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The present paper is devoted to the development of a new scheme to solve the initial-boundary
value Korteweg-de Vries equation which models many physical phenomena such as surface water
waves in a channel. The scheme consists of Jacobi dual-Petrov Galerkin-Jacobi collocation method
in space combined with Crank-Nicholson-leap-frog method in time such that at each time step
only a sparse banded linear algebraic system needs to be solved. Numerical results are presented
to show that the proposed numerical method is accurate and efficient for Korteweg-de Vries
equations and other third-order nonlinear equations.

1. Introduction

There is a vast body of literature on various aspects of the Korteweg-de Vries (KdV) equation
[1–4]. The KdV and extended KdV equations have been useful as an approximate model
equations in a number of important physical situations. For example, in plasma physics,
these equations give rise to the ion acoustic solitons [5, 6], in geophysical fluid dynamics,
they describe a long wave in shallow seas and deep oceans [7, 8]. Their strong presence is
exhibited in cluster physics, super deformed nuclei, fission, thin films, radar and rheology
[9, 10], optical-fiber communications [11], and superconductors [12]. Many explicit exact
methods have been introduced for the solution of KdV equations (see, eg., [13–16]).

In the spectral methods, one may use a collocation method based on a certain family
of polynomials. Pavoni [17] defined a Chebyshev-collocation method. Heinrichs [18] put
forward a scheme for the adjoint of the linearized problem and also presented a numerical
investigation of the eigenvalues of the spectral differentiation operator. An interesting hybrid
method was proposed by Ma and Sun [19], where the linear term was treated by a Legendre-
Petrov method, and the nonlinear term was treated using a Chebyshev-collocation method.



2 Abstract and Applied Analysis

Ma and Sun were able to evaluate the nonlinear term pseudospectrally. In [20], the authors
focused on a collocation method based on Chebyshev polynomials, with the concrete aim
of comparing it with a simple finite-difference method, the Chebyshev method is found to
be more efficient than the finite-difference method. Dehghan and Shokri [21] proposed a
numerical scheme to solve the third-order nonlinear KdV equation using collocation points
and approximating the solution using multiquadric radial basis function.

A well-known advantage of a spectral method is that it achieves high accuracy with
relatively fewer spatial grid points when compared with a finite-difference method. On the
other hand, spectral methods typically give rise to full matrices, partially negating the gain
in efficiency due to the fewer number of grid points. In general, the use of Jacobi polynomials
(P (α,β)

n with α, β ∈ (−1,∞) and n is the polynomial degree) has the advantage of obtaining the
solutions of differential equations in terms of the Jacobi indexes α and β (see, eg., [22–26]).

Each of these particular pairs of α and β has been used separately for solving
approximately differential equations (see [18, 27–30]). Hence, to generalize and instead of
developing approximation results for each particular pair of indexes, it would be very useful
to carry out a systematic study on Jacobi polynomials with general indexes which can then
be directly applied to other applications [31–33]. It is with this motivation that we introduce
in this paper a family of Jacobi polynomials with general indexes.

The convergence of spectral projections of the KdV equation was proved by Maday
and Quarteroni [34]. In particular, it was announced in [35] that if the solution of KdV equa-
tion is analytic in a strip about the real axis, then the convergence rate is in fact exponential.
Moreover, it was shown in [36] that a spectral approximation of the KdV equation with
periodic boundary conditions converges exponentially fast to the true solution if the Fourier
basis is used and if the solution is analytic in a fixed strip about the real axis. For the rate of
convergence of a collocation projection of the KdV equation, see for instance, [37].

It has been pointed out that the Chebyshev and Legendre collocation methods using
the Gauss-Lobatto points may be unstable for third-order differential equations and thus
are poor choices for such problems [38]. The Gauss-Lobatto points are from the generalized
Gaussian quadrature rule, which uses the values u(−1) and u(1). With the Legendre method,
these are the zeros of the Jacobi polynomial P (1,1)

N−1 (x). As for the Legendre method using the
values u(−1), u(1), and ux(1), the generalized Gaussian quadrature nodes are the zeros of
P
(2,1)
N−2 (x) [39]. Huang and Sloan [39] have shown that, with this choice of collocation points,

the pseudospectral method is stable for the linear third-order differential equation and the
convergence has been established.

In [40], Don and Gottlieb first introduced the Chebyshev-Legendre (CL) method,
where the Legendre method was implemented on Chebyshev points. The boundary condi-
tions were imposed via a penalty technique, and the scheme was in a collocation form. It was
shown that themethodwas stable in the unweighted L2-norm, and error estimates were given
for linear problems [40]. Ma [41] applied Chebyshev-Legendre viscosity methods to the non-
linear conservation laws. Moreover, A Jacobi-Jacobi dual-Petrov Galerkin method for the
differential equations with variable coefficients is developed in [42]. This method is based on
the Petrov-Galerkin variational form of one Jacobi polynomial class, but the nonlinear and the
right-hand terms are treated by using Gauss-Lobatto quadrature form of another Jacobi class.

Moreover, a Legendre Petrov-Galerkin and Chebyshev collocation (LPG-CC) method
is developed for nonlinear equations such as the Burgers-like equations, the Korteweg-de
Vries equation, and the Kuramoto-Sivashinsky equation which are very important equations
in physical models. The linear part in the scheme is formulated in the LPG, form while the
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nonlinear term is treated with the Chebyshev collocation method. The time discretization
is a classical Crank-Nicholson-leap-frog scheme. Yuan and Wu [43] extended the Legendre
dual-Petrov-Galerkin method proposed by Shen [44], further developed by Yuan et al. [45]
to general fifth-order KdV-type equations with various nonlinear terms.

The main aim of this paper is to propose a suitable way to approximate the third-
order differential equations in space, by dual-Petrov Galerkin method-based on Jacobi
polynomials such that it can be implemented efficiently and at the same time has a
good convergence property. Moreover, we introduce the Jacobi dual Petrov Galerkin-Jacobi
collocation (JDPG-JC) method for solving third-order differential equations with nonlinear
term. The method is basically formulated in the Jacobi spectral form with general indexes
α, β > −1 but the nonlinear term being treated by the Jacobi collocation method with
other two general indexes θ, ϑ > −1 so that the schemes can be implemented at Jacobi-
Gauss-Lobatto points efficiently. Therefore, we can generalize Legendre Petrov-Galerkin and
Chebyshev collocation method to Jacobi Petrov-Galerkin and Jacobi collocation method.
Some other cases can be obtained directly as special cases from our proposed JDPG-JC
approximations. We, therefore, motivated our interest in JDPG-JC approximations. Finally,
numerical results are presented in which the usual exponential convergence behaviour of
spectral approximations is exhibited.

The layout of the paper is as follows. In Section 2, we give an overview of Jacobi
polynomials and their relevant properties needed hereafter. Section 3 is devoted to the
theoretical derivation of the Jacobi dual-Petrov Galerkin (JDPG) method for linear third-
order differential equations subject to homogeneous boundary conditions. Section 4 gives
the corresponding results for those obtained in Section 3 but for the KDV equation using
JDPG-JCmethod. In Section 5, we present some numerical results exhibiting the accuracy and
efficiency of our numerical algorithms. Some concluding remarks are given in the final
section.

2. Preliminaries

Let SN(I) be the space of polynomials of degree at mostN on the interval I = (−1, 1), we set

WN =
{
u ∈ SN : u(±1) = u′(1) = 0

}
,

W∗
N =

{
u ∈ SN : u(±1) = u′(−1) = 0

}
.

(2.1)

And let P (α,β)
n (x) (n = 0, 1, 2, . . .) be the Jacobi polynomials orthogonal with the weight

functions wα,β(x) = (1 − x)α(1 + x)β, where α, β > −1.
Let x(α,β)

N,j , 0 ≤ j ≤ N, be the zeros of (1 − x2)∂xP
(α,β)
N . Denote by �

(α,β)
N,j , 0 ≤ j ≤ N,

the weights of the corresponding Gauss-Lobatto quadrature formula. They are arranged in
decreasing order. We define the discrete inner product and norm as follows:

(u, v)wα,β,N =
N∑

k=0

u
(
x
(α,β)
N,k

)
v
(
x
(α,β)
N,k

)
�

(α,β)
N,k

, ‖u‖wα,β,N =
√
(u, u)wα,β,N. (2.2)

Obviously,

(u, v)wα,β,N = (u, v)wα,β ∀uv ∈ S2N−1. (2.3)

Thus, for any u ∈ SN , the norms ‖u‖wα,β,N and ‖u‖wα,β coincide.
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Associating with this quadrature rule, we denote by IP
α,β

N the Jacobi-Gauss-Lobatto in-
terpolation (cf. [46]),

IP
(α,β)

N u
(
x
(α,β)
N,k

)
= u

(
x
(α,β)
N,k

)
, 0 ≤ j ≤N. (2.4)

We denote by IcN= IP
(−1/2,−1/2)

N and IlN= IP
(0,0)

N the Chebyshev-Gauss-Lobatto and Legendre-
Gauss-Lobatto interpolation operators, respectively.

The following special values will be of fundamental importance in what follows:

P
(α,β)
n (1) =

(α + 1)n
n!

, P
(α,β)
n (−1) = (−1)n(β + 1

)
n

n!
,

DqP
(α,β)
n (1) =

q−1∏

i=0

Γ(n + α + 1)(n + λ + i)
2q
(
n − q)!Γ(q + α + 1

) , DqP
(α,β)
n (−1) = (−1)n+qDqP

(β,α)
n (1),

(2.5)

where (a)k = Γ(a + k)/Γ(a) and λ = 1 + β + α.

Lemma 2.1 (see, Doha [47]). The qth derivative of P (α,β)
n (x) can be written as

DqP
(α,β)
k (x) =

k−q∑

i=0

Cq

(
k, i, α, β

)
P
(α,β)
i (x), (2.6)

where,

Cq

(
k, i, α, β

)
=

(k + λ)q
(
k + λ + q

)
i

(
i + α + q + 1

)
k−i−q Γ(i + λ)

2q
(
k − i − q)! Γ(2i + λ)

× 3F2

( −k + i + q, k + i + λ + q, i + α + 1
i + α + q + 1, 2i + λ + 1, 1

)
.

(2.7)

3. Linear Third-Order Equation

Let us begin with a simple model problem:

∂tu + ∂3xu = f(x, t), x ∈ I, t ∈ (0, T],

u(−1, t) = u(1, t) = ∂xu(1, t) = 0, t ∈ (0, T],

u(x, 0) = u0(x), x ∈ I.
(3.1)

The study of Jacobi Dual-Petrov Galerkin for this linear problem is the foundation for those
general third-order problems, such as the Korteweg-de Vries equation and problems arising
from water wave, plasma physics, and anharmonic lattices.

For the sake of simplicity, we only consider homogeneous boundary conditions in
(3.1). From a numerical point of view, problems with nonhomogeneous boundary conditions
can be easily handled by introducing a lifting function (cf. [42, 44]).

The dual-Petrov Galerkin method generates a sequence of approximate solutions that
satisfy a weak form of the original differential equations as tested against polynomials in a
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dual space. It is worthy to note here that third-order problems lack the symmetry of second-
and fourth-order ones, so we propose JDPG method, which is more reasonable and suitable
than the standard Galerkin one, see [42, 44]. By choosing appropriate base functions, the
system in JDPG method is sparse and can be implemented efficiently.

The semidiscrete JDPG method for (3.1) is to find uN(t) ∈WN such that

(∂tuN(t), υ)wα,β +
(
∂3xuN(t), υ

)

wα,β
=
(
f(t), υ

)
wα,β , 0 < t < T,

(uN(0), υ)wα,β = (u0, υ)wα,β ∀υ ∈ W∗
N ,

(3.2)

where wα,β(x) = (1 − x)α (1 + x)β and (u, v)wα,β =
∫
I uvw

α,βdx are the inner products in the
weighted space L2

wα,β(I). The norm in L2
wα,β(I) will be denoted by ‖ · ‖wα,β .

Since the main differential operator in (3.1) is not symmetric, it is quite natural to
employ a Jacobi dual-Petrov Galerkin (JDPG) method. To be more precise, we choose the
trial functions to satisfy the underlying boundary conditions of the differential equations,
and we choose the test functions to satisfy the dual boundary conditions (u(−1, t) = u(1, t) =
∂xu(−1, t) = 0), let {P (α,β)

k } be a sequence of Jacobi polynomials. We choose the test basis and
trial functions of expansion φk(x) and ψk(x), as given in Doha et al. [42], to be the form

φk(x) = ηk
[
P
(α,β)
k (x) + εkP

(α,β)
k+1 (x) + εkP

(α,β)
k+2 (x) + ζkP

(α,β)
k+3 (x)

]
,

ψk(x) = ηk
[
P
(α,β)
k (x) + ρkP

(α,β)
k+1 (x) + �kP

(α,β)
k+2 (x) + σkP

(α,β)
k+3 (x)

]
,

(3.3)

where ηk, εk, εk, ζk, ρk, �k, and σk are the unique constants such that φk(x) ∈WN and ψk(x) ∈
W∗

N , for all k = 0, 1, . . . ,N − 3, and are given by

ηk =

(
(k + α + 1)2

(
k + β + 1

)
Γ(k + 1)Γ(k + λ + 3)

2λ−3(1 + k)3((2k + λ + 1)2)
2(2k + λ + 3)Γ(k + α + 1)Γ

(
k + β + 1

)

)1/2

,

εk =
−(k + 1)(2k + λ + 2)

(
k − α + 2β + 1

)

(k + α + 1)
(
k + β + 1

)
(2k + λ + 4)

,

εk =
−(k + 1)2(2k + λ + 1)

(
k − β + 2α + 3

)

(k + α + 1)2
(
k + β + 1

)
(2k + λ + 5)

,

ζk =
(k + 1)3(2k + λ + 1)2

(k + α + 1)2
(
k + β + 1

)
(2k + λ + 4)2

,

ρk =
(k + 1)(2k + λ + 2)

(
k − β + 2α + 1

)

(k + α + 1)
(
k + β + 1

)
(2k + λ + 4)

,

�k =
−(k + 1)2(2k + λ + 1)

(
k − α + 2β + 3

)

(
k + β + 1

)
2(k + α + 1)(2k + λ + 5)

,

σk =
−(k + 1)3(2k + λ + 1)2(

k + β + 1
)
2(k + α + 1)(2k + λ + 4)2

.

(3.4)
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Therefore by dimension argument forN ≥ 3, we have

WN = span
{
φk(x) : k = 0, 1, 2, . . . ,N − 3

}
,

W∗
N = span

{
ψk(x) : k = 0, 1, 2, . . . ,N − 3

}
.

(3.5)

We use the Crank-Nicolson scheme for the time advancing. Let Δt be the step size
in time space and tk = kΔt (k = 0, 1, . . . , nT ; T = nTΔt). For simplicity, we denote υk(x) :=
υ(x, tk) by υk and

υkt =
υk+1 − υk

Δt
, υk+1/2 =

υk+1 + υk

2
. (3.6)

The fully discrete JDPG method for (3.1) is to find ukN ∈WN such that

(
ukNt

, υ
)

wα,β
+
(
∂3xu

k+1/2
N , υ

)

wα,β
=
(
fk+1/2, υ

)

wα,β
, 0 ≤ k ≤ nT − 1,

(
u0N, υ

)

wα,β
= (u0, υ)wα,β ∀υ ∈W∗

N.

(3.7)

We give a brief description for the implementation of the scheme (3.7). At each time level, we
need to solve the following equation: find uk+1N ∈WN ,

(
uk+1N − ukN

Δt
, υ

)

wα,β

+

(
∂3x(u

k+1
N + ukN)
2

, υ

)

wα,β

=
(
fk+1/2, υ

)

wα,β
, ∀υ ∈W∗

N, (3.8)

consequently

(
uk+1N , υ

)

wα,β
+
Δt
2

(
∂3xu

k+1
N , υ

)

wα,β
=
(
gk, υ

)

wα,β
, ∀υ ∈W∗

N. (3.9)

Now, we derive an algorithm for solving (3.9). For this purpose, let us denote

gkj =
(
gk, ψj(x)

)

wα,β
, ĝk =

(
gk0 , g

k
1 , . . . , g

k
N−3

)T
,

ukN(x) =
N−3∑

i=0

ûki φi(x), ûk =
[
ûk0 , û

k
1 , . . . , û

k
N−3

]T
,

aji =
(
φ
(3)
i (x), ψj(x)

)

wα,β
, dji =

(
φi(x), ψj(x)

)
wα,β ,

A =
(
aji

)
, D =

(
bji

)
, 0 ≤ j, i ≤N − 3.

(3.10)

Then scheme (3.9) takes the form:

N−3∑

i=0

[
(
φi(x), ψj(x)

)
wα,β +

Δt
2

(
φ
(3)
i (x), ψj(x)

)

wα,β

]
ûk+1i =

(
gk, ψj(x)

)

wα,β
, 0 ≤ j ≤N − 3.

(3.11)
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The scheme (3.11) with the aid of (3.10) can be written in a matrix form as follows:

(
D +

Δt
2
A

)
ûk+1 = ĝk. (3.12)

The nonzero elements of the matrices A and D, using the properties of Jacobi polynomials
and (2.6) are given explicitly as follows:

akk = 1,

akj = ηkηj
[
O3

(
j, k, α, β

)
hk +O3

(
j, k + 1, α, β

)
ρkhk+1

+O3
(
j, k + 2, α, β

)
�khk+2

+O3
(
j, k + 3, α, β

)
σkhk+3

]
, j = k + n, n ≥ 1,

(3.13)

dk+3,k = ηkηk+3ζkhk+3, dk,k+3 = ηkηk+3σkhk+3,

dk+2,k = ηkηk+2
[
εkhk+2 + ζkρk+2hk+3

]
,

dk+1,k = ηkηk+1
[
εkhk+1 + εkρk+1hk+2 + ζk�k+1hk+3

]
,

dkk = η2k
[
hk + εkρkhk+1 + εk�khk+2 + ζkσkhk+3

]
,

dk,k+1 = ηkηk+1
[
ρkhk+1 + εk+1�khk+2 + εk+1σkhk+3

]
,

dk,k+2 = ηkηk+2
[
�khk+2 + εk+2σkhk+3

]
,

(3.14)

where,

Oi

(
j, k, α, β

)
= Ci

(
j, k, α, β

)
+ εjCi

(
j + 1, k, α, β

)

+ εjCi

(
j + 2, k, α, β

)
+ ζjCi

(
j + 3, k, α, β

)
.

(3.15)

The condition number of a matrix measures the sensitivity of the solution of a system
of linear equations to errors in the data. It gives an indication of the accuracy of the results
from matrix inversion and the linear equation solution. We can define the 2-norm condition
number of a real n × n nonsingular matrix E as

Cond(E) = ‖E‖
∥∥∥E−1

∥∥∥, (3.16)

from which one can easily deduce that Cond(E) ≥ 1. This quantity gives an idea of the
distribution of the eigenvalues of E in the complex plane. When Cond(E) is large, we
generally expect scattered eigenvalues with considerable variation in magnitude. On the
other hand, when Cond(E) is close to 1, the module of the eigenvalues are gathered together
in a small interval.

However, at each time level, the Jacobi dual-Petrov-Galerkin approximations pre-
sented in this paper lead to systemswith small condition numbers and are numerically stable.
The system resulted from (3.11) is Eûk+1 = ĝk, where E = D + (Δt/2)A. In case of α = β = 0, E
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Table 1: Cond(E) for some different values of α, β.

N α β Δt = 10−1 Δt = 10−2

8 3.35 23.89

16 3.36 25.10

32 0 0 3.36 25.12

64 3.36 25.12

128 3.36 25.12

8 3.49 22.80

16 3.53 25.35

32 −1/4 −1/4 3.54 25.36

64 3.55 25.36

128 3.55 25.36

8 3.80 22.21

16 3.99 25.81

32 −1/2 −1/2 4.31 25.83

64 4.83 25.84

128 5.53 25.84

is a symmetric banded matrix with lower bandwidth 3 and upper bandwidth 3, and for other
values of α, β > −1, E is lower banded matrix with lower bandwidth 3, so we note that the
matrix E is well conditioned for all values of α, β. Hence the propagation of roundoff errors
should not be very significant. The numerical examples presented in Section 5 confirm that
our algorithms are numerically stable.

For the case of Δt = 10−1 in system (3.12), one can easily show that the condition
number of the matrix E is lower than the case of Δt = 10−2, for all values ofN and α, β > −1.
Table 1 illustrates the condition numbers of the matrix E in (3.12) for some different values of
α, β,Δt, and N.

A system of equations is considered to be well conditioned if a small change in the
coefficient matrix or a small change in the right-hand side results in a small change in the
solution vector. If the condition number is close to one, the matrix is well conditioned which
means its inverse can be computed with good accuracy. Regarding system (3.12), an algebraic
preconditioning yields a well-conditioned system, which is an improvement with respect to
the well-known condition number O(N6) of collocation methods for third-order differential
equations, and often exhibit unstable modes if the collocation points are not properly chosen
(see, eg., [38, 39]).

4. Application to the KDV Equation

In this section, as an example of application to nonlinear equations, consider the following
Korteweg-de Vries- (KdV-) type equation:

∂tu + ∂xG(u) + ∂3xu = 0, x ∈ I, t ∈ (0, T], (4.1)
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We study the initial- and boundary-value problem of this equation in the space-time domain
[−1, 1] × [0, T]with the following initial and boundary values:

u(−1, t) = q1(t),
u(1, t) = q2(t),

∂xu(1, t) = q3(t), t ∈ (0, T],

u(x, 0) = u0(x), x ∈ [−1, 1].

(4.2)

As pointed out in [42, 44], the nonhomogeneous boundary conditions (4.2) can be
converted into homogeneous boundary conditions. In fact, converting (4.1)–(4.2) into a
problem with homogeneous boundary conditions introduces nonconstant coefficients and
other terms into the equation which can be combined to the nonlinear term and the right-
hand side of the new problem. Therefore, we shall assume, without loss of generality, that

∂tu + ∂xF(u) + ∂3xu = f(x, t), x ∈ I, t ∈ (0, T],

u(−1, t) = u(1, t) = ∂xu(1, t) = 0, t ∈ (0, T],

u(x, 0) = u0(x), x ∈ I.
(4.3)

We formulate the scheme basically in the above JDPG with general indexes α, β > −1,
but the nonlinear term in the Jacobi collocation method with other two general indexes θ, ϑ >
−1.

The semidiscrete Jacobi dual-Petrov Galerkin and Jacobi collocation (JDPG-JC) scheme
for (4.3) is to find uN ∈WN such that

(∂tuN(t), υ)wα,β +
(
∂xI

P (θ,ϑ)

N F(uN(t)), υ
)

wα,β
+
(
∂3xuN(t), υ

)

wα,β
=
(
f(t), υ

)
wα,β , 0 < t < T,

uN(0) = IP
(θ,ϑ)

N u0 ∀υ ∈ W∗
N.

(4.4)

For a given Δt, we set tk = kΔt and let u1N be an appropriate approximation of u(·, t1),
for instance, we can compute u1N using one step of a semi-implicit first-order scheme. Then,
the second-order Crank-Nicholson-leap-frog scheme in time with the JDPG-JC approxima-
tion in space reads:

For k = 1, 2, . . . , nT − 1, find uk+1N ∈WN such that

1
2Δt

(
uk+1N − uk−1N , υ

)

wα,β
+
(
∂xI

P (θ,ϑ)

N F
(
ukN(t)

)
, υ

)

wα,β
+
1
2

(
∂3x

(
uk+1N + uk−1N

)
, υ

)

wα,β

=
(
fk+1/2, υ

)

wα,β
,

(4.5)
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consequently

(
uk+1N , υ

)

wα,β
+ Δt

(
∂3xu

k+1
N , υ

)

wα,β
=
(
gk, υ

)

wα,β
, ∀υ ∈W∗

N, (4.6)

where,

gk = 2Δtfk+1/2 + uk−1N −Δt∂3xu
k−1
N − 2Δt∂xIP

(θ,ϑ)

N F
(
ukN(t)

)
. (4.7)

It is clear that at each time step, (4.6) leads to

N−3∑

i=0

[(
φi(x), ψj(x)

)
wα,β + Δt

(
φ
(3)
i (x), ψj(x)

)

wα,β

]
ûk+1i =

(
gk, φj(x)

)

wα,β
, 0 ≤ j ≤N − 3. (4.8)

The scheme (4.8) is equivalent to the following matrix equation

(D + ΔtA)ûk+1 = ĝk, ûk =
[
ûk0 , û

k
1 , . . . , û

k
N−3

]T
, (4.9)

where the nonzero elements of the matrices A andD are given explicitly in (3.13) and (3.14),
respectively.

5. Numerical Results

We report in this section some numerical results obtained with the algorithms presented in
the previous sections. We compute the linear model problem by using the JDPG scheme
to check the accuracy. Then, we solve the KdV equation and the MKdV equation with
the nonperiodic boundary condition by the JDPG-JC scheme. We use single solitary wave
propagation and three solitary waves interaction to test the good accuracy of our method.

Example 5.1. Consider the linear model problem

∂tu + ∂3xu = f(x, t), x ∈ I, t ∈ (0, 1], (5.1)

with exact solution

u(x, t) = sin (ax)2 sin(bx + ct), −1 < x < 1, (5.2)

and the right term is

f(x, t) =
[(
c − b3

)
sin (ax)2 + 6a2b cos(2ax)

]
cos(bx + c)

− a
(
4a2 + 3b2

)
sin(2ax) sin(bx + ct).

(5.3)
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Table 2: Maximum pointwise error of u − uN using JDPG method for α = β = 0.

N α β
JDPG method

Δt = 10−1 Δt = 10−2 Δt = 10−3 Ratio

16 6.43 · 10−1 6.30 · 10−1 6.25 · 10−1
24 0 0 7.63 · 10−3 2.84 · 10−3 2.81 · 10−3 222.42

32 5.79 · 10−3 4.31 · 10−5 9.41 · 10−7 2986.18

1
0.5

0
−0.5

−1
−1

−0.5
0

0.5
0

0.5

1

1

x

t

u
N
(x
,t
)

Figure 1: Space-time graph of the spectral solution uN(x) up to t = 1s with Δt = 10−3 and N = 48 for
Example 5.1.

We extract the required initial and boundary functions from the exact solution. To see
the accuracy of proposed JDPG method, we let Δt decrease from 10−1 to 10−3 andN increase
from 16 to 32. The parameters a = π (to meet the boundary conditions) and b = c = 12.
The maximum pointwise errors of u − uN , the proposed JDPG method, are given for various
choices of α, β, Δt, and N in Tables 2, 3, and 4. We should note that for large values of N,
the Legendre polynomial case (α = β = 0) is always more accurate than the other choices of
α and β. The graph of space-time of the approximate solution up to t = 1, and Δt = 10−3, α =
β = −1/2, andN = 48 in Figure 1.

The seventh column in Tables 2, 3, and 4 represents the ratio between the errors in
two consecutive calculations in the case of Δt = 10−3, and it can be seen that the spatial error
decays rapidly with a rate that is apparently increasing.

Example 5.2. In this example (see [21]), we consider the third-order nonlinear KdV equation,
represented by

∂tu + 6u∂xu + ∂3xu = 0, x ∈ [30, 80], t ∈ (0, T], (5.4)

with a single solitary wave solution. The initial condition is given by

u(x, 0) =
r

2
sech2

(√
r

2
x − 10

)
, r = 0.14, (5.5)
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Table 3: Maximum pointwise error of u − uN using JDPG method for α = β = 0.5.

N α β
JDPG method

Δt = 10−1 Δt = 10−2 Δt = 10−3 Ratio
16 5.78 · 10−1 5.75 · 10−1 5.62 · 10−1
24 1/2 1/2 6.52 · 10−3 5.70 · 10−3 5.59 · 10−3 100.537
32 5.79 · 10−3 4.27 · 10−5 1.52 · 10−6 3677.63

Table 4: Maximum pointwise error of u − uN using JDPG method for α = β = 1.

N α β
JDPG method

Δt = 10−1 Δt = 10−2 Δt = 10−3 Ratio
16 9.95 · 10−1 9.89 · 10−1 9.63 · 10−1
24 1 1 2.13 · 10−2 1.57 · 10−2 8.31 · 10−3 115.884
32 5.79 · 10−3 4.15 · 10−5 8.21 · 10−6 1012.18

Table 5: L2
wα,β and L∞

wα,β errors using JDPG-JC method forN = 8, 16, 32, and 48 with Δt = 10−1 and t = 1.

N α β θ ϑ L2
wα,β -error L∞

wα,β -error α β θ ϑ L2
wα,β -error L∞

wα,β -error
8 2.00 · 10−2 1.05 · 10−2 1.74 · 10−2 5.80 · 10−3
16 −1/2 −1/2 0 0 2.36 · 10−3 7.06 · 10−4 0 0 −1/2 −1/2 1.79 · 10−3 2.07 · 10−4
32 2.16 · 10−5 2.40 · 10−7 1.85 · 10−5 1.84 · 10−7
48 4.67 · 10−6 2.28 · 10−6 2.83 · 10−6 5.40 · 10−7
8 1.74 · 10−2 5.80 · 10−3 1.53 · 10−2 3.56 · 10−3
16 0 0 1/2 1/2 1.80 · 10−3 2.08 · 10−4 1/2 1/2 −1/2 −1/2 1.38 · 10−3 3.34 · 10−5
32 1.85 · 10−5 1.79 · 10−7 1.61 · 10−5 8.19 · 10−8
48 2.54 · 10−6 1.42 · 10−7 2.07 · 10−6 7.03 · 10−8

and the exact solution is

u(x, t) =
r

2
sech2

(√
r

2
(x − rt) − 10

)
, r = 0.14. (5.6)

We extract the boundary functions from the exact solution. The L∞
wα,β , L2

wα,β , and H1
wα,β

and errors are obtained in Tables 5 and 6 for various choices of t, Δt, α, β, θ, ϑ, andN.
The graph of analytical and spectral solutions for t = 1, Δt = 10−1, α = β = 0, θ = ϑ =

1/4, and N = 48 is given in Figure 2. We also draw the absolute error graph for t = 1, Δt =
10−1, α = β = 0, θ = ϑ = 1/4, andN = 48 and space-time graph of the approximate solution
up to t = 4, andΔt = 10−3, α = β = 0, θ = ϑ = 1/4, andN = 48 in Figures 3 and 4, respectively.

Example 5.3. Here, we compute by the JDPG-JC method the interaction of three solitons of
the KdV equation

∂tu + u ∂xu + ∂3xu = 0. (5.7)

The initial condition is given by

u(x, t) =
3∑

i=1

12κ2i sech
2
(
κi
(
x − 4κ2i t − τi

))
, −90 < x < 90, t = 0. (5.8)
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Table 6: L2
wα,β , L∞

wα,β , andH1
wα,β errors using JDPG-JC method for Example 5.2.

N α β θ ϑ
t = 0.5 with Δt = 5 × 10−3 t = 1 with Δt = 1 × 10−2

L2
wα,β -error L∞

wα,β -error H1
wα,β -error L2

wα,β -error L∞
wα,β -error H1

wα,β -error

8 1.52 · 10−2 3.36 · 10−3 1.64 · 10−2 1.52 · 10−2 3.58 · 10−3 1.64 · 10−2
16 −1/2 −1/2 1/2 1/2 1.29 · 10−3 4.47 · 10−6 1.89 · 10−3 1.35 · 10−3 3.16 · 10−5 1.85 · 10−3
32 1.45 · 10−5 6.53 · 10−8 2.50 · 10−5 1.62 · 10−5 1.97 · 10−7 2.75 · 10−5

30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

u
(x
)

x

Spectral solution
Exact solution

Figure 2: Analytical and spectral solutions in t = 1s, Δt = 10−1, andN = 48 for Example 5.2.

30 40 50 60 70 80
0

7 × 10−6

6 × 10−6

5 × 10−6

4 × 10−6

3 × 10−6

2 × 10−6

1 × 10−6

Figure 3: Absolute value of u(x) − uN(x) at t = 1s, Δt = 10−1, andN = 48 for Example 5.2.

The parameters are taken as follows:

κ1 = 0.3, κ2 = 0.25, κ3 = 0.2,

τ1 = −60, τ2 = −44, τ3 = −26. (5.9)

The boundary functions can be extracted from the exact solution.
The L∞

wα,β , L2
wα,β , andH1

wα,β and errors are obtained in Table 7 at t = 1 for Δt = 0.1, N =
40 with various choices of α, β, θ, and ϑ.
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Table 7: L2
wα,β , L∞

wα,β , andH1
wα,β errors using JDPG-JC method for t = 1, Δt = 0.1, andN = 40.

N α β θ ϑ L2
wα,β -error L∞

wα,β -error H1
wα,β -error

0 0 1/2 1/2 5.95 · 10−2 4.76 · 10−3 7.37 · 10−2
40 0 0 1 1 5.95 · 10−2 4.73 · 10−3 7.34 · 10−2

1/2 1/2 −1/2 −1/2 5.23 · 10−2 3.60 · 10−3 6.15 · 10−2
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0.02
0

40

60

80 0

1
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3

t

x

u
N
(x
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Figure 4: Space-time graph of the spectral solution uN(x) up to t = 4s with Δt = 10−3, α = β = 0, θ = ϑ =
1/4 andN = 48 for Example 5.2.

6. Conclusion

In this paper, we have presented some efficient direct solvers for the linear third-order
differential equations by using Jacobi dual Petrov-Galerkin approximation with general
parameters α, β > −1. The modified Galerkin method is suitable for the unbalanced third-
order differential equations. Moreover, we developed a new approach implementing Jacobi
dual-Petrov Galerkin-Jacobi collocation method in space combined with Crank-Nicholson-
leap-frog method in time such that at each time step only a sparse banded linear algebraic
system needs to be solved. The numerical results given in the previous section demonstrate
the good accuracy of these algorithms.
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