jn ∈ (ln [n]q/ ln b−1, ln [n]q/ ln b]. The obvious inequality [n]q > qn−1 implies
the following:

jn ≥ (n − 1)
ln q
ln b

− 1 =: n
ln q
ln b

−A, (3.11)

with A = (ln q/ ln b) + 1 being a positive constant. Then, for n > b, it follows that

∣∣∣B′
n,q

(
f ; 0
)∣∣∣ ≥ [n]q ajn min

t∈[1/b,1]
{
ϕ(0) − ϕ(t)

}
:= τ[n]qa

jn , (3.12)

where τ > 0 due to (3.1). Consequently,

∣∣∣B′
n,q

(
f ; 0
)∣∣∣ ≥ τ

[n]q
bjn

(ab)jn ≥ τ(ab)jn ≥ τ(ab)n(ln q/ ln b) −A, (3.13)

which leads to

∣∣∣B′
n,q

(
f ; 0
)∣∣∣ ≥ Cρn, (3.14)

where C = τ(ab)−A is a positive constant and ρ = (ab)(ln q/ ln b) > 1. Now, assume that
{Bn,q(f ;x)} is uniformly bounded on [0, c], that is, |Bn,q(f ;x)| ≤ M for all x ∈ [0, c]. By
Markov’s Inequality (cf., e.g., [22], Chapter 4, Section 1, pp. 97-98) it follows that

∣∣
∣B′

n,q

(
f ; 0
)∣∣∣ ≤ 2M

c
n2 ∀n = 1, 2, . . . , (3.15)

This proves the theorem because the latter estimate contradicts (3.14).

To present an illustrative example, let us denote the Nth partial sum of the series in
(3.2) by hN , that is:

hN(x) =
N∑

k=0

akϕ
(
bkx
)
. (3.16)

Clearly, the function hN is an approximation of (3.2) satisfying the error estimate

EN(x) =
∣∣f(x) − hN(x)

∣∣ ≤ max
t∈[−1,1]

∣∣ϕ(t)
∣∣a

N+1

1 − a
, ∀x ∈ [0, 1]. (3.17)
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Figure 4: Graphs of y = h20(x) and y = Bn,2(f ;x), n = 4, 5, 6.
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Figure 5: Graphs of y = h20(x) and y = Bn,2(f ;x), n = 4, 5, 6.

Example 3.3. Let ϕ(x) = (cosπx), a = 1/2, and b = 4. For N = 20, one has E20(x) ≤ 10−6. The
graphs of h20(x) and the associated q-Bernstein polynomials Bn,q(h20;x) for q = 2, n = 4, 5,
and 6 on the subintervals [0, 0.55] and [0.55, 1] are presented in Figures 4 and 5, respectively.
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