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Recently, Abbas et al. (2012) obtained some unique common fixed-point results for a pair of
mappings satisfying (E.A) property under certain generalized strict contractive conditions in the
framework of a generalized metric space. In this paper, we present common coincidence and
common fixed points of two pairs of mappings when only one pair satisfies (E.A) property in
the setup of generalized metric spaces. We present some examples to support our results. We also
study well-posedness of common fixed-point problem.

1. Introduction and Preliminaries

Mustafa and Sims [1] generalized the concept of ametric in which the real number is assigned
to every triplet of an arbitrary set. Based on the notion of generalized metric spaces, Mustafa
et al. [2–6] obtained some fixed-point theorems for mappings satisfying different contractive
conditions. Chugh et al. [7] obtained some fixed-point results for maps satisfying property p
in G-metric spaces. Saadati et al. [8] studied fixed-point of contractive mappings in partially
ordered G-metric spaces. Shatanawi [9] obtained fixed-points of Φ-maps in G-metric spaces.
Study of common fixed-point theorems in generalized metric spaces was initiated by Abbas
and Rhoades [10] (see also, [11–14]). Recently, Abbas et al. [15] obtained some unique
common fixed-point results for a pair of mappings satisfying (E.A) property under certain
generalized strict contractive conditions in the framework of a generalized metric space.

The aim of this paper is to study common fixed-point of two pairs of mappings for
which only one pair needs to satisfy (E.A) property in the framework of G-metric spaces.
Our results do not rely on any commuting or continuity condition of mappings.
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Consistent with Mustafa and Sims [2], the following definitions and results will be
needed in the sequel.

Definition 1.1. LetX be a nonempty set. Suppose that a mappingG : X×X×X → R+ satisfies
the following:

G1: G(x, y, z) = 0 if x = y = z;

G2: 0 < G(x, y, z) for all x, y, z ∈ X, with x /=y;

G3: G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X, with y /= z;

G4: G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three variables);

G5: G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then G is called a G-metric on X and (X,G) is called a G-metric.

Definition 1.2. A sequence {xn} in a G-metric space X is:

(i) aG-Cauchy sequence if, for any ε > 0, there is an n0 ∈N (the set of natural numbers)
such that for all n,m, l ≥ n0, G(xn, xm, xl) < ε,

(ii) a G-convergent sequence if, for any ε > 0, there is an x ∈ X and an n0 ∈N, such that
for all n, m ≥ n0, G(x, xn, xm) < ε.

A G-metric space on X is said to be G-complete if every G-Cauchy sequence in X is
G-convergent inX. It is known that {xn} G-converges to x ∈ X if and only ifG(xm, xn, x) → 0
as n,m → ∞.

Proposition 1.3. Let X be a G-metric space. Then the following are equivalent:

(1) {xn} is G-convergent to x.
(2) G(xn, xm, x) → 0 as n,m → ∞.

(3) G(xn, xn, x) → 0 as n → ∞.

(4) G(xn, x, x) → 0 as n → ∞.

Definition 1.4. A G-metric on X is said to be symmetric if G(x, y, y) = G(y, x, x) for all x, y ∈
X.

Proposition 1.5. Every G-metric on X will define a metric dG on X by

dG
(
x, y
)
= G
(
x, y, y

)
+G
(
y, x, x

)
, ∀x, y ∈ X. (1.1)

For a symmetric G-metric

dG
(
x, y
)
= 2G

(
x, y, y

)
, ∀x, y ∈ X. (1.2)

However, if G is nonsymmetric, then the following inequality holds:

3
2
G
(
x, y, y

) ≤ dG
(
x, y
) ≤ 3G

(
x, y, y

)
, ∀x, y ∈ X. (1.3)
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It is also obvious that

G
(
x, x, y

) ≤ 2G
(
x, y, y

)
. (1.4)

Now, we give an example of a nonsymmetric G-metric.

Example 1.6. Let X = {1, 2} and a mapping G : X × X × X → R
+ be defined as shown in

Table 1.

Note that G satisfies all the axioms of a generalized metric but G(x, x, y)/=G(x, y, y)
for distinct x, y in X. Therefore, G is a nonsymmetric G-metric on X.

Sessa [16] introduced the notion of the weak commutativity of mappings in metric
spaces.

Definition 1.7 (see [13]). Let X be a G-metric space. Mappings f , g : X → X are called (i)
compatible if, whenever a sequence {xn} in X is such that {fxn} and {gxn} are G-convergent
to some t ∈ X, then limn→∞G(fgxn, fgxn, gfxn) = 0, (ii) noncompatible if there exists at
least one sequence {xn} in X such that {fxn} and {gxn} are G-convergent to some t ∈ X, but
limn→∞G(fgxn, fgxn, gfxn) is either nonzero or does not exist.

Jungck [17] defined f and g to be weakly compatible if fx = gx implies fgx = gfx.
In 2002, Aamri and Moutaawakil [18] introduced (E.A) property to obtain common

fixed-point of two mappings. Recently, Babu and Negash [19] employed this concept to
obtain some new common fixed-point results (see also [20–22]).

Recently, Abbas et al. [15] studied (E.A) property in the frame work ofG-metric space.

Definition 1.8 (see [15]). Let X be a G-metric space. Self-maps f and g on X are said to
satisfy the (E.A) property if there exists a sequence {xn} in X such that {fxn} and {gxn}
are G-convergent to some t ∈ X.

Example 1.9 (see [15]). Let X = [0, 2] be a G-metric space with

G
(
x, y, z

)
= max

{∣∣x − y∣∣, |x − z|, ∣∣y − z∣∣}. (1.5)

Let f, g : X → X be defined by

fx =

⎧
⎨

⎩

2 − x, x ∈ [0, 1],
2 − x
2

, x ∈ (1, 2],

gx =

⎧
⎪⎪⎨

⎪⎪⎩

3 − x
2

, x ∈ [0, 1],
x

2
, x ∈ (1, 2].

(1.6)

For a decreasing sequence {xn} in X such that xn → 1, gxn → 1/2, fxn → 1/2, gfxn =
(4 + xn)/4 → 5/4 and fgxn = (4 − xn)2 → 3/2. So, f and g are noncompatible. Note that,
there exists a sequence {xn} in X such that limn→∞fxn = limn→∞gxn = 1 ∈ X, take xn = 1 for
each n ∈N. Hence f and g satisfy (E.A) property.



4 Abstract and Applied Analysis

Table 1

(x, y, z) G(x, y, z)
(1,1,1),(2,2,2) 0
(1,1,2),(1,2,1),(2,1,1) 0.5
(1,2,2),(2,1,2),(2,2,1) 1

Definition 1.10 (see [23]). The control functions ψ and φ are defined as follows:

(a) ψ : [0,∞) → [0,∞) is a continuous nondecreasing function with ψ(t) = 0 if and
only if t = 0,

(b) φ : [0,∞) → [0,∞) is a lower semicontinuous function with φ(t) = 0 if and only if
t = 0.

2. Common Fixed-Point Theorems

In this section, we obtain some common fixed-point results for two pairs of mappings
satisfying certain contractive conditions in the frame work of a generalized metric space.
It is worth mentioning to note that, one needs (E.A)property of only one pair to prove the
existence of coincidence point of mappings involved therein. We start with the following
result.

Theorem 2.1. Let X be a G-metric space and f, g, S, T : X → X be mappings with fX ⊆ TX and
gX ⊆ SX such that

ψ
(
G
(
fx, gy, gy

)) ≤ ψ(M(x, y, y)) − φ(M(x, y, y)),

where M
(
x, y, y

)
= max

{

G
(
Sx, Ty, Ty

)
, G
(
fx, Sx, Sx

)
, G
(
Ty, gy, gy

)
,

[
G
(
fx, Ty, Ty

)
+G
(
Sx, gy, gy

)]

2

}
(2.1)

or

ψ
(
G
(
fx, fx, gy

)) ≤ ψ(M(x, x, y)) − φ(M(x, x, y))

where M
(
x, x, y

)
= max

{

G
(
Sx, Sx, Ty

)
, G
(
fx, fx, Sx

)
, G
(
Ty, Ty, gy

)
,

[
G
(
fx, fx, Ty

)
+G
(
Sx, Sx, gy

)]

2

}
(2.2)

hold for all x, y ∈ X, where ψ and φ are control functions. Suppose that one of the pairs (f, S) and
(g, T) satisfies (E.A) property and one of the subspace f(X), g(X), S(X), T(X) is closed in X. If for
every sequence {yn} in X, one of the following conditions hold:

(a) {gyn} is bounded in case (f, S) satisfies (E.A) property,

(b) {fyn} is bounded in case (g, T) satisfies (E.A) property.
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Then, the pairs (f, S) and (g, T) have a common point of coincidence in X. Moreover, if the
pairs (f, S) and (g, T) are weakly compatible, then f, g, S, and T have a unique common fixed-point.

Proof. Suppose that the pair (f, S) satisfies (E.A) property, there exists a sequence {xn} in
X satisfying limn→∞fxn = limn→∞Sxn = q for some q ∈ X. As fX ⊆ TX, there exists a
sequence {yn} in X such that fxn = Tyn. As {gyn} is bounded, limn→∞G(fxn, gyn, gyn) and
limn→∞G(Sxn, gyn, gyn) are finite numbers. Note that

∣
∣G
(
fxn, gyn, gyn

) −G(Sxn, gyn, gyn
)∣∣ ≤ 2G

(
fxn, Sxn, Sxn

)
. (2.3)

Since G(fxn, Sxn, Sxn) → 0 as n → ∞, therefore limn→∞G(fxn, gyn, gyn) = limn→∞G(Sxn,
gyn, gyn). Indeed, using that limn→∞G(fxn, gyn, gyn) = limn→∞G(Sxn, gyn, gyn) = l, we
obtain subsequences {xnk} and {ynk} such that G(Sxnk , gynk , gynk) and G(fxnk , gynk , gynk)
are G-convergent to l. Replacing x by xnk and y by ynk in (2.1), we have

M
(
xnk , ynk , ynk

)
= max

{

G
(
Sxnk , fxnk , fxnk

)
, G
(
fxnk , Sxnk , Sxnk

)
, G
(
fxnk , gynk , gynk

)
,

[
G
(
fxnk , fxnk , fxnk

)
+G
(
Sxnk , gynk , gynk

)]

2

}

(2.4)

which on taking limit as k → ∞ implies that

lim
n→∞

M
(
xnk , ynk , ynk

)
= max

{
G
(
q, q, q

)
, G
(
q, q, q

)
, l,

l

2

}
= l. (2.5)

Now

ψ
(
G
(
fxnk , gynk , gynk

)) ≤ ψ(M(xnk , ynk , ynk
)) − φ(M(xnk , ynk , ynk

))
(2.6)

which on taking upper limit gives

ψ(l) ≤ ψ(l) − φ(l), (2.7)

and so l = 0. Hence, limn→∞G(fxn, gyn, gyn) = limn→∞G(Sxn, gyn, gyn) = 0, and so,
limn→∞gyn = q.

If T(X) is a closed subspace of X. Then, there exist a p in X such that q = Tp. From
(2.1), we have

ψ
(
G
(
fxn, gp, gp

)) ≤ ψ(M(xn, p, p
)) − φ(M(xn, p, p

))
, (2.8)
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where

M
(
xn, p, p

)
= max

{

G
(
Sxn, Tp, Tp

)
, G
(
fxn, Sxn, Sxn

)
, G
(
Tp, gp, gp

)
,

[
G
(
fxn, Tp, Tp

)
+G
(
Sxn, gp, gp

)]

2

}

= max

{

G
(
Sxn, q, q

)
, G
(
fxn, Sxn, Sxn

)
, G
(
q, gp, gp

)
,

[
G
(
fxn, q, q

)
+G
(
Sxn, gp, gp

)]

2

}

,

lim
n→∞

M
(
xn, p, p

)
= max

{

G
(
q, q, q

)
, G
(
q, q, q

)
, G
(
q, gp, gp

)
,

[
G
(
q, q, q

)
+G
(
q, gp, gp

)]

2

}

= G
(
q, gp, gp

)
.

(2.9)

Hence, we have

ψ
(
G
(
q, gp, gp

)) ≤ ψ(G(q, gp, gp)) − φ(G(q, gp, gp)) (2.10)

and φ(G(q, gp, gp)) ≤ 0. Hence gp = q, p is the coincidence point of pair (g, T). As g(X) ⊆
S(X), there exist a point u in X such that q = Su. We claim that Su = fu. From (2.1), we get

ψ
(
G
(
fu, gp, gp

)) ≤ ψ(M(u, p, p)) − φ(M(u, p, p)), (2.11)

where

M
(
u, p, p

)
= max

{

G
(
Su, Tp, Tp

)
, G
(
fu, Su, Su

)
, G
(
Tp, gp, gp

)
,

[
G
(
fu, Tp, Tp

)
+G
(
Su, gp, gp

)]

2

}

= max

{

G(Su, Su, Su), G
(
fu, Su, Su

)
, G(Su, Su, Su),

[
G
(
fu, Su, Su

)
+G(Su, Su, Su)

]

2

}

= G
(
fu, Su, Su

)
.

(2.12)
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Hence, we have

ψ
(
G
(
fu, Su, Su

)) ≤ ψ(G(fu, Su, Su)) − φ(G(fu, Su, Su)) (2.13)

which implies φ(G(fu, Su, Su)) ≤ 0. Hence fu = Su, so u is the coincidence point of pair
(f, S). Thus fu = Su = Tp = gp = q. Now, weakly compatibility of pairs (f, S) and (g, T) give
that fq = Sq and Tq = gq. From (2.1), we have

ψ
(
G
(
fq, q, q

))
= ψ
(
G
(
fq, gp, gp

)) ≤ ψ(M(q, p, p)) − φ(M(q, p, p)), (2.14)

where

M
(
q, p, p

)
= max

{

G
(
Sq, Tp, Tp

)
, G
(
fq, Sq, Sq

)
, G
(
Tp, gp, gp

)
,

[
G
(
fq, Tp, Tp

)
+G
(
Sq, gp, gp

)]

2

}

= max

{

G
(
fq, q, q

)
, G
(
fq, fq, fq

)
, G
(
q, q, q

)
,

[
G
(
fq, q, q

)
+G
(
fq, q, q

)]

2

}

= G
(
fq, q, q

)
.

(2.15)

From (2.14), we obtain

ψ
(
G
(
fq, q, q

)) ≤ ψ(G(fq, q, q)) − φ(G(fq, q, q)), (2.16)

and so φ(G(fq, q, q)) ≤ 0. Therefore fq = Sq = q. Similarly, it can be shown that gq = q.
Therefore gq = Tq = q. To prove uniqueness of q, suppose that fp = gp = Sp = Tp = p. From
(2.1) we have the following:

ψ
(
G
(
q, p, p

))
= ψ
(
G
(
fq, gp, gp

)) ≤ ψ(M(q, p, p)) − φ(M(q, p, p)), (2.17)
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where

M
(
q, p, p

)
= max

{

G
(
Sq, Tp, Tp

)
, G
(
fq, Sq, Sq

)
, G
(
Tp, gp, gp

)
,

[
G
(
fq, Tp, Tp

)
+G
(
Sq, gp, gp

)]

2

}

= max

{

G
(
q, p, p

)
, G
(
q, q, q

)
, G
(
q, q, q

)
,

[
G
(
q, p, p

)
+G
(
q, p, p

)]

2

}

= G
(
q, p, p

)
.

(2.18)

Thus from (2.17), we obtain

ψ
(
G
(
q, p, p

)) ≤ ψ(G(q, p, p)) − φ(G(q, p, p)), (2.19)

which implies that G(q, p, p) ≤ 0, and so q = p. The proof using (2.2) is similar.

Example 2.2. Let X = {0, 1, 2} be a set with G-metric defined by Table 2.

Note that G is a nonsymmetric as G(1, 2, 2)/=G(1, 1, 2). Let f, g, S, T : X → X be
defined by Table 3.

Clearly, f(X) ⊆ T(X) and g(X) ⊆ S(X) with the pairs (f, S) and (g, T) being weakly
compatible. Also a pair (f, S) satisfy (E.A)property, indeed, xn = 0 for each n ∈ N is the
required sequence. Note that pair (g, T) is not commuting at 2. The control functions ψ, φ :
[0,∞) → [0,∞) are defined by

ψ(t) = 3t and φ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t

4
, if t ∈ [0, 4],

e4−t

2
, if t > 4.

(2.20)

To check contractive conditions (2.1) and (2.2) for all x, y ∈ X, we consider the following
cases:

Note that for cases (I) x = y = 0, (II) x = 0, y = 1, (III) x = 1, y = 0, (IV) x = 1, y = 1,
(V) x = 2, y = 0, and (VI) x = 2, y = 1,

We have G(fx, gy, gy) = 0, G(fx, fx, gy) = 0, and hence (2.1) and (2.2) are obviously
satisfied now.
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Table 2

(x, y, z) G(x, y, z)
(0, 0, 0), (1, 1, 1), (2, 2, 2), 0
(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), 1
(1, 2, 2), (2, 1, 2), (2, 2, 1), 2
(0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), 3
(1, 1, 2), (1, 2, 1), (2, 1, 1), (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0) 4.

Table 3

x f(x) g(x) S(x) T (x)
0 0 0 0 0
1 0 0 2 2
2 0 1 1 2

(VII) If x = 0, y = 2, then fx = 0, gy = 1, Sx = 0, Ty = 2.

ψ
(
G
(
fx, gy, gy

))
= 3G(0, 1, 1) = 3

<
11
4
(3) =

11
4
G(0, 2, 2)

=
11
4
G
(
Sx, Ty, Ty

) ≤ 11
4
M
(
x, y, y

)

= ψ
(
M
(
x, y, y

)) − φ(M(x, y, y)).

(2.21)

Also

ψ
(
G
(
fx, fx, gy

))
= 3G(0, 0, 1) = 3

<
11
4
(3) =

11
4
G(0, 0, 2)

=
11
4
G
(
Sx, Sx, Ty

) ≤ 11
4
M
(
x, x, y

)

= ψ
(
M
(
x, x, y

)) − φ(M(x, x, y)).

(2.22)

(VIII) For x = 1, y = 2, then fx = 0, gy = 1, Sx = 2, Ty = 2.

ψ
(
G
(
fx, gy, gy

))
= 3G(0, 1, 1) = 3

<
11
8
(3 + 4) =

11
4
[G(0, 2, 2) +G(2, 1, 1)]

2

=
11
4

[
G
(
fx, Ty, Ty

)
+G
(
Sx, gy, gy

)]

2
≤ 11

4
M
(
x, y, y

)

= ψ
(
M
(
x, y, y

)) − φ(M(x, y, y)),
ψ
(
G
(
fx, fx, gy

))
= 3G(0, 0, 1) = 3
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<
11
8
(3 + 2) =

11
4
[G(0, 0, 2) +G(2, 2, 1)]

2

=
11
4

[
G
(
fx, fx, Ty

)
+G
(
Sx, Sx, gy

)]

2
≤ 11

4
M
(
x, x, y

)

= ψ
(
M
(
x, x, y

)) − φ(M(x, x, y)).
(2.23)

(IX) Now, when x = 2, y = 2, then fx = 0, gy = 1, Sx = 1, Ty = 2.

ψ
(
G
(
fx, gy, gy

))
= 3G(0, 1, 1) = 3

<
11
4
(2) =

11
4
G(1, 2, 2)

=
11
4
G
(
Sx, Ty, Ty

) ≤ 11
4
M
(
x, y, y

)

= ψ
(
M
(
x, y, y

)) − φ(M(x, y, y)).

(2.24)

Also

ψ
(
G
(
fx, fx, gy

))
= 3G(0, 0, 1) = 3

<
11
4
(4) =

11
4
G(1, 1, 2)

=
11
4
G
(
Sx, Sx, Ty

) ≤ 11
4
M
(
x, x, y

)

= ψ
(
M
(
x, x, y

)) − φ(M(x, x, y)).

(2.25)

Hence, all of the conditions of Theorem 2.1 are satisfied. Moreover, 0 is the unique
common fixed-point of f , g, S, and T .

As two noncompatible selfmappings on G-metric space X satisfy the (E.A) property,
so above result remains true if any one of the pair of mapping is noncompatible.

Above theorem is true for any choice of control functions, for example if we take ψ(t) =
t and φ(t) = (1 − γ)t for γ ∈ [0, 1) in Theorem 2.1, we have the following corollary.

Corollary 2.3. Let X be a G-metric space and f, g, S, T : X → X be mappings with f(X) ⊆ T(X)
and g(X) ⊆ S(X) such that

G
(
fx, gy, gy

) ≤ γmax

{

G
(
Sx, Ty, Ty

)
, G
(
fx, Sx, Sx

)
, G
(
Ty, gy, gy

)
,

[
G
(
fx, Ty, Ty

)
+G
(
Sx, gy, gy

)]

2

} (2.26)
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or

G
(
fx, fx, gy

) ≤ γmax

{

G
(
Sx, Sx, Ty

)
, G
(
fx, fx, Sx

)
, G
(
Ty, Ty, gy

)
,

[
G
(
fx, fx, Ty

)
+G
(
Sx, Sx, gy

)]

2

} (2.27)

hold for all x, y ∈ X, where γ ∈ [0, 1) hold for all x, y ∈ X, where ψ and φ are control functions.
Suppose that one of the pairs (f, S) and (g, T) satisfies (E.A) property and one of the subspace
f(X), g(X), S(X), and T(X) is closed in X. If for every sequence {yn} in X, one of the following
conditions hold:

(a) {gyn} is bounded in case (f, S) satisfies (E.A) property

(b) {fyn} is bounded in case (g, T) satisfies (E.A) property.

Then, the pairs (f, S) and (g, T) have a point of coincidence in X. Moreover, if the pairs (f, S)
and (g, T) are weakly compatible, then f, g, S, and T have a unique common fixed-point.

If we take f = g and S = T with ψ(t) = t for all t ∈ 211d in Theorem 2.1, we obtain the
following corollary which extends Theorem 3.1 of [19] to generalized metric space.

Corollary 2.4. Let X be a G-metric space and f, S : X → X be mappings with fX ⊆ SX such that

G
(
fx, fy, fy

) ≤M(x, y, y) − φ(M(x, y, y)),

where M
(
x, y, y

)
= max

{

G
(
Sx, Sy, Sy

)
, G
(
fx, Sx, Sx

)
, G
(
Sy, fy, fy

)
,

[
G
(
fx, Sy, Sy

)
+G
(
Sx, fy, fy

)]

2

}
(2.28)

or

G
(
fx, fx, fy

) ≤M(x, x, y) − φ(M(x, x, y)),

where M
(
x, x, y

)
= max

{

G
(
Sx, Sx, Sy

)
, G
(
fx, fx, Sx

)
, G
(
Sy, Sy, fy

)
,

[
G
(
fx, fx, Sy

)
+G
(
Sx, Sx, fy

)]

2

}
(2.29)

hold for all x, y ∈ X, where φ are control functions. Suppose that the pair (f, S) satisfy (E.A) property
and one of the subspaces f(X), S(X) is closed in X. Then, the pair (f, S) has a common point of
coincidence in X. Moreover, if the pair (f, S) is weakly compatible, then f and S have a unique
common fixed-point.
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3. Well-Posedness

The notion of well-posedness of a fixed-point problem has evoked much interest of several
mathematicians, (see [24–27]).

Definition 3.1. Let X be a G-metric space and f : X → X be a mapping. The fixed-point
problem of f is said to be well-posed if:

(a) f has a unique fixed-point z in X;

(b) for any sequence {xn} of points in X such that limn→∞G(fxn, xn, xn) = 0, we have
limn→∞G(xn, z, z) = 0.

Definition 3.2. Let X be a G-metric space and Σ be a set of mappings on X. Common fixed-
point problem CF(Σ) is said to be well-posed if:

(a) z ∈ X is a unique common fixed-point of all mappings in Σ;

(b) for any sequence {xn} of points in X such that limn→∞G(fxn, xn, xn) = 0 for each
f ∈ Σ, we have limn→∞G(xn, z, z) = 0.

Theorem 3.3. Let X be a G-metric space and f, g, S, T : X → X be mappings such that

G
(
fx, gy, gy

) ≤ G(Sx, Ty, Ty) − ψ(M(x, y, y)),

where M
(
x, y, y

)
= max

{

G
(
Sx, Ty, Ty

)
, G
(
fx, Sx, Sx

)
, G
(
Ty, gy, gy

)
,

[
G
(
fx, Ty, Ty

)
+G
(
Sx, gy, gy

)]

2

}
(3.1)

or

G
(
fx, fx, gy

) ≤ G
(
Sx, Sx, Ty

)) − ψ(M(x, x, y)),

where M
(
x, x, y

)
= max

{

G
(
Sx, Sx, Ty

)
, G
(
fx, fx, Sx

)
, G
(
Ty, Ty, gy

)
,

[
G
(
fx, fx, Ty

)
+G
(
Sx, Sx, gy

)]

2

}
(3.2)

hold for all x, y ∈ X, where ψ is a control function. Suppose that one of the pairs (f, S) and (g, T)
satisfies (E.A) property and one of the subspace f(X), g(X), S(X), T(X) is closed in X. If for every
sequence {yn} in X, one of the following conditions hold:

(a) {gyn} is bounded in case (f, S) satisfies (E.A) property;

(b) {fyn} is bounded in case (g, T) satisfies (E.A) property.

If pairs (f, S) and (g, T) are weakly compatible, then CF({f, g, S, T}) is well-posed.
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Proof. From Theorem 2.1, the mappings f, g, S, T : X → X have a unique common fixed-
point (say) z in X. Let {xn} be a sequence in X such that

lim
n→∞

G
(
fxn, xn, xn

)
= lim

n→∞
G
(
gxn, xn, xn

)

= lim
n→∞

G(Sxn, xn, xn) = lim
n→∞

G(Txn, xn, xn) = 0.
(3.3)

Now by using (3.1), we have

G(z, xn, xn) ≤ G
(
fz, gxn, gxn

)
+G
(
gxn, xn, xn

)

≤ G(Sz, Txn, Txn) − ψ(M(z, xn, xn)) +G
(
gxn, xn, xn

)

≤ G(z, xn, xn) +G(xn, Txn, Txn)

− ψ
([

G
(
fz, Txn, Txn

)
+G
(
gxn, Sz, Sz

)]

2

)

+G
(
gxn, xn, xn

)

(3.4)

which further implies

ψ

(
[G(z, Txn, Txn) +G(xn, z, z)]

2

)
≤ G(xn, Txn, Txn) +G

(
gxn, xn, xn

)

≤ 2G(Txn, xn, xn) +G
(
gxn, xn, xn

)
.

(3.5)

On taking limit as n → ∞ implies that

lim
n→∞

ψ

(
[G(z, Txn, Txn) +G(xn, z, z)]

2

)
= 0, (3.6)

and by the property of ψ, we have

lim
n→∞

G(z, Txn, Txn) = lim
n→∞

G(xn, z, z) = 0. (3.7)

Hence the result follows.

Remark 3.4. A G-metric naturally induces a metric dG given by dG(x, y) = G(x, y, y) +
G(x, x, y). IfG-metric is not symmetric, either of the inequalities (2.1) or (2.2) does not reduce
to any metric inequality with the metric dG. Hence our theorems do not reduce to fixed-point
problems in the corresponding metric space (X, dG).
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