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We give some criteria for a-minimally thin sets and a-rarefied sets associated with the stationary
Schrödinger operator at a fixed Martin boundary point or ∞ with respect to a cone. Moreover, we
show that a positive superfunction on a cone behaves regularly outside an a-rarefied set. Finally
we illustrate the relation between the a-minimally thin set and the a-rarefied set in a cone.

1. Introduction

This paper is concerned with some properties for the generalized subharmonic functions
associated with the stationary Schrödinger operator. More precisely the minimally thin sets
and rarefied sets about these generalized subharmonic functions will be studied. The research
on minimal thinness has been exploited a little and attracted many mathematicians. In 1949
Lelong-Ferrand [1] started the study of the thinness at boundary points for the subharmonic
functions on the half-space. Then in 1957 Naı̈m [2] gave some criteria for minimally thin
sets at a fixed boundary point with respect to half-space (see [3] for a survey of the results in
[1, 2]). In 1980 Essén and Jackson [4] gave the criteria forminimally thin sets at∞with respect
to half-space, and furthermore they introduced rarefied sets at ∞ with respect to half-space,
which is more refined than minimally thin set. Later Miyamoto and Yoshida [5] extended
these results of Essén and Jackson from half-space to a cone. In this paper, we will deal with
the corresponding questions for the generalized subharmonic functions associated with the
stationary Schrödinger operator.
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To state our results, we will need some notations and preliminary results. As usual,
denote by Rn(n ≥ 2) the n-dimensional Euclidean space. For an open subset set S ⊂ Rn,
denote its boundary by ∂S and its closure by S. Let P = (X, xn), where X = (x1, x2, . . . , xn−1),
and let |P | be the Euclidean norm of P and |P − Q| the Euclidean distance of two points P
and Q in Rn. The unit sphere and the upper half unit sphere are denoted by Sn−1 and Sn−1

+ ,
respectively. For P ∈ Rn and r > 0, let B(P, r) be the open ball of radius r centered at P in
Rn, then Sr = ∂B(O, r). Furthermore, denote by dSr the (n− 1)-dimensional volume elements
induced by the Euclidean metric on Sr .

For P = (X, xn) ∈ Rn, it can be reexpressed in spherical coordinates (r,Θ), Θ =
(θ1, θ2, . . . , θn) via the following transforms:

x1 = r
n−1∏

j=1

sin θj (n ≥ 2), xn = r cos θ1, (1.1)

and if n ≥ 3,

xn−k+1 = r cos θk
k−1∏

j=1

sin θj (2 ≤ k ≤ n − 1), (1.2)

where 0 ≤ r < ∞, 0 ≤ θj ≤ π (1 ≤ j ≤ n − 2;n ≥ 3) and −π/2 ≤ θn−1 ≤ (3π/2)(n ≥ 2).
Relative to the system of spherical coordinates, the Laplace operatorΔmay be written

as

Δ =
n − 1
r

∂

∂r
+

∂2

∂r2
+
Δ∗

r2
, (1.3)

where the explicit form of the Beltrami operator Δ∗ is given by Azarin (see [6]).
Let D be an arbitrary domain in Rn, and AD denotes the class of nonnegative radial

potentials a(P) (i.e., 0 ≤ a(P) = a(r) for P = (r,Θ) ∈ D) such that a ∈ Lb
loc(D) with some

b > n/2 if n ≥ 4 and with b = 2 if n = 2 or n = 3.
For the identical operator I, define the stationary Schrödinger operator with a potential

a(·) by

La = −Δ + a(·)I. (1.4)

If a ∈ AD, then La can be extended in the usual way from the space C∞
0 (D) to an essentially

self-adjoint operator on L2(D) (see [7, Chapter 13] for more details). Furthermore La has
a Green a-function Ga

D(·, ·). Here Ga
D(·, ·) is positive on D, and its inner normal derivative

∂Ga
D(·, Q)/∂nQ is nonnegative, where ∂/∂nQ denotes the differentiation at Q along the

inward normal into D. We write this derivative by PIaD(·, ·), which is called the Poisson a-
kernel with respect toD. Denote by G0

D(·, ·) the Green function of Laplacian. It is well known
that

Ga
D(·, ·) ≤ G0

D(·, ·) (1.5)
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for any potential a(·) ≥ 0. The “inverse” inequality in some sense is much more elaborate.
When D is a bounded domain in Rn, Cranston (see [8], the case n = 2 is implicitly contained
in [9]) have proved that

Ga
D(·, ·) ≥ M(D)G0

D(·, ·), (1.6)

where M(D) = M(D, a) is a positive constant and independent of points in D. If a = 0, then
obviously M(D) ≡ 1.

Suppose that a function u/≡ −∞ is upper semicontinuous in D. We call u ∈ [−∞,+∞)
a subfunction for the Schrödinger operator La if the generalized mean-value inequality

u(P) ≤
∫

S(P,ρ)
u(Q)

∂Ga
B(P,ρ)(P,Q)

∂nQ
dσ(Q) (1.7)

is satisfied at each point P ∈ D with 0 < ρ < infQ∈∂D|P − Q|, where S(P, ρ) = ∂B(P, ρ),
Ga

B(P,ρ)(·, ·) is the Green a-function of La in B(P, r), and dσ(·) the surface area element on
S(P, ρ) (see [10]).

Denote by SbH(a,D) the class of subfunctions in D. We call u a superfunction
associated with La if −u ∈ SbH(a,D), and denote by SpH(a,D) the class of superfunctions.
If a function u on D is both subfunction and superfunction, then it is called an a-harmonic
function associated with the operator La. The class of a-harmonic functions is denoted by
H(a,D), and it is obviously SbH(a,D) ∩ SpH(a,D). Here we follow the terminology from
Levin and Kheyfits (see [11–13]).

For simplicity, the point (1,Θ) on Sn−1 and the set {Θ; (1,Θ) ∈ Ω} for a set Ω ⊂ Sn−1

are often identified with Θ and Ω, respectively. For Ξ ⊂ R+ and Ω ⊂ Sn−1, the set {(r,Θ) ∈
Rn; r ∈ Ξ, (1,Θ) ∈ Ω} in Rn is simply denoted by Ξ×Ω. In particular, the half space {(X, xn) ∈
Rn; xn > 0} = R+×Sn−1

+ will be denoted byTn. We denote byCn(Ω) the setR+×Ω inRn with the
domainΩ ⊂ Sn−1 and call it a cone. For an interval I ⊂ R+ andΩ ⊂ Sn−1, writeCn(Ω; I) = I×Ω,
Sn(Ω; I) = I × ∂Ω, and Cn(Ω; r) = Cn(Ω) ∩ Sr . By Sn(Ω) we denote Sn(Ω; (0,+∞)), which is
∂Cn(Ω) − {O}. From now on, we always assume D = Cn(Ω) and write Ga

Ω(·, ·) instead of
Ga

Cn(Ω)(·, ·).
Let Ω be a domain on Sn−1 with smooth boundary. Suppose that τ is the least positive

eigenvalue for −Δ∗ onΩ and the normalized positive eigenfunction ϕ(Θ) corresponding to τ
satisfies

∫
Ω ϕ2(Θ)dS1 = 1. Then

(Δ∗ + τ)ϕ(Θ) = 0 on Ω,

ϕ(Θ) = 0 on ∂Ω
(1.8)

(see [14, page 41]). In order to ensure the existence of τ and ϕ(Θ), we pose the assumption
on Ω: if n ≥ 3, then Ω is a C2,α-domain (0 < α < 1) on Sn−1 surrounded by a finite number of
mutually disjoint closed hypersurfaces (see e.g., [15, pages 88-89] for the definition of C2,α-
domain).

Let BD be the class of the potential a ∈ AD such that

lim
r→∞

r2a(r) = κ0 ∈ [0,∞), r−1
∣∣∣r2a(r) − κ0

∣∣∣ ∈ L(1,∞). (1.9)
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When a ∈ BD, the subfunctions (superfunctions) associated withLa are continuous (see, e.g.,
[16]). In the rest of paper, we will always assume that a ∈ BD.

An important role will be played by the solutions of the ordinary differential equation

−Q′′(r) − n − 1
r

Q′(r) +
(

τ

r2
+ a(r)

)
Q(r) = 0 (0 < r < ∞). (1.10)

When the potential a ∈ AD, these solutions are well known (see [17] for more references).
Equation (1.10) has two specially linearly independent positive solutions V (r) andW(r) such
that V is increasing with

0 ≤ V (0+) ≤ V (r) as r −→ +∞ (1.11)

and W is decreasing with

+∞ = W(0+) > W(r) ↘ 0 as r −→ +∞. (1.12)

We remark that both V (r)ϕ(Θ) and W(r)ϕ(Θ) are harmonic on Cn(Ω) and vanish continu-
ously on Sn(Ω).

Denote

ι±κ =
2 − n ±

√
(n − 2)2 + 4(κ + τ)

2
. (1.13)

When a ∈ BD, the normalized solutions V (r) and W(r) of (1.10) satisfying V (1) = W(1) = 1
have the asymptotics (see [15]):

V (r) ≈ rι
+
κ , W(r) ≈ rι

−
κ , as r −→ ∞. (1.14)

Set

χ = ι+κ − ι−κ =
√
(n − 2)2 + 4(κ + τ), χ′ = ω(V (r),W(r))|r=1, (1.15)

where χ′ is their Wronskian at r = 1.

Remark 1.1. If a = 0 and Ω = Sn−1
+ , then ι+0 = 1, ι−0 = 1 − n and ϕ(Θ) = (2ns−1n )1/2 cos θ1, where

sn = 2πn/2{Γ(n/2)}−1 is the surface area of Sn−1.
We recall that

C1V (r)W(t)ϕ(Θ)ϕ(Φ) ≤ Ga
Ω(P,Q) ≤ C2V (r)W(t)ϕ(Θ)ϕ(Φ), (1.16)

or

C1V (t)W(r)ϕ(Θ)ϕ(Φ) ≤ Ga
Ω(P,Q) ≤ C2V (t)W(r)ϕ(Θ)ϕ(Φ) (1.17)
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for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t,Φ) ∈ Cn(Ω) satisfying 0 < r/t ≤ 4/5 or 0 < t/r ≤
4/5, where C1 and C2 are two positive constants (see Escassut et al. [11, Chapter 11], and for
a = 0, see Azarin [6, Lemma 1], Essén, and Lewis [18, Lemma 2]).

The remainder of the paper is organized as follows: in Section 2 we will give our main
theorems; in Section 3, some necessary lemmas are given; in Section 4, we will prove the main
results.

2. Statement of the Main Results

In this section, we will state our main results. Before passing to our main results, we need
some definitions.

Martin introduced the so-called Martin functions associated with the Laplace operator
(see Brelot [19] or Martin [20]). Inspired by his spirit, we define the Martin function Ma

Ω
associated with the stationary Schrödinger operator as follows:

Ma
Ω(P,Q) =

Ga
Ω(P,Q)

Ga
Ω(P0, Q)

(P,Q ∈ Cn(Ω) × Cn(Ω) \ (P0, P0)), (2.1)

which will be called the generalized Martin Kernel of Cn(Ω) (relative to P0). If Q = P0, the
above quotient is interpreted as 0 (for a = 0, refer to Armitage and Gardiner [3]).

It is well known that the Martin boundary Δ of Cn(Ω) is the set ∂Cn(Ω) ∪ {∞}.
When we denote the Martin kernel associated with the stationary Schrödinger operator by
Ma

Ω(P,Q)(P ∈ Cn(Ω), Q ∈ ∂Cn(Ω) ∪ {∞}) with respect to a reference point chosen suitably,
we see

Ma
Ω(P,∞) = V (r)ϕ(Θ), Ma

Ω(P,O) = KW(r)ϕ(Θ) (2.2)

for any P ∈ Cn(Ω), where O is the origin of Rn and K a positive constant.
Let E be a subset of Cn(Ω) and let u be a nonnegative superfunction on Cn(Ω). The

reduced function of u is defined by

RE
u(P) = inf

{
υ(P) : υ ∈ ΦE

u

}
, (2.3)

where ΦE
u = {υ ∈ SpH(a,Cn(Ω)) : v ≥ 0 on Cn(Ω), υ ≥ u on E}. We define the regularized

reduced function R̂E
u of u relative to E as follows:

R̂E
u(P) = lim

P ′ →P
infRE

u

(
P ′). (2.4)

It is easy to see that R̂E
u is a superfunction on Cn(Ω).

If E ⊆ Cn(Ω) and Q ∈ Δ, then the Riesz decomposition and the generalized Martin
representation allow us to express R̂E

Ma
Ω(·,Q) uniquely in the form Ga

Ωμ+Ma
Ων, where Ga

Ωμ and
Ma

Ων are the generalized Green potential and generalizedMartin representation, respectively.
We say that E is a-minimally thin at Q with respect to Cn(Ω) if ν({Q}) = 0. At last we remark
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that Δ0 = {Q ∈ Δ : Cn(Ω) is a-minimally thin at Q}, where Δ is the Martin boundary of
Cn(Ω).

Now we can state our main theorems.

Theorem 2.1. Let E ⊆ Cn(Ω) and a fixed point Q ∈ Δ \Δ0. The following are equivalent:

(a) E is a-minimally thin at Q;

(b) R̂E
Ma

Ω(·,Q) /=Ma
Ω(·, Q);

(c) inf{R̂E∩ω
Ma

Ω(·,Q) : ω is a generalized Martin topology neighbourhood of Q} = 0.

If u is a positive superfunction, then we will write μu for the measure appearing in the
generalized Martin representation of the greatest a-harmonic minorant of u.

Theorem 2.2. Let E ⊆ Cn(Ω) and a fixed point Q ∈ Δ \Δ0. Suppose that Q is a generalized Martin
topology limit of E. The following are equivalent:

(a) E is a-minimally thin at Q;

(b) there exists a positive superfunction u such that

lim inf
P →Q,P∈E

u(P)
Ma

Ω(P,Q)
> μu({Q}), (2.5)

(c) there is an a-potential u on Cn(Ω) such that

u(P)
Ma

Ω(P,Q)
−→ ∞ (P −→ Q;P ∈ E). (2.6)

A set E in Rn is said to be a-thin at a point Q if there is a fine neighborhood U of Q
which does not intersect E \ {Q}. Otherwise E is said to be not a-thin at Q. A set E in Rn is
called a-polar if there is a superfunction u on some open set ω such that E ⊆ {P ∈ ω : u(P) =
∞}.

Let E be a bounded subset ofCn(Ω). Then R̂E
Ma

Ω(·,∞)(P) is bounded onCn(Ω), and hence

the greatest a-harmonic minorant of R̂E
Ma

Ω(·,∞)(P) is zero. By the Riesz decomposition theorem
there exists a unique positive measure λaE associated with the stationary Schrödinger operator
La on Cn(Ω) such that

R̂E
Ma

Ω(·,∞)(P) = Ga
Ωλ

a
E(P) (2.7)

for any P ∈ Cn(Ω), and λaE is concentrated on BE, where

BE = {P ∈ Cn(Ω) : E is not a-thin at P}. (2.8)

For a = 0, see Brelot [19] and Doob [21]. According to the Fatou’s lemma, we easily know the
condition (b) in Theorems 2.3 and 2.4.
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Theorem 2.3. Let E ⊆ Cn(Ω) and a fixed point Q ∈ Δ \Δ0. Suppose that Q is a generalized Martin
topology limit point of E. The following are equivalent:

(a) E is a-minimally thin at Q;

(b) there is an a-potential Ga
Ωμ such that

lim inf
P →Q,P∈E

Ga
Ωμ(P)

Ga
Ω(P0, P)

>

∫
Ma

Ω(P,Q)dμ(P), (2.9)

(c) there is an a-potential Ga
Ωμ

′ such that
∫
Ma

Ω(P,Q)dμ′(P) < ∞ and

Ga
Ωμ

′(P)
Ga

Ω(P0, P)
−→ ∞ (P −→ Q;P ∈ E). (2.10)

Theorem 2.4. Let E ⊆ Cn(Ω), Q0 ∈ Cn(Ω) and a fixed point Q ∈ Δ \ Δ0. Suppose that Q is a
generalized Martin topology limit point of E. Then E is a-minimally thin at Q if and only if there
exists a positive superfunction u such that

lim inf
P →Q,P∈E

u(P)
Ga

Ω(Q0, P)
> lim inf

P →Q

u(P)
Ga

Ω(Q0, P)
. (2.11)

The generalized Green energy γaΩ(E) of λ
a
E is defined by

γaΩ(E) =
∫

Cn(Ω)

(
Ga

Ωλ
a
E

)
dλaE. (2.12)

Let E be a subset of Cn(Ω) and Ek = E ∩ Ik(Ω), where Ik(Ω) = {P = (r,Ω) ∈ Cn(Ω) : 2k ≤
r ≤ 2k+1}. The previous theorems are concerned with the fixed boundary points. Next we will
consider the case at infinity.

Theorem 2.5. A subset E of Cn(Ω) is a-minimally thin at ∞ with respect to Cn(Ω) if and only if

∞∑

k=0

γaΩ(Ek)W
(
2k
)
V
(
2k
)−1

< ∞. (2.13)

A subset E of Cn(Ω) is a-rarefied at ∞ with respect to Cn(Ω), if there exists a positive
superfunction υ(P) in Cn(Ω) such that

inf
P∈Cn(Ω)

υ(P)
Ma

Ω(P,∞)
≡ 0, E ⊂ Hυ, (2.14)

where

Hυ = {P = (r,Θ) ∈ Cn(Ω) : υ(P) ≥ V (r)}. (2.15)
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Theorem 2.6. A subset E of Cn(Ω) is a-rarefied at ∞ with respect to Cn(Ω) if and only if

∞∑

k=0

W
(
2k
)
λaΩ(Ek) < ∞. (2.16)

Remark 2.7. When a = 0, Theorems 2.5 and 2.6 reduce to the results byMiyamoto and Yoshida
[5]. When a = 0 and Ω = Sn−1

+ , these are exactly due to Aikawa and Essén [22].
Set

c(υ, a) = inf
P∈Cn(Ω)

υ(P)
Ma

Ω(P,∞)
(2.17)

for a positive superfunction υ(P) on Cn(Ω). We immediately know that c(υ, a) < ∞. Actually
let u(P) be a subfunction on Cn(Ω) satisfying

lim sup
P →Q,P∈Cn(Ω)

u(P) ≤ 0 (2.18)

for any Q ∈ ∂Cn(Ω) \ {O} and

sup
P=(r,Θ)∈Cn(Ω)

u(P)
V (r)ϕ(Θ)

= �(a) < ∞. (2.19)

Then we see �(a) > −∞ (for a = 0, see Yoshida [23]). If we apply this to u = −υ, we may
obtain c(υ, a) < ∞.

Theorem 2.8. Let υ(P) be a positive superfunction on Cn(Ω). Then there exists an a-rarefied set E
at∞ with respect to Cn(Ω) such that υ(P)V (r)−1 uniformly converges to c(υ, a)ϕ(Θ) on Cn(Ω) \E
as r → ∞, where P = (r,Θ) ∈ Cn(Ω).

From the definition of a-rarefied set, for any given a-rarefied set E at ∞ with respect
to Cn(Ω) there exists a positive superfunction υ(P) on Cn(Ω) such that υ(P)V (r)−1 ≥ 1 on E
and c(υ, a) = 0. Hence υ(P)V (r)−1 does not converge to c(υ, a)ϕ(Θ) = 0 on E as r → ∞.

Let u(P) be a subfunction on Cn(Ω) satisfying (2.18) and (2.19). Then

υ(P) = �(a)V (r)ϕ(Θ) − u(P), (P = (r,Θ) ∈ Cn(Ω)) (2.20)

is a positive superfunction on Cn(Ω) such that c(υ, a) = 0. If we apply Theorem 2.8 to this
υ(P), then we obtain the following corollary.

Corollary 2.9. Let u(P) be a subfunction on Cn(Ω) satisfying (2.18) and (2.19) for P ∈ Cn(Ω).
Then there exists an a-rarefied set E at ∞ with respect to Cn(Ω) such that υ(P)V (r)−1 uniformly
converges to �(a)ϕ(Θ) on Cn(Ω) \ E as r → ∞, where P = (r,Θ) ∈ Cn(Ω).

A cone Cn(Ω′) is called a subcone of Cn(Ω) if Ω′ ⊂ Ω, where Ω′ is the closure of Ω′ ⊂
Sn−1.
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Theorem 2.10. Let E be a subset of Cn(Ω). If E is an a-rarefied set at∞ with respect to Cn(Ω), then
E is a-minimally thin at ∞ with respect to Cn(Ω). If E is contained in a subcone of Cn(Ω) and E is
a-minimally thin at∞ with respect to Cn(Ω), then E is an a-rarefied set at∞ with respect to Cn(Ω).

3. Some Lemmas

In our arguments we need the following results.

Lemma 3.1. Let E1, E2, . . . , Em ⊆ Cn(Ω) and Q ∈ Δ.

(i) If E1 ⊆ E2 and E2 is a-minimally thin at Q, then E1 is a-minimally thin at Q.

(ii) If E1, E2, . . . , Em are a-minimally thin at Q, then
⋃m

k=1 Ek is a-minimally thin at Q.

(iii) If E1 is a-minimally thin at Q, then there is an open subset E of Cn(Ω) such that E1 ⊆ E
and E is a-minimally thin at Q.

Proof. Since R̂E1
Ma

Ω(·,Q) ≤ R̂E2
Ma

Ω(·,Q), we see (i) holds. To prove (ii) we note that R̂Ek

Ma
Ω(·,Q) is an

a-potential for each k and

m∑

k=1

R̂Ek

Ma
Ω(·,Q) ≥ Ma

Ω(·, Q) quasi everywhere on
m⋃

k=1

Ek, (3.1)

so R̂
⋃

k Ek

Ma
Ω(·,Q) is an a-potential. Finally, to prove (iii), let u = R̂E1

Ma
Ω(·,Q). Then u is an a-potential

and u ≥ Ma
Ω(·, Q) on E1 \ F for some a-polar set F. Let υ be a nonzero a-potential such that

υ = ∞ on F, and let

Z =
{
P ∈ Cn(Ω) : u(P) + υ(P) ≥ Ma

Ω(P,Q)
}
. (3.2)

Then Z is open, E1 ⊆ Z and RZ
Ma

Ω(·,Q) ≤ u+υ, so RZ
Ma

Ω(·,Q) is an a-potential and Z is a-minimally
thin at Q.

Lemma 3.2 (see [24]). Consider

∂Ga
Ω(P,Q)
∂nQ

≈ t−1V (t)W(r)ϕ(Θ)
∂ϕ(Φ)
∂nΦ

, (3.3)

∂Ga
Ω(P,Q)
∂nQ

≈ V (r)t−1W(t)ϕ(Θ)
∂ϕ(Φ)
∂nΦ

(3.4)

for any P = (r,Θ) ∈ Cn(Ω) and anyQ = (t,Φ) ∈ Sn(Ω) satisfying 0 < t/r ≤ 4/5 (resp., 0 < r/t ≤
4/5). In addition,

∂G0
Ω(P,Q)
∂nQ

� ϕ(Θ)
tn−1

∂ϕ(Φ)
∂nΦ

+
rϕ(Θ)
|P −Q|n

∂ϕ(Φ)
∂nΦ

(3.5)

for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t,Φ) ∈ Sn(Ω; ((4/5)r, (5/4)r)).
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Lemma 3.3 (see [24]). Let μ be a positive measure on Cn(Ω) such that there is a sequence of points
Pi = (ri,Θi) ∈ Cn(Ω), ri → ∞ (i → ∞) satisfying

Ga
Ωμ(Pi) =

∫

Cn(Ω)
Ga

Ω(Pi,Q)dμ(t,Φ) < ∞ (i = 1, 2, 3, . . . ; Q = (t,Φ) ∈ Cn(Ω)). (3.6)

Then for a positive number �,
∫

Cn(Ω;(�,∞))
W(t)ϕ(Φ)dμ(t,Φ) < ∞,

lim
R→∞

W(R)
V (R)

∫

Cn(Ω;(0,R))
V (t)ϕ(Φ)dμ(t,Φ) = 0.

(3.7)

Lemma 3.4 (see [24]). Let ν be a positive measure on Sn(Ω) such that there is a sequence of points
Pi = (ri,Θi) ∈ Cn(Ω), ri → ∞ (i → ∞) satisfying

∫

Sn(Ω)

∂Ga
Ω(Pi,Q)
∂nQ

dν(Q) < ∞ (i = 1, 2, 3, . . . ; Q = (t,Φ) ∈ Cn(Ω)). (3.8)

Then for a positive number �,

∫

Sn(Ω;(�,∞))
W(t)t−1

∂ϕ(Φ)
∂nΦ

dν(t,Φ) < ∞,

lim
R→∞

W(R)
V (R)

∫

Sn(Ω;(0,R))
V (t)t−1

∂ϕ(Φ)
∂nΦ

dν(t,Φ) = 0.

(3.9)

Lemma 3.5. Let μ be a positive measure onCn(Ω) for whichGa
Ωμ(P) is defined. Then for any positive

number A the set
{
P = (r,Θ) ∈ Cn(Ω) : Ga

Ωμ(P) ≥ AV (r)ϕ(Θ)
}

(3.10)

is a-minimally thin at ∞ with respect to Cn(Ω).

Lemma 3.6. Let υ(P) be a positive superfunction on Cn(Ω) and put

c(υ, a) = inf
P∈Cn(Ω)

υ(P)
Ma

Ω(P,∞)
, cO(υ, a) = inf

P∈Cn(Ω)

υ(P)
Ma

Ω(P,O)
. (3.11)

Then there are a unique positive measure μ on Cn(Ω) and a unique positive measure ν on Sn(Ω) such
that

υ(P) = c(υ, a)Ma
Ω(P,∞) + cO(υ, a)Ma

Ω(P,O)

+
∫

Cn(Ω)
Ga

Ω(P,Q)dμ(Q) +
∫

Sn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dν(Q),
(3.12)

where ∂/∂nQ denotes the differentiation at Q along the inward normal into Cn(Ω).
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Proof. By the Riesz decomposition theorem, we have a unique measure μ on Cn(Ω) such that

υ(P) =
∫

Cn(Ω)
Ga

Ω(P,Q)dμ(Q) + h(P) (P ∈ Cn(Ω)), (3.13)

where h is the greatest a-harmonic minorant of υ on Cn(Ω). Furthermore, by the generalized
Martin representation theorem (Lemma 3.8)we have another positivemeasure ν′ on ∂Cn(Ω)∪
{∞} satisfying

h(P) =
∫

∂Cn(Ω)∪{∞}
Ma

Ω(P,Q)dν′(Q)

= Ma
Ω(P,∞)ν′({∞}) +Ma

Ω(P,O)ν′({O})

+
∫

Sn(Ω)
Ma

Ω(P,Q)dν′(Q) (P ∈ Cn(Ω)).

(3.14)

We know from (3.11) that ν′({∞}) = c(υ, a) and ν′({O}) = cO(υ, a).
Since

Ma
Ω(P,Q) = lim

P1 →Q,P1∈Cn(Ω)

Ga
Ω(P, P1)

Ga
Ω(P0, P1)

=

(
∂Ga

Ω (P,Q)
)
/∂nQ(

∂Ga
Ω (P0, Q)

)
/∂nQ

, (3.15)

where P0 is a fixed reference point of the generalized Martin kernel, we also obtain

h(P) = c(υ, a)Ma
Ω(P,∞) + cO(υ, a)Ma

Ω(P,O) +
∫

Sn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dν(Q) (P ∈ Cn(Ω))

(3.16)

by taking

dν(Q) =

{
∂Ga

Ω(P0, Q)
∂nQ

}−1
dν′(Q) (Q ∈ Sn(Ω)). (3.17)

Hence by (3.13) and (3.16) we get the required.

Lemma 3.7. Let E be a bounded subset of Cn(Ω), and let u(P) be a positive superfunction on Cn(Ω)
such that u(P) is represented as

u(P) =
∫

Cn(Ω)
Ga

Ω(P,Q)dμu(Q) +
∫

Sn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dνu(Q) (3.18)

with two positive measures μu(Q) and νu(Q) on Cn(Ω) and Sn(Ω), respectively, and satisfies
u(P) ≥ 1 for any P ∈ E. Then
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λaΩ(E) ≤
∫

Cn(Ω)
V (t)ϕ(Φ)dμu(t,Φ) +

∫

Sn(Ω)
V (t)t−1ϕ(Φ)dνu(t,Φ). (3.19)

When u(P) = R̂E
1 (P)(P ∈ Cn(Ω)), the equality holds in (3.19).

Proof. Since λaE is concentrated on BE and u(P) ≥ 1 for any P ∈ BE, we see that

λaΩ(E) =
∫

Cn(Ω)
dλaE(P) ≤

∫

Cn(Ω)
u(P)dλaE(P)

=
∫

Cn(Ω)
R̂E

Ma
Ω(·,∞)dμu(Q) +

∫

Sn(Ω)

(∫

Cn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dλaE(P)

)
dνu(Q).

(3.20)

In addition, we have

R̂E
Ma

Ω(·,∞)(Q) ≤ Ma
Ω(Q,∞) = V (t)ϕ(Φ) (Q = (t,Φ) ∈ Cn(Ω)). (3.21)

Since

∫

Cn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dλaE(P) ≤ lim inf
ρ→ 0

1
ρ

∫

Cn(Ω)
Ga

Ω

(
P, Pρ

)
dλaE(P) (3.22)

for any Q ∈ Sn(Ω), where Pρ = (rρ,Θρ) = Q + ρnQ ∈ Cn(Ω) and nQ is the inward normal unit
vector at Q, and

∫

Cn(Ω)
Ga

Ω

(
P, Pρ

)
dλaE(P) = R̂E

Ma
Ω(·,∞)

(
Pρ

) ≤ Ma
Ω

(
Pρ,∞

)
= V
(
rρ
)
ϕ
(
Θρ

)
, (3.23)

we have

∫

Cn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dλaE(P) ≤ V (t)t−1
∂ϕ(Φ)
∂nΦ

(3.24)

for any Q = (t,Φ) ∈ Sn(Ω). Thus (3.19) follows from (3.20), (3.21), and (3.24). Because R̂E
1 (P)

is bounded onCn(Ω), u(P) has the expression (3.18) by Lemma 3.6 when u(P) = R̂E
1 (P). Then

the equalities in (3.20) hold because R̂E
1 (P) = 1 for any P ∈ BE (Doob [21, page 169]). Hence

we claim if

μu

({
P ∈ Cn(Ω) : R̂E

Ma
Ω(·,∞)(P) < Ma

Ω(P,∞)
})

= 0, (3.25)

νu

({
Q = (t,Φ) ∈ Sn(Ω) :

∫

Cn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dλaE(P) < V (t)t−1
∂ϕ(Φ)
∂nΦ

})
= 0, (3.26)

then the equality in (3.19) holds.
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To see (3.25) we remark that

{
P ∈ Cn(Ω) : R̂E

Ma
Ω(·,∞)(P) < Ma

Ω(P,∞)
}
⊂ (Cn (Ω)) \ BE,

μu(Cn(Ω) \ BE) = 0.
(3.27)

To prove (3.26)we set

B′
E =
{
Q ∈ Sn(Ω) : E is not a-minimally thin at Q

}
,

e =
{
P ∈ E : R̂E

Ma
Ω(·,∞)(P) < Ma

Ω(P,∞)
}
.

(3.28)

Then e is an a-polar set, and hence

R̂E
Ma

Ω(·,Q) = R̂
E\e
Ma

Ω(·,Q) (3.29)

for anyQ ∈ Sn(Ω). Consequently, for anyQ ∈ B′
E, E \ e is not also a-minimally thin atQ, and

so

∫

Cn(Ω)
Ma

Ω(P,Q)dη(P) = lim inf
P ′ →Q,P ′∈E\e

∫

Cn(Ω)
Ma

Ω

(
P, P ′)dη(P) (3.30)

for any positive measure η on Cn(Ω), where

Ma
Ω

(
P, P ′) =

Ga
Ω(P, P

′)
Ga

Ω(P0, P ′)
(
P, P ′ ∈ Cn(Ω)

)
. (3.31)

Take η = λaE in (3.30). Since

lim
P →Q,P∈Cn(Ω)

Ma
Ω(P,∞)

Ga
Ω(P0, P)

= V (t)t−1
∂ϕ(Φ)
∂nΦ

{
∂Ga

Ω(P0, Q)
∂nQ

}−1
, (Q = (t,Φ) ∈ Sn(Ω)), (3.32)

we obtain from (3.15)

∫

Cn(Ω)

∂Ga
Ω(P,Q)
∂nΦ

dλaE(P) = V (t)t−1
∂ϕ(Φ)
∂nΦ

lim inf
P ′ →Q,P ′∈E\e

∫

Cn(Ω)

Ga
Ω(P, P

′)
Ma

Ω(P
′,∞)

dλaE(P) (3.33)

for any Q ∈ (t,Φ) ∈ B′
E. Since

∫

Cn(Ω)

Ga
Ω(P, P

′)
Ma

Ω(P
′,∞)

dλaE(P) =
1

Ma
Ω(P

′,∞)
R̂E

Ma
Ω(·,∞)

(
P ′) = 1 (3.34)
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for any P ′ ∈ E \ e, we have

∫

Cn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dλaE(P) = V (t)t−1
∂ϕ(Φ)
∂nΦ

(3.35)

for any Q = (t,Φ) ∈ B′
E, which shows

{
Q = (t,Φ) ∈ Sn(Ω) :

∫

Cn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dλaE(P) < V (t)t−1
∂ϕ(Φ)
∂nΦ

}
⊂ Sn(Ω) \ B′

E. (3.36)

Let h be the greatest a-harmonic minorant of u(P) = R̂E
1 (P), and let ν′u be the generalized

Martin representing measure of h. We claim if

R̂E
h(P) = h (3.37)

on Cn(Ω), then ν′u(Sn(Ω) \ B′
E) = 0. Since

dν′u(Q) =
∂Ga

Ω(P0, Q)
∂nQ

dνu(Q) (Q ∈ Sn(Ω)) (3.38)

from (3.15), we also have νu(Sn(Ω) \ B′
E) = 0, which gives (3.26) from (3.36).

To prove (3.37), we set u∗ = R̂E
1 (P) − h. Then

u∗ + h = R̂E
1 = R̂E

u∗+h ≤ R̂E
u∗ + R̂E

h , (3.39)

and hence

R̂E
h − h ≥ u∗ − R̂E

u∗ ≥ 0, (3.40)

from which (3.37) follows.

Lemma 3.8 (the generalized Martin representation). If u is a positive a-harmonic function on
Cn(Ω), then there exists a measure μu on Δ, uniquely determined by u, such that μu(Δ0) = 0 and

u(P) =
∫

Δ
Ma

Ω(P,Q)dμu(Q) (P ∈ Cn(Ω)), (3.41)

where Δ0 is the same as the previous statement.

Remark 3.9. Following the same method of Armitage and Gardiner [3] for Martin
representation we may easily prove Lemma 3.8.
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4. Proofs of the Main Theorems

Proof of Theorem 2.1. First we assume that (b) holds, and let u = R̂E
Ma

Ω(·,Q). Since Ma
Ω(·, Q) is

minimal, the Riesz decomposition of u is of the form υ + �Ma
Ω(·, Q), where υ is an a-potential

associated with the stationary Schrödinger operator on Cn(Ω) and 0 < � < 1. Since u =
Ma

Ω(·, Q) quasieverywhere on E and R̂E
υ + �u = υ + �Ma

Ω(·, Q) = u quasieverywhere on E,

R̂E
Ma

Ω(·,Q) = R̂E
u ≤ R̂E

υ + �u ≤ υ + �Ma
Ω(·, Q) = R̂E

Ma
Ω(·,Q). (4.1)

Hence �(Ma
Ω(·, Q) − u) ≡ 0, so � = 0 by the hypothesis and (a) holds.

Next we assume (a) holds, and let ωm be a decreasing sequence of compact neighbor-
hoods of Q in the Martin topology such that

⋂
m ωm = {Q}. Then R̂

E
⋂
ωm

Ma
Ω(·,Q) is a-harmonic on

Cn(Ω) \ ωm, and the decreasing sequence {R̂E
⋂
ωm

Ma
Ω(·,Q)} has a limit h which is a-harmonic on

Cn(Ω). Since h is majorized by R̂E
Ma

Ω(·,Q), it follows that h ≡ 0 and (c) holds.
Finally we assume (c) holds, then there is a Martin topology neighborhood ω of Q

such that R̂E
⋂
ω

Ma
Ω(·,Q) /=Ma

Ω(·, Q). Since (b) implies (a), the set E
⋂
ω is a-minimally thin atQ and

so R̂
E
⋂
ω

Ma
Ω(·,Q) is an a-potential. Then R̂E

Ma
Ω(·,Q) is an a-potential and we yield (b).

Proof of Theorem 2.2. Obviously we see that (c) implies (b). If (b) holds, then there exist � >
μu({Q}) and a Martin topology neighborhood ω of Q such that u ≥ �Ma

Ω(·, Q) on E
⋂
ω. If

R̂
E
⋂
ω

Ma
Ω(·,Q) = Ma

Ω(·, Q), then u ≥ R̂
E
⋂
ω

u ≥ �Ma
Ω(·, Q), and this yields contradictory conclusion

that μu = �δQ + μu−�Ma
Ω(·,Q) > μu({Q})δQ, where δQ is the unit measure with support {Q}.

Hence R̂E
⋂
ω

Ma
Ω(·,Q) /=Ma

Ω(·, Q). Thus E
⋂
ω is a-minimally thin at Q, and so (a) holds.

Finally we assume (a) holds. By Lemma 3.1 there is an open subset U of Cn(Ω) such
that E ⊆ U and U is a-minimally thin at Q. By Theorem 2.1 there is a sequence {ωm} of
Martin topology open neighborhoods of Q such that R̂E

⋂
ωm

Ma
Ω(·,Q)(P0) < 2−m. The function u1 =

∑
n R̂

U
⋂
ωm

Ma
Ω(·,Q), being a sum of a-potentials, is an a-potential since u1(P0) < ∞. Further, since

R̂
E
⋂
ωm

Ma
Ω(·,Q) = Ma

Ω(·, Q) on the open set E
⋂
ωm,

u1(P)
Ma

Ω(P,Q)
−→ ∞ (P −→ Q;P ∈ U), (4.2)

and so (c) holds.

Proof of Theorem 2.3. Clearly (c) implies (b). To prove that (b) implies (a), we suppose that (b)
holds and choose A such that

lim inf
P →Q,P∈E

Ga
Ωμ(P)

Ga
Ω(P0, P)

> A >

∫
Ma

Ω(·, Q)dμ. (4.3)
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Then Ga
Ωμ > AGa

Ω(P0, ·) on E ∩ ω for some Martin topology neighborhood ω of Q. If ν denotes the
swept measure of δP0 onto E∩ω, where δP0 is the unit measure with support {P0}, then it follows that

Ga
Ωμ ≥ AR̂E∩ω

Ga
Ω(P0,·) = AGa

Ων (4.4)

on Cn(Ω). Let {Kn} be a sequence of compact subsets of Cn(Ω) such that
⋃

n Kn = Cn(Ω), and let
Ga

Ωμn denote the a-potential R̂Kn

Ma
Ω(·,Q). Then

∫
R̂Kn

Ma
Ω(·,Q)dν =

∫
Ga

Ωνdμn ≤ A−1
∫
Ga

Ωμdμn = A−1
∫
R̂Kn

Ma
Ω(·,Q)dμ. (4.5)

Letting n → ∞, we see from our choice of A that

R̂E∩ω
Ma

Ω(·,Q)(P0) =
∫
Ma

Ω(·, Q)dν ≤ A−1
∫
Ma

Ω(·, Q)dμ < 1 = Ma
Ω(P0, Q), (4.6)

then E ∩ω is a-minimally thin at Q by Theorem 2.1, and so (a) holds.
Next we suppose that (a) holds. By Lemma 3.1 there is an open subset U of Cn(Ω) such that

E ⊆ U and U is a-minimally thin at Q. By Theorem 2.1 there is a sequence {ωn} of Martin topology
open neighborhoods of Q such that

∑

n

R̂U∩ωn

Ma
Ω(·,Q)(P0) < ∞. (4.7)

Let μ′ =
∑

n νn, where νn is swept measure of δP0 onto U ∩ωn. Then

∫
Ma

Ω(P,Q)dμ′(P) =
∑

n

∫
Ma

Ω(P,Q)dνn(P) =
∑

n

R̂U∩ωn

Ma
Ω(·,Q)(P0) < ∞, (4.8)

and (2.10) holds since

Ga
Ωνn = R̂U∩ωn

Ga
Ω(P0,·) = Ga

Ω(P0, ·) (4.9)

on the open setU ∩ωn, so (c) holds.

Proof of Theorem 2.4. Since (2.11) is independent of the choice of Q0, we may multiply across
byMa

Ω(Q0, Q). Thus we may assume that Q0 = P0 and claim that

lim inf
P →Q

Ga
Ωμ(P)

Ga
Ω(P0, P)

=
∫
Ma

Ω(P,Q)dμ(P) (4.10)

for any a-potential Ga
Ωμ. According to Fatou’s lemma, we may yield

lim inf
P →Q

Ga
Ωμ(P)

Ga
Ω(P0, P)

≥
∫
Ma

Ω(P,Q)dμ(P). (4.11)
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Since Cn(Ω) is not a-minimally thin at Q, we know that

lim inf
P →Q

Ga
Ωμ(P)

Ga
Ω(P0, P)

<

∫
Ma

Ω(P,Q)dμ(P) (4.12)

from Theorem 2.3. Hence the claim holds.
When E is a-minimally thin at Q, we see from (4.10) and the condition (b) of

Theorem 2.3 that (2.11) holds for some a-potential u. Conversely, if (2.11) holds, then we
can choose A such that

lim inf
P →Q,P∈E

u(P)
Ga

Ω(P0, P)
> A > lim inf

P →Q

u(P)
Ga

Ω(P0, P)
(4.13)

and define Ga
Ωμ by min{u,AGa

Ω(P0, ·)}. Then by (4.10)

lim inf
P →Q,P∈E

Ga
Ωμ(P)

Ga
Ω(P0, P)

= A > lim inf
P →Q

Ga
Ωμ(P)

Ga
Ω(P0, P)

=
∫
Ma

Ω(P,Q)dμ(P), (4.14)

and it follows from Theorem 2.3 that E is a-minimally thin at Q.

Proof of Theorem 2.5. By applying the Riesz decomposition theorem to the superfunction
R̂E

Ma
Ω(·,∞) on Cn(Ω), we have a positive measure μ on Cn(Ω) satisfying

Ga
Ωμ(P) < ∞ (4.15)

for any P ∈ Cn(Ω) and a nonnegative greatest a-harmonic minorant H of R̂E
Ma

Ω(·,∞) such that

R̂E
Ma

Ω(·,∞) = Ga
Ωμ(P) +H. (4.16)

We remark that Ma
Ω(·,∞)(P ∈ Cn(Ω)) is a minimal function at ∞. If E is a-minimally thin at

∞with respect to Cn(Ω), then R̂E
Ma

Ω(·,∞) is an a-potential, and hence H ≡ 0 on Cn(Ω). Since

R̂E
Ma

Ω(·,∞)(P) = Ma
Ω(P,∞) (4.17)

for any P ∈ BE, we see from (4.16) that

Ga
Ωμ(P) = Ma

Ω(P,∞) (4.18)

for any P ∈ BE. Take a sufficiently large R from Lemma 3.3 such that

C2
W(R)
V (R)

∫

Cn(Ω;(0,R])
V (t)ϕ(Φ)dμ(t,Φ) <

1
4
. (4.19)
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Then from (1.16) or (1.17),

∫

Cn(Ω;(0,R])
Ga

Ω(P,Q)dμ(Q) <
1
4
Ma

Ω(P,∞) (4.20)

for any P = (r,Θ) ∈ Cn(Ω) and r ≥ (5/4)r, and hence from (4.18)

∫

Cn(Ω;[R,∞))
Ga

Ω(P,Q)dμ(Q) ≥ 3
4
Ma

Ω(P,∞) (4.21)

for any P = (r,Θ) ∈ BE and r ≥ (5/4)r. Divide Ga
Ωμ into three parts as follows:

Ga
Ωμ(P) = A

(k)
1 (P) +A

(k)
2 (P) +A

(k)
3 (P) (P = (r,Θ) ∈ Cn(Ω)), (4.22)

where

A
(k)
1 (P) =

∫

Cn(Ω;(2k−1,2k+2))
Ga

Ω(P,Q)dμ(Q),

A
(k)
2 (P) =

∫

Cn(Ω;(0,2k−1])
Ga

Ω(P,Q)dμ(Q),

A
(k)
3 (P) =

∫

Cn(Ω;[2k+2,∞))
Ga

Ω(P,Q)dμ(Q).

(4.23)

Now we claim that there exists an integer N such that

BE ∩ Ik(Ω) ⊂
{
P = (r,Θ) ∈ Cn(Ω) : A(k)

1 (P) ≥ 1
4
V (r)ϕ(Θ)

}
(k ≥ N). (4.24)

When we choose a sufficiently large integer N1 by Lemma 3.3 such that

W
(
2k
)

V
(
2k
)
∫

Cn(Ω;(0,2k])
V (t)ϕ(Φ)dμ(t,Φ) <

1
4C2

(k ≥ N1),

∫

Cn(Ω;[2k+2,∞))
W(t)ϕ(Φ)dμ(t,Φ) <

1
4C2

(k ≥ N1)

(4.25)

for any P = (r,Θ) ∈ Ik(Ω) ∩ Cn(Ω), we have from (1.16) or (1.17) that

A
(k)
2 (P) ≤ 1

4
V (r)ϕ(Θ) (k ≥ N1),

A
(k)
3 (P) ≤ 1

4
V (r)ϕ(Θ) (k ≥ N1).

(4.26)
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Put

N = max
{
N1,

[
logR
log 2

]
+ 2
}
. (4.27)

For any P = (r,Θ) ∈ BE ∩ Ik(Ω) (k ≥ N), we have from (4.21), (4.22), and (4.26) that

A
(k)
1 (P) ≥

∫

Cn(Ω;[R,∞))
Ga

Ω(P,Q)dμ(Q) −A
(k)
2 (P) −A

(k)
3 (P) ≥ 1

4
V (r)ϕ(Θ), (4.28)

which shows (4.24).
Since the measure λaEk

is concentrated on BEk and BEk ⊂ BE ∩ Ik(Ω), finally we obtain
by (4.24) that

γaΩ(Ek) =
∫

Cn(Ω)

(
Ga

Ωλ
a
Ek

)
dλaEk

(P)

≤
∫

BEk

V (r)ϕ(Θ)dλaEk
(r,Θ) ≤ 4

∫

BEk

A
(k)
1 (P)dλaEk

(P)

≤ 4
∫

Cn(Ω;(2k−1,2k+2))

{∫

Cn(Ω)
Ga

Ω(P,Q)dλaEk
(P)

}
dμ(Q)

≤ 4
∫

Cn(Ω;(2k−1,2k+2))
V (t)ϕ(Φ)dμ(t,Φ) (k ≥ N),

(4.29)

and hence

∞∑

k=N

γaΩ(Ek)W
(
2k
)
V
(
2k
)−1

�
∞∑

k=N

∫

Cn(Ω;(2k−1,2k+2))
W(t)ϕ(Φ)dμ(t,Φ)

=
∫

Cn(Ω;(2N−1,∞))
W(t)ϕ(Φ)dμ(t,Φ) < ∞

(4.30)

from Lemma 3.3, (1.11) and Lemma C.1 in ([11] or [13]), which gives (2.13).
Next we will prove the sufficiency. Since

R̂Ek

Ma
Ω(·,∞)(Q) = Ma

Ω(Q,∞) (4.31)

for any Q ∈ BEk as in (4.17), we have

γaΩ(Ek) =
∫

BEk

Ma
Ω(Q,∞)dλaEk

(Q) ≥ V
(
2k
)∫

BEk

ϕ(Φ)dλaEk
(t,Φ) (Q = (t,Φ) ∈ Cn(Ω)),

(4.32)
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and hence from (1.16) or (1.17), (1.11), and (1.12)

R̂Ek

Ma
Ω(·,∞)(P) ≤ C2V (r)ϕ(Θ)

∫

BEk

W(t)ϕ(Φ)dλaEk
(t,Φ) ≤ C2V (r)ϕ(Θ)V −1

(
2k
)
W
(
2k
)
γaΩ(Ek)

(4.33)

for any P = (r,Θ) ∈ Cn(Ω) and any integer k satisfying 2k ≥ (5/4)r. Define a measure μ on
Cn(Ω) by

dμ(Q) =

⎧
⎪⎨

⎪⎩

∞∑
k=0

dλaEk
(Q) (Q ∈ Cn(Ω; [1,∞))),

0 (Q ∈ Cn(Ω; (0, 1))).
(4.34)

Then from (2.13) and (4.33)

Ga
Ωμ(P) =

∫

Cn(Ω)
Ga

Ω(P,Q)dμ(Q) =
∞∑

k=0

R̂Ek

Ma
Ω(·,∞)(P) (4.35)

is a finite-valued superfunction on Cn(Ω) and

Ga
Ωμ(P) ≥

∫

Cn(Ω)
Ga

Ω(P,Q)dλaEk
(Q) = R̂Ek

Ma
Ω(·,∞)(P) = V (r)ϕ(Θ) (4.36)

for any P = (r,Θ) ∈ BEk , and from (1.16) or (1.17)

Ga
Ωμ(P) ≥ C′V (r)ϕ(Θ) (4.37)

for any P = (r,Θ) ∈ Cn(Ω; (0, 1]), where

C′ = C1

∫

Cn(Ω;[5/4,∞))
W(t)ϕ(Φ)dμ(t,Φ). (4.38)

If we set

E′ =
∞⋃

k=0

BEk , E1 = E ∩ Cn(Ω; (0, 1]), C = min
(
C′, 1
)
, (4.39)

then

E′ ⊂ {P = (r,Θ) ∈ Cn(Ω);Ga
Ωμ(P) ≥ CV (r)ϕ(Θ)

}
. (4.40)
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Hence by Lemma 3.5, E′ is a-minimally thin at ∞ with respect to Cn(Ω); namely, there is a
point P ′ ∈ Cn(Ω) such that

R̂E′
Ma

Ω(·,∞)

(
P ′)

/=Ma
Ω

(
P ′,∞). (4.41)

Since E′ is equal to E except an a-polar set, we know that

R̂E′
Ma

Ω(·,∞)(P) = R̂E
Ma

Ω(·,∞)(P) (4.42)

for any P ∈ Cn(Ω), and hence

R̂E
Ma

Ω(·,∞)

(
P ′)

/=Ma
Ω

(
P ′,∞). (4.43)

So E is a-minimally thin at ∞with respect to Cn(Ω).

Proof of Theorem 2.6. Let a subset E of Cn(Ω) be an a-rarefied set at ∞ with respect to Cn(Ω).
Then there exists a positive superfunction υ(P) on Cn(Ω) such that c(υ, a) ≡ 0 and

E ⊂ Hυ. (4.44)

By Lemma 3.6 we can find two positive measures μ on Cn(Ω) and ν on Sn(Ω) such that

υ(P) = cO(υ, a)Ma
Ω(P,O) +

∫

Cn(Ω)
Ga

Ω(P,Q)dμ(Q)

+
∫

Sn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dν(Q) (P ∈ Cn(Ω)).

(4.45)

Set

υ(P) = cO(υ, a)Ma
Ω(P,O) + B

(k)
1 (P) + B

(k)
2 (P) + B

(k)
3 (P), (4.46)

where

B
(k)
1 (P) =

∫

Cn(Ω;(0,2k−1])
Ga

Ω(P,Q)dμ(Q) +
∫

Sn(Ω;(0,2k−1])

∂Ga
Ω(P,Q)
∂nQ

dν(Q), B(k)
2 (P)

=
∫

Cn(Ω;(2k−1,2k+2))
Ga

Ω(P,Q)dμ(Q) +
∫

Sn(Ω;(2k−1,2k+2))

∂Ga
Ω(P,Q)
∂nQ

dν(Q), B(k)
3 (P)

=
∫

Cn(Ω;[2k+2,∞))
Ga

Ω(P,Q)dμ(Q)

+
∫

Sn(Ω;[2k+2,∞))

∂Ga
Ω(P,Q)
∂nQ

dν(Q) (P ∈ Cn(Ω); k = 1, 2, 3, . . .).

(4.47)
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First we will prove there exists an integer N such that

Hυ ∩ Ik(Ω) ⊂
{
P = (r,Θ) ∈ Ik(Ω);B(k)

2 (P) ≥ 1
2
V (r)

}
(4.48)

for any integer k ≥ N. Since υ(P) is finite almost everywhere on Cn(Ω), we may apply
Lemmas 3.3 and 3.4 to

∫

Cn(Ω)
Ga

Ω(P,Q)dμ(Q),
∫

Sn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dν(Q), (4.49)

respectively; then we can take an integer N such that

W
(
2k−1
)

V
(
2k−1
)
∫

Cn(Ω;(0,2k−1])
V (t)ϕ(Φ)dμ(t,Φ) ≤ 1

12JΩC2
, (4.50)

∫

Cn(Ω;[2k+2,∞))
W(t)ϕ(Φ)dμ(t,Φ) ≤ 1

12JΩC2
, (4.51)

W
(
2k−1
)

V
(
2k−1
)
∫

Sn(Ω;(0,2k−1])
V (t)t−1

∂ϕ(Φ)
∂nΦ

dν(t,Φ) ≤ 1
12JΩC2

, (4.52)

∫

Sn(Ω;[2k+2,∞))
W(t)t−1

∂ϕ(Φ)
∂nΦ

dν(t,Φ) ≤ 1
12JΩC2

(4.53)

for any integer k ≥ N, where

JΩ = sup
Θ∈Ω

ϕ(Θ). (4.54)

Then for any P = (r,Θ) ∈ Ik(Ω) (k ≥ N), we have

B
(k)
1 (P) ≤ C2JΩW(r)

∫

Cn(Ω;(0,2k−1])
V (t)ϕ(Φ)dμ(t,Φ)

+ C2JΩW(r)
∫

Sn(Ω;(0,2k−1])
V (t)t−1

∂ϕ(Φ)
∂nΦ

dν(t,Φ) ≤ V (r)
6

(4.55)

from (1.16) or (1.17), (3.3) or (3.4), (4.50), and (4.52), and

B
(k)
3 (P) ≤ C2JΩV (r)

∫

Cn(Ω;[2k+2,∞))
W(t)ϕ(Φ)dμ(t,Φ)

+ C2JΩV (r)
∫

Sn(Ω;[2k+2,∞))
W(t)t−1

∂ϕ(Φ)
∂nΦ

dν(t,Φ) ≤ V (r)
6

(4.56)
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from (1.16) or (1.17), (3.3) or (3.4), (4.51), and (4.53). Further we can assume that

6κcO(υ, a)JΩ ≤ V (r)W(r)−1 (4.57)

for any P = (r,Θ) ∈ Ik(Ω) (k ≥ N). Hence if P = (r,Θ) ∈ Ik(Ω) ∩Hυ (k ≥ N), we obtain

B
(k)
2 (P) ≥ υ(P) − V (r)

6
− B

(k)
1 (P) − B

(k)
3 (P) ≥ V (r)

2
(4.58)

from (4.46) which gives (4.48).
We see from (4.44) and (4.48) that

B
(k)
2 (P) ≥ 1

2
V
(
2k
)

(k ≥ N) (4.59)

for any P ∈ Ek. Define a function uk(P) on Cn(Ω) by

uk(P) = 2V
(
2k
)−1

B
(k)
2 (P). (4.60)

Then

uk(P) ≥ 1 (P ∈ Ek, k ≥ N),

uk(P) =
∫

Cn(Ω)
Ga

Ω(P,Q)dμk(Q) +
∫

Sn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dνk(Q)
(4.61)

with two measures

dμk(Q) =

{
2V
(
2k
)−1

dμ(Q)
(
Q ∈ Cn

(
Ω;
(
2k−1, 2k+2

)))
,

0
(
Q ∈ Cn

(
Ω;
(
0, 2k−1

]) ∪ Cn

(
Ω;
[
2k+2,∞))),

dνk(Q) =

{
2V
(
2k
)−1

dν(Q)
(
Q ∈ Sn

(
Ω;
(
2k−1, 2k+2

)))
,

0
(
Q ∈ Sn

(
Ω;
(
0, 2k−1

]) ∪ Sn

(
Ω;
[
2k+2,∞))).

(4.62)

Hence by applying Lemma 3.7 to uk(P), we obtain

λaΩ(Ek) ≤ 2V
(
2k
)−1 ∫

Cn(Ω;(2k−1,2k+2))
V (t)ϕ(Φ)dμ(t,Φ)

+ 2V
(
2k
)−1 ∫

Sn(Ω;(2k−1,2k+2))
V (t)t−1

∂ϕ(Φ)
∂nΦ

dν(t,Φ) (k ≥ N).

(4.63)
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Finally we have by (1.11), (1.12), and (1.14)

∞∑

k=N

W
(
2k
)
λaΩ(Ek) �

∫

Cn(Ω;(2N−1,∞))
W(t)ϕ(Φ)dμ(t,Φ) +

∫

Sn(Ω;(2N−1,∞))
W(t)t−1

∂ϕ(Φ)
∂nΦ

dν(t,Φ).

(4.64)

If we take a sufficiently large N, then the integrals of the right side are finite from Lemmas
3.3 and 3.4.

Suppose that a subset E of Cn(Ω) satisfies

∞∑

k=0

W
(
2k
)
λaΩ(Ek) < ∞. (4.65)

Then we apply the second part of Lemma 3.7 to Ek and get

∞∑

k=1

W
(
2k
){∫

Cn(Ω)
V (t)ϕ(Φ)dμ∗

k(t,Φ) +
∫

Sn(Ω)
V (t)t−1

∂ϕ(Φ)
∂nΦ

dν∗k(t,Φ)

}
< ∞, (4.66)

where μ∗
k and ν∗k are two positive measures on Cn(Ω) and Sn(Ω), respectively, such that

R̂Ek

1 (P) =
∫

Cn(Ω)
Ga

Ω(P,Q)dμ∗
k(Q) +

∫

Sn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dν∗k(Q). (4.67)

Consider a function υ0(P) on Cn(Ω) defined by

υ0(P) =
∞∑

k=−1
V
(
2k+1
)
R̂Ek

1 (P) (P ∈ Cn(Ω)), (4.68)

where

E−1 = E ∩ {P = (r,Θ) ∈ Cn(Ω); 0 < r < 1}. (4.69)

Then υ0(P) is a superfunction or identically∞ on Cn(Ω). We take any positive integer k0 and
represent υ0(P) by

υ0(P) = υ1(P) + υ2(P), (4.70)

where

υ1(P) =
k0+1∑

k=−1
V
(
2k+1
)
R̂Ek

1 (P), υ2(P) =
∞∑

k=k0+2

V
(
2k+1
)
R̂Ek

1 (P). (4.71)
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Since μ∗
k and ν∗k are concentrated on BEk ⊂ Ek ∩ Cn(Ω) and B′

Ek
⊂ Ek ∩ Sn(Ω), respectively, we

have from (1.16) or (1.17), (3.3) or (3.4), (1.11), and (1.12) that

∫

Cn(Ω)
Ga

Ω

(
P ′, Q

)
dμ∗

k(Q) ≤ C2V
(
r ′
)
ϕ
(
Θ′)
∫

Cn(Ω)
W(t)ϕ(Φ)dμ∗

k(t,Φ)

≤ C2W
(
2k
)
V
(
2k
)−1

V
(
r ′
)
ϕ
(
Θ′)

×
∫

Cn(Ω)
V (t)ϕ(Φ)dμ∗

k(t,Φ),
∫

Sn(Ω)

∂Ga
Ω(P

′, Q)
∂nQ

dν∗k(Q)

≤ C2W
(
2k
)
V
(
2k
)−1

V
(
r ′
)
ϕ
(
Θ′)
∫

Sn(Ω)
V (t)t−1

∂ϕ(Φ)
∂nΦ

dν∗k(t,Φ)

(4.72)

for a point P ′ = (r ′,Θ′) ∈ Cn(Ω), where r ′ ≤ 2k0+1 and k ≤ k0 + 2. Hence we know by (1.11),
(1.12), and (1.14) that

υ2
(
P ′) � V

(
r ′
)
ϕ
(
Θ′)

∞∑

k=k0+2

W
(
2k
)∫

Cn(Ω)
V (t)ϕ(Φ)dμ∗

k(t,Φ)

+ V
(
r ′
)
ϕ
(
Θ′)

∞∑

k=k0+2

W
(
2k
)∫

Sn(Ω)
V (t)t−1

∂ϕ(Φ)
∂nΦ

dν∗k(t,Φ).

(4.73)

This and (4.66) show that υ2(P ′) is finite, and hence υ0(P) is a positive superfunction on
Cn(Ω). To see

c(υ0, a) = inf
P∈Cn(Ω)

υ0(P)
Ma

Ω(P,∞)
= 0, (4.74)

we consider the representations of υ0(P), υ1(P), and υ2(P) by Lemma 3.6 as follows:

υ0(P) = c(υ0, a)Ma
Ω(P,∞) + cO(υ0, a)Ma

Ω(P,O)

+
∫

Cn(Ω)
Ga

Ω(P,Q)dμ(0)(Q) +
∫

Sn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dν(0)(Q), υ1(P)

= c(υ1, a)Ma
Ω(P,∞) + cO(υ1, a)Ma

Ω(P,O)

+
∫

Cn(Ω)
Ga

Ω(P,Q)dμ(1)(Q) +
∫

Sn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dν(1)(Q), υ2(P)

= c(υ2, a)Ma
Ω(P,∞) + cO(υ2, a)Ma

Ω(P,O)

+
∫

Cn(Ω)
Ga

Ω(P,Q)dμ(2)(Q) +
∫

Sn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dν(2)(Q).

(4.75)
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It is evident from (4.67) that c(υ1, a) = 0 for any k0. Since c(υ0, a) = c(υ2, a) and

c(υ2, a) = inf
P∈Cn(Ω)

υ2(P)
Ma

Ω(P,∞)
≤ υ2(P ′)

Ma
Ω(P

′,∞)
�

∞∑

k=k0+2

W
(
2k
)∫

Cn(Ω)
V (t)ϕ(Φ)dμ∗

k(t,Φ)

+
∞∑

k=k0+2

W
(
2k
)∫

Sn(Ω)
V (t)t−1

∂ϕ(Φ)
∂nΦ

dν∗k(t,Φ) −→ 0 (k0 −→ ∞)

(4.76)

from (4.66) and (4.73), we know c(υ0, a) = 0 which is (4.74). Since R̂Ek

1 = 1 on BEk ⊂ Ek ∩
Cn(Ω), we know that

υ0(P) ≥ V
(
2k+1
)
≥ V (r) (4.77)

for any P = (r,Θ) ∈ BEk(k = −1, 0, 1, 2, . . .). We set E′ = ∪∞
k=−1BEk ; then

E′ ⊂ Hυ0 . (4.78)

Since E′ is equal to E except an a-polar set S, we can take another positive superfunction υ3

on Cn(Ω) such that υ3 = Ga
Ωη with a positive measure η on Cn(Ω), and υ3 is identically ∞ on

S. Define a positive superfunction υ on Cn(Ω) by

υ = υ0 + υ3. (4.79)

Since c(υ3, a) = 0, it is easy to see from (4.74) that c(υ, a) = 0. In addition, we know from
(4.78) that E ⊂ Hυ. Then the subset E of Cn(Ω) is a-rarefied at ∞ with respect to Cn(Ω).

Proof of Theorem 2.8. By Lemma 3.6 we have

υ(P) = c(υ, a)Ma
Ω(P,∞) + cO(υ, a)Ma

Ω(P,O) +
∫

Cn(Ω)
Ga

Ω(P,Q)dμ(Q)

+
∫

Sn(Ω)

∂Ga
Ω(P,Q)
∂nQ

dν(Q)

(4.80)

for a unique positive measure μ on Cn(Ω) and a unique positive measure ν on Sn(Ω),
respectively; then

υ1(P) = υ(P) − c(υ, a)Ma
Ω(P,∞) − cO(υ, a)Ma

Ω(P,O) (P = (r,Θ) ∈ Cn(Ω)) (4.81)

also is a positive superfunction on Cn(Ω) such that

inf
P=(r,Θ)∈Cn(Ω)

υ1(P)
Ma

Ω(P,∞)
= 0. (4.82)
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Next we will prove there exists an a-rarefied set E at ∞ with respect to Cn(Ω) such that

υ1(P)V (r)−1 (P = (r,Θ) ∈ Cn(Ω)) (4.83)

uniformly converges to 0 on Cn(Ω) \E as r → ∞. Let {εi} be a sequence of positive numbers
εi satisfying εi → 0 as i → ∞, and put

Ei = {P = (r,Θ) ∈ Cn(Ω);υ1(P) ≥ εiV (r)} (k = 1, 2, 3, . . .). (4.84)

Then Ei (k = 1, 2, 3, . . .) are a-rarefied sets at ∞ with respect to Cn(Ω), and hence by
Theorem 2.6

∞∑

k=0

W
(
2k
)
λaΩ((Ei)k) < ∞ (i = 1, 2, 3, . . .). (4.85)

We take a sequence {qi} such that

∞∑

k=qi

W
(
2k
)
λaΩ((Ei)k) <

1
2i

(i = 1, 2, 3, . . .), (4.86)

and set

E = ∪∞
i=1 ∪∞

k=qi(Ei)k. (4.87)

Because λaΩ is a countably subadditive set function as in Aikawa [25], Essén, and Jackson [4],

λaΩ(Em) ≤
∞∑

i=1

∞∑

k=qi

λaΩ(Ei ∩ Ik ∩ Im) (m = 1, 2, 3, . . .). (4.88)

Since

∞∑

m=1

λaΩ(Em)W(2m) ≤
∞∑

i=1

∞∑

k=qi

∞∑

m=1

λaΩ(Ei ∩ Ik ∩ Im)W(2m) =
∞∑

i=1

∞∑

k=qi

λaΩ((Ei)k)W
(
2k
)
≤

∞∑

i=1

1
2i

= 1,

(4.89)

by Theorem 2.6 we know that E is an a-rarefied set at ∞ with respect to Cn(Ω). It is easy to
see that

υ(P)V (r)−1 (P = (r,Θ) ∈ Cn(Ω)) (4.90)

uniformly converges to 0 on Cn(Ω) \ E as r → ∞.
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Proof of Theorem 2.10. Since λaEk
is concentrated on BEk ⊂ Ek ∩ Cn(Ω), we see that

γaΩ(Ek) =
∫

Cn(Ω)
R̂Ek

Ma
Ω(·,∞)(P)dλ

a
Ek
(P) ≤

∫

Cn(Ω)
Ma

Ω(P,∞)dλaEk
(P) ≤ JΩV

(
2k+1
)
λaΩ(Ek), (4.91)

and hence

∞∑

k=0

γaΩ(Ek)W
(
2k
)
V
(
2k
)−1

�
∞∑

k=0

W
(
2k
)
λaΩ(Ek), (4.92)

which gives the conclusion of the first part with Theorems 2.5 and 2.6. To prove the second
part, we put J ′Ω = minΘ∈Ω′ϕ(Θ). Since

Ma
Ω(·,∞) = V (r)ϕ(Θ) ≥ J ′ΩV (r) ≥ J ′ΩV

(
2k
)

(P = (r,Θ) ∈ Ek),

R̂Ek

Ma
Ω(·,∞)(P) = Ma

Ω(·,∞)
(4.93)

for any P = (r,Θ) ∈ BEk , we have

γaΩ(Ek) =
∫

Cn(Ω)
R̂Ek

Ma
Ω(·,∞)(P)dλ

a
Ek
(P) ≥ J ′ΩV

(
2k
)
λaΩ(Ek). (4.94)

Since

J ′Ω
∞∑

k=0

λaΩ(Ek)W
(
2k
)
≤

∞∑

k=0

V
(
2k
)−1

W
(
2k
)
γaΩ(Ek) < ∞ (4.95)

from Theorem 2.5, it follows from Theorem 2.6 that E is a-rarefied at∞with respect toCn(Ω).
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