
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 867598, 14 pages
doi:10.1155/2012/867598

Research Article
Convergence Analysis of the Preconditioned Group
Splitting Methods in Boundary Value Problems

Norhashidah Hj. Mohd Ali and Abdulkafi Mohammed Saeed

School of Mathematical Sciences, Universitiy Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia

Correspondence should be addressed to Abdulkafi Mohammed Saeed, abdelkafe@yahoo.com

Received 17 May 2012; Accepted 12 July 2012

Academic Editor: Ravshan Ashurov

Copyright q 2012 N. Hj. Mohd Ali and A. Mohammed Saeed. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

The construction of a specific splitting-type preconditioner in block formulation applied to a
class of group relaxation iterative methods derived from the centred and rotated (skewed) finite
difference approximations has been shown to improve the convergence rates of these methods. In
this paper, we present some theoretical convergence analysis on this preconditioner specifically
applied to the linear systems resulted from these group iterative schemes in solving an elliptic
boundary value problem. We will theoretically show the relationship between the spectral radiuses
of the iteration matrices of the preconditioned methods which affects the rate of convergence
of these methods. We will also show that the spectral radius of the preconditioned matrices is
smaller than that of their unpreconditioned counterparts if the relaxation parameter is in a certain
optimum range. Numerical experiments will also be presented to confirm the agreement between
the theoretical and the experimental results.

1. Introduction

Consider the finite difference discretisation schemes for solving the following boundary value
problem which is the two-dimensional Poisson equation with Dirichlet boundary conditions:

uxx + uyy = f
(
x, y
)
,
(
x, y
) ∈ Ω,

u
(
x, y
)
= g
(
x, y
)
,
(
x, y
) ∈ ∂Ω.

(1.1)

Here, Ω is a continuous unit square solution domain with boundary ∂Ω. This equation plays a
very important role in the modelers of fluid flow phenomena and heat conduction problems.
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Let Ω be discretised uniformly in both x and y directions with a mesh size h = 1/n, where n
is an integer. The simplest finite difference approximation of the Laplacian is

ui+1,j − 2uij + ui−1,j

h2
+
ui,j+1 − 2uij + ui,j−1

h2
− 1

12
h2

(
∂4u

∂x4
+
∂4u

∂y4

)

−O
(
h4
)
= fij . (1.2)

Here, uij = u(xi, yj). Another approximation to (1.1) can be derived from the rotated five-point
finite-difference approximation to give [1]

ui+1,j+1 + ui−1,j−1 + ui+1,j−1 + ui−1,j+1 − 4uij

2h2

− h2

[
1
2

∂4u

∂x2∂y2
+

1
12

(
∂4u

∂x4
+
∂4u

∂y4

)]

−O
(
h4
)
= fij .

(1.3)

Based on the latter approximation, improved point and group iterative schemes have been
developed over the last few years in solving several types of partial differential equations
[1–5]. In particular, the Modified Explicit Decoupled Group (MEDG) method [6, 7] was
formulated as the latest addition to this family of four-point explicit group methods in solving
the Poisson equation. This method has been shown to be the fastest among the existing
explicit group methods due to its lesser computational complexity.

Since it is well known that preconditioners play a vital role in accelerating the
convergence rates of iterative methods, several preconditioned strategies have been used for
improving the convergence rate of the explicit group methods derived from the standard
and skewed (rotated) finite difference operators [8–11]. In particular, Saeed and Ali [12–
14] presented an (I + S)-type preconditioning matrix applied to the systems obtained
from the four-point Explicit Decoupled Group (EDG) and the Modified Explicit Decoupled
Group (MEDG) methods for solving the elliptic partial differential equation, where S is
obtained by taking the first upper diagonal groups of the iteration matrix of the original
system. The numerical experiments performed on these methods were seen to yield very
encouraging results. However, no detailed studies of the spectral radius analysis of all these
preconditioned systems have been done to confirm the superiority of this preconditioner.

The focus of this study is to establish the convergence properties of the preconditioned
systems based on the splitting-type preconditioner (I+S) for improving the performance and
reliability of this family of explicit group methods derived from the rotated finite-difference
formula. We will prove that this type of preconditioner applied to the MEDG SOR can
minimize the most the spectral radius of the preconditioned matrix provided the relaxation
parameter is in a certain optimum range. This paper is organised as follows: in Section 2, we
give a presentation of the preconditioner applied to the system resulted from the EDG SOR
method. A brief description of the application of the preconditioner in block formulation to
the MEDG SOR is given in Section 3. The theoretical convergence analysis of these methods
is discussed in Section 4. In Section 5, we give a numerical example to confirm the results
obtained in Section 4. Finally, we report a brief conclusion in Section 6.
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2. Preconditioned Explicit Decoupled Group SOR (EDG SOR)

For convenience, we will now briefly explain some of the definitions used in this paper.

Definition 2.1 (see [15]). A matrix A of order n has property A if there exists two disjoint
subsets S and T of W = {1, 2, . . . , n} such that if i /= j and if either aij /= 0 and aij /= 0, then i ∈ S
and j ∈ T or else i ∈ T and j ∈ S.

Definition 2.2 (see [3]). An ordered grouping π of W = {1, 2, . . . , n} is a subdivision of W
into disjoint subsets R1, R2, . . . , Rq such that R1 + R2 + · · · + Rq = W . Given a matrix A and an
ordered grouping π , we define the submatrices Am,n for m,n = 1, 2, . . . q as follows: Am,n is
formed from A deleting all rows except those corresponding to Rm and all columns except
those corresponding to Rn.

Definition 2.3 (see [3]). Let π be an ordered grouping with q groups. A matrix A has Property
A(π) if the q × q matrix Z = (zr,s) defined by zr,s = {0 if Ar,s = 0 or 1 if Ar,s /= 0} has Property
A.

Definition 2.4 (see [15]). A matrix A of order n is consistently ordered if for some t there exist
disjoint subsets S1, S2, . . . , St of W = {1, 2, . . . , n} such that

∑t
k=1 Sk = W and such that if i and

j are associated, then j ∈ Sk+1 if j > i and j ∈ Sk−1 if j < i, where Sk is the subset containing i.
Note that a matrix A is a π-consistently ordered matrix if the matrix Z in Definition 2.3

is consistently ordered.
From the discretisation of the EDG finite-difference formula in solving the Poisson

equation, the linear system

A
˜
u =

˜
b (2.1)

is obtained with [1]

A =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

R0 R1

R2 R0 R1

R2 R0
. . .

. . . . . . R1

R2 R0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(N−1)2/2×(N−1)2/2

, R0 =

⎡

⎢⎢⎢⎢⎢
⎣

R00 R01

R02 R00
. . .

. . . . . . R01

R02 R00

⎤

⎥⎥⎥⎥⎥
⎦

(N−1)×(N−1)

,

R00 =

⎡

⎢
⎣

1 −1
4

−1
4

1

⎤

⎥
⎦, R01 =

⎡

⎣
0 0

−1
4

0

⎤

⎦, R02 = RT
01,

R1 =

⎡

⎢⎢⎢⎢⎢
⎣

R01 R01

R01
. . .
. . . R01

R01

⎤

⎥⎥⎥⎥⎥
⎦

(N−1)×(N−1)

, R2 =

⎡

⎢⎢⎢
⎣

R02

R02 R02
. . . . . .

R02 R02

⎤

⎥⎥⎥
⎦

(N−1)×(N−1)

.

(2.2)



4 Abstract and Applied Analysis

Let A ∈ /⊂ni,ni
π,p , (p = N − 1) be written as A = D − E − F, where D = diag (A11, A22, . . . , Ap,p), E

and F are strict block lower triangular, and strict block upper triangular parts of A. Here, the
diagonal entries Aii are nonsingular and /⊂ni,ni

π,p denotes the set of all matrices in /⊂ni,ni
π,p which is

of the form (2.1) relative to some given block partitioning π . The block Jacobi iteration matrix
is BJ = D−1(E+F) = L+U, where L = D−1E,U = D−1F, the block Gauss-Seidel iteration matrix
is BGS = (I−L)−1U, and the Block Successive Over-Relaxation method (BSOR) iteration matrix
is

B�w = (I −wL)−1{(1 −w)I +wU}. (2.3)

Since the matrix A of (2.1) is a π-consistently ordered and possesses property A(π), therefore,
the theory of block SOR is valid for this iterative method [1].

The theoretical optimum relaxation factor ωp for implementing the group SOR
iterative scheme can be computed from the formula:

ωp =
2

1 +
√

1 − ρ2(J)
, (2.4)

where ρ(J) is the spectral radius of the group Jacobian iterative matrix. Yousif and Evans [16]
gave a good estimate of the spectral radius for the EDG method:

ρ(J) = 1 − 7
6
π2h2. (2.5)

In an effort to further accelerate the convergence rates of this method, Saeed and Ali [12]
applied a preconditioner P to the linear system (2.1) and transformed it into an equivalent
system:

PA
˜
u = P

˜
b (2.6)

with P = (I +S), where I is the identity matrix which has the same dimension as A while S is
obtained by taking the first upper diagonal groups of R0 in the original system above as the
following:

S =

⎡

⎢⎢⎢
⎣

Z1

Z1
. . .

Z1

⎤

⎥⎥⎥
⎦

(N−1)2/2×(N−1)2/2

, Z1 =

⎡

⎢⎢⎢⎢⎢
⎣

˜
0 −R01

˜
0

. . .

. . . −R01

˜
0

⎤

⎥⎥⎥⎥⎥
⎦

(N−1)×(N−1)

. (2.7)

Here,
˜
0 is a (2 × 2) null matrix.
The system (2.1) becomes

(
I + S

)
A

˜
u =
(
I + S

)

˜
b. (2.8)
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Hence, we have the linear system of equations:

A
˜
u =

˜
b (2.9)

with

A =
(
I + S

)
A = I − L − SL −

(
U − S + SU

)
,

˜
b =
(
I + S

)

˜
b.

(2.10)

The SOR iteration matrix of this scheme is called the Modified Block Successive Over-
Relaxation iteration matrix (MBSOR) and is given by

B̃�w =
{
I −w

(
L + SL

)}−1[
(1 −w)I +w

(
U − S + SU

)]
. (2.11)

The matrix A of (2.9) is π-consistently ordered and possesses property A(π) [13].

3. Preconditioned-Modified Explicit Decoupled Group
SOR (MEDG SOR)

Using the MEDG approximation formula in discretising the Poisson equation, the following
system is obtained [6]:

Amu = bm, (3.1)

where

Am =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Rm0 Rm1

Rm2 Rm0 Rm1

Rm2 Rm0

. . .
. . . . . . Rm1

Rm2 Rm0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(N−2)2/2×(N−2)2/2

,

Rm0 =

⎡

⎢⎢⎢⎢⎢
⎣

Rm00 Rm01

Rm02 Rm00

. . .
. . . . . . Rm01

Rm02 Rm00

⎤

⎥⎥⎥⎥⎥
⎦

(N−2)×(N−2)

,
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Rm00 =

⎡

⎢
⎣

1 −1
4

−1
4

1

⎤

⎥
⎦, Rm01 =

⎡

⎣
0 0

−1
4

0

⎤

⎦, Rm02 = RT
m01

,

Rm1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Rm01 Rm01

Rm01

. . .

. . . Rm01

Rm01

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(N−2)×(N−2)

,

Rm2 =

⎡

⎢
⎢
⎢
⎣

Rm02

Rm02 Rm02

. . . . . .
Rm02 Rm02

⎤

⎥
⎥
⎥
⎦

(N−2)×(N−2)

.

(3.2)

It is observed that the partitioning of Am is in the following block form:

Am =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Am11 Am12

Am21 Am22 Am23

Am32 Am33

. . .
. . . . . . Am(p−1)p

Amp(p−1) Ampp

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(3.3)

with p = (N − 2), where Amii ∈ /⊂ni,ni
π,p , i = 1, 2, . . . , p, and

∑p

i=1 ni = n. Let Am = Dm − Em − Fm,
where Dm = diag(Am11 , Am22 , ..., Ampp) and

Em = Emij =

{
−Amij for j < i

0 for j ≥ i
Fm = Fmij =

{
−Amij for j > i

0 for j ≤ i
(3.4)

are block matrices consisting of the block diagonal, strict block lower triangular, and strict
block upper triangular parts of Am. Here, the diagonal entries Amii are nonsingular. The block
Jacobi iteration matrix is BJ(Am) = D−1

m (Em + Fm) = Lm + Um, where Lm = D−1
m Em, Um =

D−1
m Fm, while the block Gauss-Seidel iteration matrix is BGS(Am) = (Im − Lm)

−1Um. The Block
Successive Over-Relaxation method (BSOR) iteration matrix is, therefore,

T�w = (Im −wLm)−1{(1 −w)Im +wUm}. (3.5)

Since the matrix Am of (3.3) is π-consistently ordered and possesses property A(π), the theory
of block SOR is also valid for this iterative method and, therefore, is convergent [6].

Similarly, the theoretical optimum relaxation factor ωp for implementing this group
SOR-iterative scheme can be obtained from (2.4). In view of the fact that the grid spacing
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hMEDG = 2hEDG, an estimate of the spectral radius of the group Jacobian iterative matrix of the
MEDG method may be obtained from (2.5) as

ρ(J) = 1 − 14
3
π2h2. (3.6)

Good agreement between the theoretical estimates and experimental values of the optimum
relaxation parameters was observed in our numerical experiments. Upon applying the left-
sided preconditioner P = (I + S̃) to system (3.1), the following system is obtained [13]:

PAmu = Pbm (3.7)

with

S̃ =

⎡

⎢⎢⎢
⎣

s1

s1
. . .

s1

⎤

⎥⎥⎥
⎦

(N−2)2/2×(N−2)2/2

, s1 =

⎡

⎢⎢⎢⎢⎢
⎣

˜
0 −Rm01

˜
0

. . .

. . . −Rm01

˜
0

⎤

⎥⎥⎥⎥⎥
⎦

(N−2)×(N−2)

, (3.8)

where
˜
0 is a (2 × 2) null matrix.
The preconditioner I + S̃ is of the following form:

I + S̃ =

⎡

⎢⎢⎢
⎣

s2

s2
. . .

s2

⎤

⎥⎥⎥
⎦

(N−2)2/2×(N−2)2/2

, s2 =

⎡

⎢⎢⎢⎢⎢
⎣

I0 −Rm01

I0
. . .
. . . −Rm01

I0

⎤

⎥⎥⎥⎥⎥
⎦

(N−2)×(N−2)

(3.9)

Here, I0 is a (2 × 2) identity matrix and the system (3.7) becomes

(
I + S̃

)
Amu =

(
I + S̃

)
bm. (3.10)

Hence,

Ãmu = b̃m, (3.11)

where

Ãm =
(
I + S̃

)
Am = Im − Lm − S̃Lm −

(
Um − S̃ + S̃Um

)
,

b̃m =
(
I + S̃

)
bm.

(3.12)
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The SOR iteration matrix will result in an Improved Modified Block Successive Over-
Relaxation iteration matrix (IMBSOR) and is given by

T̃�w =
{
Im −w

(
Lm + S̃Lm

)}−1[
(1 −w)Im +w

(
Um − S̃ + S̃Um

)]
. (3.13)

4. Convergence Properties of the Preconditioned Group Methods

In this section, we will derive several properties related to the convergence of the
preconditioned methods discussed in Sections 2 and 3. We will begin with the presentation
of several preliminary relevant theorems and lemmas which are needed for the proof of the
convergence properties. The spectral radius of a matrix is denoted by ρ(·), which is defined
as the largest of the moduli of the eigenvalues of the iteration matrix.

Theorem 4.1 (see [15]). If A = M −N is a regular splitting of the matrix A and A−1 ≥ 0, then

ρ
(
M−1N

)
=

ρ
(
A−1N

)

1 + ρ
(
A−1N

) < 1. (4.1)

Thus, an iterative method with coefficient matrix M−1N is convergent for any initial vector x(0).

An accurate analysis of convergence properties of the SOR method is possible if the
matrix A is consistently ordered in the following sense (see [17]).

Definition 4.2. A matrix A is a generalized (q, r)-consistently ordered matrix (a GCO(q, r)-
matrix) if Δ = det(αqE + α−rF − kD) is independent of α for all α/= 0 and for all k. Here,
D = diagA and E and F are strictly lower and strictly upper triangular matrices, respectively,
such that A = D − E − F.

Definition 4.3 (see [17]). A matrix A of the form (3.3) is said to be generally consistently
ordered (π, q, r) or simply GCO(π, q, r), where q and r are positive integers, if for the
partitioning π of A, the diagonal submatrices Aii, i = 1, 2, . . . , p(≥2), are nonsingular, and
the eigenvalues of

BJ(α) = αrL + α−qU (4.2)

are independent of α, for all α/= 0, where L and U are strict block lower and upper triangular
parts of A respectively.

For any matrix C = (cij) in /⊂ni,ni
π,p , let |C| denote the block matrix in /⊂ni,ni

π,p with entries|ci,j |.
Given the matrix

BJ = L +U, (4.3)

then μ denotes the spectral radius of the matrix:

∣∣BJ

∣∣ = |L +U|, (4.4)
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so that

μ = ρ
(∣∣BJ

∣
∣). (4.5)

Lemma 4.4 (see [17]). Let |BJ | of (4.4) be a GCO (q, r)-matrix and p = q + r. Then, for any real
nonnegative constant α, β, and γ with γ /= 0 satisfying: αrβqμp < γp, the matrixA′′ = γI −α|L| −β|U|
is such that A′′−1 ≥ 0.

Lemma 4.5 (see [14]). Suppose A = I − L − U is a GCO(π, q, r), where −L and −U are strictly
lower and upper triangular matrices, respectively. Let B�w be the block iteration matrix of the SOR
method given by (2.3). If 0 < w < 2, then the block SOR method converges, that is, ρ(B�w) < 1.

Theorem 4.6 (see [14]). Suppose A = I − L −U is a GCO(π, q, r), where −L and −U are strictly
lower and upper triangular matrices, respectively. Let B�w and B̃�w be the iteration matrices of the
SOR method given by (2.3) and (2.11), respectively. If 0 < w < 2, then

(i) ρ(B̃�w) < ρ(B�w) if ρ(B�w) < 1,

(ii) ρ(B̃�w) = ρ(B�w) if ρ(B�w) = 1,

(iii) ρ(B̃�w) > ρ(B�w) if ρ(B�w) > 1.

Using the results and definitions stated above, we can prove the following lemma and theorems in
relation to the spectral radius of the iteration matrices of the preconditioned group methods and their
unpreconditioned counterparts.

Lemma 4.7. SupposeAm = Im −Lm −Um is a GCO(π, q, r), where −Lm and −Um are strictly lower
and upper triangular matrices, respectively. Let T�w be the block iteration matrix of the SOR method
given by (3.5). If 1 ≤ w < 2, then the block SOR method converges, that is, ρ(T�w) < 1.

Proof. Let the matrix Am with partitioning π be given as in (3.3) and let the block SOR
iteration matrix T�w be given as in (3.5).

Set

B′
�w

= (I − |wLm|)−1{|1 −w|Im + |w||Um|}. (4.6)

Clearly, we can see that |T�w | < B′
�w

and hence we can conclude that ρ(T�w) ≤ ρ(B′
�w
).

Consider the matrix A′ ∈ /⊂ni,ni
π,p defined by

A′ = Mm −Nm, (4.7)

where Mm = Im−|w||Lm| and Nm = |1−w|Im+|w||Um|. It is easily seen that Mm is nonsingular

and B′
�w

= M
1
mNm. Moreover, since M

1
m ≥ 0 and Nm ≥ 0, Mm −Nm is a regular splitting of A′

(cf.[11]). For w satisfying the condition 1 ≤ w < 2, Lemma 4.4 implies that A′−1 ≥ 0. Therefore,
recalling Theorem 4.1 above, we have ρ(B′

�w
) < 1. Hence, ρ(T�w) < 1, which completes the

proof.
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The result of Lemma 4.7 enables us to prove the following theorem

Theorem 4.8. Suppose Am = Im − Lm − Um is a GCO(π, q, r), where −Lm and −Um are strictly
lower and upper triangular matrices, respectively. Let T�w and T̃�w be the iteration matrices of the SOR
method given by (3.5) and (3.13), respectively. If 1 ≤ w < 2, then

(i) ρ(T̃�w) < ρ(T�w) if ρ(T�w) < 1,

(ii) ρ(T̃�w) = ρ(T�w) if ρ(T�w) = 1,

(iii) ρ(T̃�w) > ρ(T�w) if ρ(T�w) > 1.

Proof. From Lemma 4.7 and since the matrix Am of (3.3) is a GCO(π, q, r) and T�w = (I −
wLm)

−1{(1 −w)Im +wUm}, there exists a positive vector y such that

T�wy = λy, (4.8)

where λ = ρ(T�w) or equivalently

[(1 −w)Im +wUm]y = λ(Im −wLm)y. (4.9)

Also, since

T̃�w =
{
Im −w

(
Lm + S̃Lm

)}−1[
(1 −w)Im +w

(
Um − S̃ + S̃Um

)]
, (4.10)

we can write

T̃�wy − λy =
{
Im −w

(
Lm + S̃Lm

)}−1[
(1 −w)Im +w

(
Um − S̃ + S̃Um

)

−λ
{
Im −w

(
Lm + S̃Lm

)}]
y.

(4.11)

Rearrange (4.11), we can get

T̃�wy − λy =
{
Im −w

(
Lm + S̃Lm

)}−1[
(1 −w)Im +w(Um + λLm)

−λ
(
Im −wS̃Lm

)
+wS̃(Um + Im)

]
y.

(4.12)

But from (4.9), we have

[λwLm +wUm]y = [(λ − 1 +w)Im]y. (4.13)

Therefore, (4.12) can be written as

T̃�wy − λy =
{
Im −w

(
Lm + S̃Lm

)}−1[
wS̃(Im + λLm +Um)

]
y. (4.14)
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Hence, for 1 ≤ w < 2 and from [10], we can get

(i) λ < 1, then T̃�wy − λy < 0 and from Theorem 4.6 we have ρ(T̃�w) < ρ(T�w),

(ii) λ = 1, then T̃�wy = λy and from Theorem 4.6 we have ρ(T̃�w) = ρ(T�w) = 1,

(iii) λ > 1, then T̃�wy − λy > 0 and from Theorem 4.6 we have ρ(T̃�w) > ρ(T�w).

Thus, the proof is complete.

Theorem 4.9. Suppose A = I − L −U and Am = Im − Lm −Um are GCO(π, q, r), where −L, −Lm,
−U and −Um are strictly lower and upper triangular matrices of A and Am, respectively. Let B�w ,
B̃�w , T�w and T̃�w be the iteration matrices of the SOR method given by (2.3), (2.11), (3.5), and (3.13),
respectively. If 1 ≤ w < 2, then

(i) ρ(T̃�w) < ρ(T�w) < ρ(B̃�w) < ρ(B�w) if ρ(B�w) < 1,

(ii) ρ(T̃�w) = ρ(T�w) = ρ(B̃�w) = ρ(B�w) if ρ(B�w) = 1,

(iii) ρ(T̃�w) > ρ(T�w) > ρ(B̃�w) > ρ(B�w) if ρ(B�w) > 1.

Proof. In the same manner of the proof of Theorem 4.8 and since the matrix A of (2.9) is a
GCO(π, q, r), see [13], and B̃�w = {I −w(L + SL)}−1[(1 −w)I +w(U − S + SU)], there exists a
positive vector v such that

B̃�wv = λv, (4.15)

where

λ = ρ
(
B̃�w

)
. (4.16)

Equation (4.15) can be written as

[
(1 −w)I +w

(
U − S + SU

)]
v = λ

{
I −w

(
L + SL

)}
v. (4.17)

Also, since T�w = (Im −wLm)
−1{(1 −w)Im +wUm}, we can write

T�wv − λv = (Im −wLm)−1
{
(1 −w)Im +wUm − λ(Im −wLm)

}
v

= (Im −wLm)−1
{(

1 −w − λ
)
Im +w

(
λLm +Um

)}
v.

(4.18)

But, from (4.17) we have

[
w
{
λL +U + S

(
λL +U − I

)}]
v =
[(

λ − 1 +w
)
I
]
v. (4.19)

Thus, from (4.19) and since Am of (3.3) is a GCO(π, q, r) matrix, we can get

[
w
{
λLm +Um + S̃

(
λLm +Um − Im

)}]
v =
[(

λ − 1 +w
)
Im
]
v. (4.20)
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Equation (4.18) can then be written as

T�Wv − λv = {Im −wLm}−1
{
wS̃
(
−λLm −Um − Im

)}
v. (4.21)

Hence, we can conclude that, for 1 ≤ w < 2, if

(a) λ < 1, then T�wv − λv < 0 and from Lemma 4.7 we have ρ(T�w) < ρ(B̃�w),

(b) λ = 1, then T�wv = λv and from Lemma 4.7 we have ρ(T�w) = ρ(B̃�w) = 1,

(c) λ > 1, then T�wv − λv > 0 and from Lemma 4.7 we have ρ(T�w) > ρ(B̃�w).

In consequence of the above, for 1 ≤ w < 2 and from Theorems 4.6 and 4.8, we have

(i) ρ(T̃�w) < ρ(T�w) < ρ(B̃�w) < ρ(B�w) if ρ(B�w) < 1,

(ii) ρ(T̃�w) = ρ(T�w) = ρ(B̃�w) = ρ(B�w) if ρ(B�w) = 1,

(iii) ρ(T̃�w) > ρ(T�w) > ρ(B̃�w) > ρ(B�w) if ρ(B�w) > 1,

and the theorem is proved.

In view of Theorem 4.9, the superiority of the preconditioned MEDG SOR over the
unpreconditioned MEDG SOR, EDG SOR methods and also preconditioned EDG SOR are
confirmed for certain relaxation parameters lying in an optimum range.

5. Numerical Experiments and Discussion of Results

To further confirm the results obtained in Theorems 4.8 and 4.9, several experiments were
carried out on the following model problem with Dirichlet boundary conditions:

∂2u

∂x2
+
∂2u

∂y2
=
(
x2 + y2

)
exy,

u(x, 0) = 1, u
(
0, y
)
= 1, u(x, 1) = ex, u

(
1, y
)
= ey.

(5.1)

This problem has an exact solution u(x, y) = exy with the unit square as the solution domain.
The values of u were calculated using different mesh sizes, 34, 86, 118, 186, and 222. The
tolerance was set to be ε = 5 × 10−6. The experimental optimum relaxation parameter w
was obtained by running the programs repeatedly and choosing the values which gave the
fastest rate of convergence. The computer processing unit was Intel(R) Core(TM) 2Duo with
memory of 3Gb and the software used to implement and generate the results was Developer
C++ Version 4.9.9.2. Tables 1 and 2 display the corresponding number of iterations (k),
optimum execution times (t), and the maximum errors (e) for the unpreconditioned and
preconditioned methods of EDG SOR and MEDG SOR, respectively.

From the results in Table 1, it is obvious that the original MEDG SOR method is
superior to the EDG SOR method in terms of the number of iterations and computing
times. The superiority of the preconditioned MEDG SOR over the preconditioned EDG SOR
was also depicted in Table 2. The preconditioned EDG SOR was also outperformed by the
unpreconditioned MEDG as shown in Figure 1 since the spectral radius of the latter is smaller
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Figure 1: Number of iterations (k) for the four methods for different mesh sizes N.

Table 1: Comparison of performances for the original EDG SOR and MEDG SOR.

Unpreconditioned methods
N EDG SOR MEDG SOR

w k t (secs) e w k t (secs) e

34 1.753 49 0 4.11E − 06 1.586 21 0 5.00E − 06
86 1.894 122 0.047 4.88E − 06 1.812 42 0.023 4.57E − 06
118 1.921 166 0.078 4.89E − 06 1.862 50 0.035 2.08E − 06
186 1.943 233 0.187 4.79E − 06 1.914 81 0.064 4.36E − 06
222 1.948 256 0.327 4.78E − 06 1.931 96 0.145 1.84E − 06

than the former as proven in Theorem 4.9. From the numerical results, it is also apparent that
the preconditioned MEDG SOR scheme requires the least computing effort amongst the four
methods in terms of number of iterations and execution times due to its smallest spectral
radius value amongst the four schemes.

Figure 1 shows the number of iterations needed for convergence for the unprecon-
ditioned and preconditioned methods which were shown to be in agreement with the
theoretical results obtained in Theorem 4.9.

6. Conclusion

In this paper, we present a theoretical convergence analysis of a specific splitting-type
preconditioner in block formulation applied to the linear systems resulted from a class of
group iterative schemes specifically the EDG SOR and the MEDG SOR schemes. We have
shown that the spectral radius of the iteration matrix of the preconditioned MEDG SOR
method is the smallest compared to the unpreconditioned MEDG SOR, EDG SOR, and
preconditioned EDG SOR methods provided that the relaxation parameter ω ∈ [1, 2). This
work confirms the superiority of the preconditioned MEDG SOR method theoretically and
experimentally in terms of convergence rates among this class of group iterative methods.
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Table 2: Comparison of performances for the Preconditioned EDG SOR and MEDG SOR.

Preconditioned methods
N Preconditioned EDG SOR Preconditioned MEDG SOR

w k t (secs) e w k t (secs) e

34 1.679 41 0 3.85E − 06 1.442 16 0 3.47E − 06
86 1.757 88 0.034 3.87E − 06 1.5882 30 0.008 3.09E − 06
118 1.774 106 0.051 4.47E − 06 1.642 43 0.016 3.55E − 06
186 1.782 151 0.133 4.68E − 06 1.684 59 0.025 4.24E − 06
222 1.795 168 0.198 4.15E − 06 1.671 72 0.078 3.99E − 06
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