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We study local and global bifurcations of nonconstant solutions of the Ginzburg-Landau equation
from the families of constant ones. As the topological tools we use the equivariant Conley index
and the degree for equivariant gradient maps.

1. Introduction

Let us consider the following Ginzburg-Landau problem:

−(∇ − iA(x))2u(x) = λ
(
1 − |u(x)|2

)
u(x) inΩ,

u = 0 or
∂u

∂ν
on ∂Ω,

(1.1)

where λ ∈ R, Ω ⊂ R
N (N = 2, 3) is an open, bounded domain with smooth boundary ∂Ω,

ν(x) is an outward normal to Ω at x ∈ ∂Ω, A ∈ C0(clΩ,RN) and u ∈ H1(Ω,C).
There is a vast literature on this problem. Bifurcations of solutions of the Ginzburg-

Landau-type problems have been considered by many authors, see, for instance, [1–10]
and references therein. Usually the authors study local bifurcations of nonzero solutions
of problem (1.1) with Dirichlet boundary condition by using the Crandall-Rabinowitz
bifurcation theorem, the Krasnosiel’ski bifurcation theorem for potential operators, the
Lyapunov-Schmidt reduction, the center manifold theorem, the attractor bifurcation theorem,
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or the implicit function theorem. On the other hand, the global bifurcations of solutions of
the one-dimensional Ginzburg-Landau model have been studied in [3]. Using the Brouwer
degree the authors have proved the existence of a closed connected set of asymmetric
solutions which connect the global curve of symmetric solutions to an asymmetric normal
state solution.

Our goal is to study the existence of nonconstant solutions of problem (1.1) with
Neumann boundary condition. We apply the equivariant bifurcation theory technique. First
of all, we study families of constant solutions of problem (1.1) and describe them assuming
that the norm of magnetic field A is constant, that is, ‖A(x)‖ = const for all x ∈ clΩ, where
‖ · ‖ is the usual Euclidean norm. We distinguish two cases ‖A‖ = 0 and ‖A‖ = const/= 0. Next
we find necessary and sufficient conditions for the existence of local and global bifurcation
points of nonconstant solutions from these families. Problem (1.1) is S1-symmetric, that is, if
u ∈ H1(Ω,C) is a solution of this problem, then eiθu is. Therefore, we consider solutions of
(1.1) as critical orbits of S1-invariant functionals. The basic idea is to apply the S1-equivariant
Conley index, see [11, 12], and the degree for S1-equivariant gradient maps, see [13–18], to
obtain a local and global bifurcation of critical S1-orbits of these functionals. The choice of
these invariants seems to be the best adapted to our theory. Since the Leray-Schauder degree
is not applicable (see the remarks under Corollary 4.2) we have chosen the invariants which
are suitable for the study of critical orbits of invariant functionals.

After this introduction our paper is organized as follows.
In Section 2 we have summarized without proofs the relevant abstract material on the

equivariant bifurcation theory. In the next sections we have applied these abstract results to
the study of local and global bifurcation of nonconstant solutions of problem (1.1). Since the
Ginzburg-Landau equation is S1-symmetric, we consider in this section only S1-symmetric
variational bifurcation problems. The notion of a local and global bifurcation of critical
S1-orbits of families of S1-invariant C1-functionals has been introduced in Definition 2.1.
The necessary condition for the existence of bifurcation points of critical S1-orbits has been
formulated in Lemma 2.3. The important point to note here is the form of the functional (2.2).
Namely, we consider S1-invariant functionals whose gradients are of the form of compact
perturbation of the identity. In Theorem 2.4 we have formulated sufficient conditions for
the existence of global bifurcations of S1-orbits of critical points of S1-invariant functionals.
Sufficient condition for the existence of local bifurcation of critical S1-orbits has been
presented in Theorem 2.6. In Remarks 2.5 and 2.7, we have reformulated assumptions of
Theorems 2.4 and 2.6, respectively, to make them easier to understand.

In Section 3 we study bifurcations of nonconstant solutions of the Ginzburg-Landau
bifurcating from the set of constant solutions. In the first part of this section we show that the
functional (F) corresponding to the Ginzburg-Landau equation satisfies all the assumptions
of the functional considered in Section 2. We consider two cases of the Ginzburg-Landau
equation.

In Section 3.1 we assume that the magnetic field A vanishes. In Lemma 3.2 we
have described the set of constant solutions of the Ginzburg-Landau system (3.7), which
consists of two families. Moreover, we have proved the necessary condition for the
existence of bifurcation of nonconstant solutions from these families. The sets of local and
global bifurcation points of nonconstant solutions of system (3.7) have been described in
Theorem 3.3.

In Section 3.2 we assume that the norm of themagnetic fieldA is constant and different
from 0. Without loss of generality we assume that this norm is equal to 1. The structure
of this subsection is similar to that of Section 3.1. In Lemma 3.4 we have described the set
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of constant solutions of system (3.2), which consists of three families. Moreover, we have
proved sufficient conditions for the existence of local and global bifurcations of nonconstant
solutions of system (3.2) from these families. The necessary conditions for the existence of
local and global bifurcation of nonconstant solutions of system (3.2) from the families of
constant solutions have been proved in Theorem 3.5.

In Section 4 we have shown that we cannot use the Leray-Schauder degree and
the famous Rabinowitz alternative to study solutions of problem (1.1). Moreover, we have
formulated an open question concerning bifurcations of nonconstant solutions of problem
(1.1). This question is at present far from being solved. Finally, we have shown that for
domains Ω with sufficiently small volume the first eigenvalue of the magnetic Laplace
operator −ΔA equals 1. This property has allowed us to simplify the formulation of
Theorem 3.5, see Corollary 4.2.

In the appendix we have recalled for the convenience of the reader some material on
equivariant algebraic topology thus making our presentation self-contained.

2. Bifurcations of Critical Orbits

In this section we summarize without proofs the relevant material on the equivariant
bifurcation theory. In the next section we will apply these abstract results to the study of
nonconstant solutions of the Ginzburg-Landau equation.

Throughout this paper S1 stands for the group of complex numbers of module 1. We
identify this group with the group of special orthogonal two-dimensional matrices SO(2) as
follows eiθ →

[
cos θ − sin θ
sin θ cos θ

]
. Consider a real Hilbert space (H, 〈·, ·〉

H
) which is an orthogonal

S1-representation. The S1-action on the space H×R we define by g(u, λ) = (gu, λ). For u0 ∈ H

define the orbit of u0 by S1(u0) = {gu0 : g ∈ S1} and the isotropy group of u0 by S1
u0

=

{g ∈ S1 : gu0 = u0}. Assume that S1
u0

=
{

S1 ifu0=0
{1} ifu0 /= 0 . Hence, S1(u0) is a manifold such that

dimS1(u0) =
{

0 ifu0=0
1 ifu0 /= 0 . A functional Φ : H × R → R is called S1-invariant provided that

Φ(gu, λ) = Φ(u, λ) for every g ∈ S1 and u ∈ H. The space of S1-invariant functionals of
the class Ck will be denoted by Ck

S1(H × R,R). An operator Ψ : H × R → H is said to be
S1-equivariant if Ψ(gu, λ) = gΨ(u, λ) for every g ∈ S1 and u ∈ H. It is a known fact that if
Φ ∈ Ck

S1(H×R,R) then ∇uΦ ∈ Ck−1
S1 (H×R,H), where ∇uΦ is the gradient ofΦwith respect to

the first coordinate. Note that if ∇uΦ(u0, λ0) = 0, then the gradient ∇uΦ vanishes on the orbit
S1(u0) × {λ0}.

Fix Φ ∈ C1
S1(H ×R,R). It is of our interest to study solutions of the following equation:

∇uΦ(u, λ) = 0. (2.1)

We are going to apply the bifurcation technique for S1-orbits of critical points of S1-invariant
functionals. More precisely, we will apply the S1-equivariant Conley index [11, 12] and the
degree for S1-equivariant gradient maps [16, 17] to prove a local and a global bifurcation of
critical S1-orbits of problem (2.1).

Fix k ∈ N and {λ11, λ21, . . . , λ1k, λ2k} ⊂ R ∪ {±∞} such that λ1i < λ2i for i = 1, . . . , k. For
i = 1, . . . , k define a connected family Fi = {S1(uλ) × {λ} : λ ∈ (λ1i, λ2i)}, where uλ = ζi(λ)
and ζi ∈ C0((λ1i, λ2i),H). Finally define F = F1 ∪ · · · ∪ Fk and assume that F ⊂ (∇uΦ)−1(0).
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The set F is called the set of trivial solutions of problem (2.1). Define N = {(u, λ) ∈ H × R :
∇uΦ(u, λ) = 0 and (u, λ) /∈ F}. Fix (uλ0 , λ0) ∈ F and denote by C(uλ0 , λ0) ⊂ H × R, a connected
component of cl(N) such that (uλ0 , λ0) ∈ C(uλ0 , λ0).

Definition 2.1. A point (uλ0 , λ0) ∈ F is said to be a local bifurcation point of solutions of
(2.1), if (uλ0 , λ0) ∈ cl(N). The set of local bifurcation points will be denoted by BIF. A
point (uλ0 , λ0) ∈ F is said to be a global bifurcation point of solutions of (2.1), if either
C(uλ0 , λ0)∩(F\{(uλ0 , λ0)})/= ∅ or C(uλ0 , λ0) is unbounded. The set of global bifurcation points
will be denoted by GLOB.

In other words a point (uλ0 , λ0) ∈ F is a bifurcation point of nontrivial solutions of (2.1)
provided that it is an accumulation point of nontrivial solutions of this equation. A bifurcation
point (uλ0 , λ0) ∈ F is a global bifurcation point of nontrivial solutions of (2.1) provided that
a connected set C(uλ0 , λ0) of nontrivial solutions of (2.1) bifurcating from this point satisfies
the Rabinowitz-type alternative, that is, either C(uλ0 , λ0) is unbounded or meets the set F at
least at two times.

Remark 2.2. Directly from the above definition it follows that GLOB ⊂ BIF. Moreover, if
(u0, λ0) ∈ BIF ((u0, λ0) ∈ GLOB), then (gu0, λ0) ∈ BIF ((gu0, λ0) ∈ GLOB) for every g ∈ S1.

From now onwe assume that the functionalΦ ∈ C2
S1(H×R,R) is of the following form:

Φ(u, λ) =
1
2
〈u, u〉

H
+ η(u, λ), (2.2)

where ∇uη : H × R → H is a compact operator.
The natural question is the following: what is the necessary condition for the existence

of bifurcation points of solutions of (2.1)?
In the lemma below we answer the above-stated question.

Lemma 2.3. If (uλ0 , λ0) ∈ BIF, then dim ker ∇2
uΦ(uλ0 , λ0) > dimS1(uλ0).

Fix i0 ∈ {1, . . . , k} and (uλ0 , λ0) ∈ Fi0 such that there is ε > 0 satisfying the following
conditions:

(1) [λ0 − ε, λ0 + ε] ⊂ (λ1i0 , λ2i0),

(2) if λ ∈ [λ0 − ε, λ0 + ε] and dim ker ∇2
uΦ(uλ, λ) > dim S1(uλ), then λ = λ0.

Since S1(uλ0±ε) is a nondegenerate critical S
1-orbit of the functionalΦ(·, λ0±ε), there is an open

bounded S1-invariant subset Ω ⊂ H satisfying (∇uΦ(·, λ0 ± ε))−1 ∩ clΩ = S1(uλ0±ε). Under
these assumptions one can compute the index of an isolated critical orbit S1(uλ0±ε) in terms
of the degree for S1-equivariant gradient maps, see [13, 15–17], that is, ∇S1 -deg(∇uΦ(·, λ0 ±
ε),Ω) ∈ U(S1), whereU(S1) is the Euler ring of the group S1, see [19, 20]. For the convenience
of the reader, one has reminded the definition of the Euler ring of the groups S1 in appendix.

It is a known fact that change of any reasonable degree along the set of trivial solutions
implies a global bifurcation of zeroes. In the theorem belowwe formulate sufficient condition
for the existence of a global bifurcation of critical S1-orbits of problem (2.1). The proof of the
following theorem is standard and therefore we omit it.

Theorem 2.4. If∇S1-deg(∇uΦ(·, λ0+ε),Ω)/=∇S1-deg(∇uΦ(·, λ0−ε),Ω), then (uλ0 , λ0) ∈ GLOB.
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Finite-dimensional equivariant Conley index has been considered in [12]. Infinite-
dimensional generalisation of equivariant Conley index one can find in [11]. In this paper one
considers the S1-equivariant Conley index CIS1(·, λ) defined by a flow induces by −∇uΦ(·, λ).

Assume additionally that S1
uλ

= {e} for every (uλ, λ) ∈ Fi0 . Since S1(uλ0±ε) is isolated
in ∇uΦ(·, λ0 ± ε)−1(0), it is an isolated invariant set in the sense of the S1-equivariant Conley
index theory.

It is a known fact, see Lemma 5.7 of [16], that CIS1(S1(uλ0±ε), λ0 ± ε) is an S1-CW-
complex which consists of a base point and one S1-cell of dimension m− (∇2

uΦ(uλ0±ε, λ0 ± ε))
and of isotropy group {e}, where m− (·) is the Morse index.

Remark 2.5. Note that

χS1CIS1

(
S1(uλ0±ε), λ0 ± ε

)
= ∇S1 -deg(∇uΦ(·, λ0 ± ε),Ω)

= (−1)m
− (∇2

uΦ(uλ0±ε,λ0±ε))χS1

(
S1/{e}+

)
∈ U
(
S1
)
,

(2.3)

where χS1 is the S1-equivariant Euler characteristic, see [19, 20]. The assumption of the
above theorem is a little bit mysterious. Taking into account the above, it can be equivalently
formulated in the following way: m− (∇2

uΦ(uλ0+ε, λ0 +ε))+m
− (∇2

uΦ(uλ0−ε, λ0 −ε)) is odd. We
underline that since ∇uΦ is of the form of compact perturbation of the identity, these Morse
indices are finite.

A finite-dimensional version of the following theorem has been proved in [12]. We can
literally repeat this proof replacing the finite-dimensional S1-equivariant Conley index by its
infinite-dimensional generalization.

Theorem 2.6. If CIS1(S1(uλ0+ε), λ0 + ε)/=CIS1(S1(uλ0−ε), λ0 − ε), then (uλ0 , λ0) ∈ BIF.

Remark 2.7. Similarly as in the case of Theorem 2.4 one can reformulate the assumption of the
above theorem. Equivalent but easier to understand formulation is the following:

m−
(
∇2

uΦ(uλ0+ε, λ0 + ε)
)
/=m−

(
∇2

uΦ(uλ0−ε, λ0 − ε)
)
. (2.4)

3. Results

In this section we prove the main results of our paper. Namely, we study bifurcations of
nonconstant solutions of the following Ginzburg-Landau equation:

−(∇ − iA(x))2u(x) = λ
(
1 − |u(x)|2

)
u(x), in Ω,

∂u

∂ν
= 0, on ∂Ω,

(3.1)

where λ ∈ R,Ω ⊂ R
N(N = 2, 3) is an open, bounded domain with smooth boundary ∂Ω, ν(x)

is an outward normal to Ω at x ∈ ∂Ω, A ∈ C0(clΩ,RN) and u ∈ H1(Ω,C).
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After making in problem (3.1) a linear transformation u = v + iw for v,w ∈ H1(Ω,R)
we obtain an equivalent system of real equations

−Δv(x) − 2〈A(x),∇w(x)〉 + ‖A(x)‖2v(x) = λ
(
1 − v(x)2 −w(x)2

)
v(x), in Ω,

−Δw(x) + 2〈A(x),∇v(x)〉 + ‖A(x)‖2w(x) = λ
(
1 − v(x)2 −w(x)2

)
w(x), in Ω,

∂v

∂ν
=

∂w

∂ν
= 0, on ∂Ω.

(3.2)

We are going to consider solutions of system (3.2) as critical points of S1-invariant
functional of the class C2.

Define scalar products 〈·, ·〉H1
A(Ω,C), 〈·, ·〉H1(Ω,C) : H

1(Ω,C) ⊕H1(Ω,C) → C as follows:

〈u1, u2〉H1
A(Ω,C) =

∫

Ω

(
∇u1(x) − iA(x)u1(x),∇u2(x) − iA(x)u2(x)

)
+ u1(x)u2(x)dx,

〈u1, u2〉H1(Ω,C) =
∫

Ω

(
∇u1(x),∇u2(x)

)
+ u1(x)u2(x)dx.

(3.3)

We underline that norms ‖ · ‖H1
A(Ω,C), ‖ · ‖H1(Ω,C) are equivalent, see [10, 21]. Now define scalar

products 〈·, ·〉
HA

, 〈·, ·〉
H
: H ⊕ H → R by

〈(v1, w1), (v2, w2)〉HA
= �〈v1 + iw1, v2 + iw2〉H1

A(Ω,C),

〈(v1, w1), (v2, w2)〉H
= �〈v1 + iw1, v2 + iw2〉H1(Ω,C),

(3.4)

where H = H1(Ω,R) ⊕ H1(Ω,R). For simplicity of notation put 0 = (0, 0) ∈ H. For
v,w ∈ H1(Ω,R)) put u = v + iw ∈ H1(Ω,C). Since ‖u‖H1(Ω,C) = ‖(v,w)‖

H
and ‖u‖H1

A(Ω,C) =
‖(v,w)‖

HA
, norms ‖ · ‖

HA
, ‖ · ‖

H
are equivalent. From now on we consider H as a Hilbert space

with the scalar product 〈·, ·〉
HA

. It is easy to check that H is an orthogonal S1-representation
with S1-action given by gu = (gut)t, where ut is the transposition of u. Define a map
F ∈ C∞(R2 × R,R) by F((v,w), λ) = λ((1/2)(v2 + w2) − (1/4)(v2 +w2)2) and a functional
Φ ∈ C2(H × R,R) as follows:

Φ((v,w), λ) =
1
2
‖(v,w)‖2

HA
−
∫

Ω
F((v(x), w(x)), λ) +

1
2

(
v(x)2 +w(x)2

)
dx

=
1
2

∫

Ω
|∇z(x) − iA(x)z(x)|2dx −

∫

Ω
λ

(
1
2
|z|2 − 1

4
|z|4
)
dx

=
1
2
‖z‖2

H1
A(Ω,C) −

∫

Ω

λ + 1
2

|z|2 − λ

4
|z|4dx,

(F)

where z = v + iw.

Remark 3.1. It is easy to verify that Φ ∈ C2
S1(H × R,R). Indeed, this is a standard fact that the

functional Φ is of the class C2. What is left is to show that the functional Φ is S1-invariant.
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For (v,w) ∈ H put z = v + iw and note that Φ(eiθ(v,w), λ) = (1/2)‖eiθz‖2H1
A(Ω,C) −

∫
Ω((λ +

1)/2)|eiθz|2 − (λ/4)|eiθz|4dx = Φ((v,w), λ). Moreover, it is clear that for u = (v,w) we have
Φ(u, λ) = (1/2)‖u‖2

HA
− ((λ + 1)/2)〈Lu, u〉

HA
− η(u, λ), where

(1) L : H → H is a linear, compact, bounded, self-adjoint, positively definite, and S1-
equivariant operator,

(2) η : H × R → R is a S1-invariant functional of the class C2 such that

(a) ∇uη : H × R → H is a compact, S1-equivariant operator,

(b) ∇uη(0, λ) = 0,

(c) ∇2
uη(u, λ) = o(‖u‖

H
) at u = 0, uniformly on bounded λ-intervals.

It is easy to verify that the gradient ∇uΦ : H × R → H is an S1-equivariant operator of the
class C1 of the form ∇uΦ(u, λ) = u − (λ + 1)Lu − ∇uη(u, λ). Fix u0 = (v0, w0) ∈ H, λ′ ∈ R and
note that the study of ker∇2

uΦ(u0, λ
′) is equivalent to the study of solutions of the following

system:

LA

⎡
⎣φ1

φ2

⎤
⎦ = λ′

⎡
⎣1 − 3v2

0 −w2
0 −2v0w0

−2v0w0 1 − v2
0 − 3w2

0

⎤
⎦
⎡
⎣φ1

φ2

⎤
⎦, (3.5)

where LA

[
φ1
φ2

]
=
[
−Δφ1(x)−2〈A(x),∇φ2(x)〉+‖A(x)‖2φ1

−Δφ2(x)+2〈A(x),∇φ1(x)〉+‖A(x)‖2φ2

]
.

It is a known fact that S1-orbits of solutions of system (3.2) are in one to one
correspondence with the critical S1-orbits of the functional Φ, that is, with the S1-orbits of
solutions of the following equation:

∇uΦ(u, λ) = 0. (3.6)

From now on we study bifurcations of solutions of the above equation. For simplicity of
notations we write ΔA instead of (∇ − iA(x))2. Let σ(−ΔA) = {0 � λ1 < λ2 < · · · < λk < · · · }
denote the set of eigenvalues of the following eigenvalue problem {−ΔAφ = λφ inΩ; ∂φ/∂v =
0 on ∂Ω. It is known that λ1 = 0 if and only if A = 0, see [8]. It is clear that σ(−ΔA) = σ(LA).

3.1. Case ‖A‖ = 0

In this sectionwe study bifurcations of solutions of the simplifiedGinzburg-Landau equation,
that is, we assume that the magnetic field A vanishes. Such an equation has been considered
in [22]. To underline that A = θ we write Δθ instead ΔA. Note that Δθφ = Δφ1 + iΔφ2 for φ =
φ1 + iφ2 ∈ H1(Ω,C), where Δ is the usual Laplace operator on H1(Ω,R). Note that σ(−Δθ) =
σ(−Δ) (with Neumann boundary data). If λk ∈ σ(−Δ), then V−Δ(λk) denotes the eigenspace
of −Δ corresponding to λk. Finally put σodd(−Δ) = {λk ∈ σ(−Δ) : dim V−Δ(λk) is odd}.
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Since A = θ, system (3.2) has the following form

−Δv = λ
(
1 − v2 −w2

)
v, inΩ,

−Δw = λ
(
1 − v2 −w2

)
w, inΩ,

∂v

∂ν
=

∂w

∂ν
= 0, on ∂Ω.

(3.7)

The simplest solutions of system (3.7) are constant solutions. We call them trivial and
denoteF. The set of trivial solutions consists of two familiesF1 = {0}×R andF2 = S1((1, 0))×
R. In the lemma below we have described the set of trivial solutions of system (3.7) and have
proved the necessary conditions for the existence of bifurcation points of solutions of this
problem.

Lemma 3.2. Under the above assumptions,

(∇uΦ)−1(0) ∩ {((v,w), λ) ∈ H × R : v = const andw = const} = F = F1 ∪ F2, (3.8)

where F1 = {0} × R and F2 = S1((1, 0)) × R. Moreover,

(1) if (0, λ′) ∈ BIF, then λ′ ∈ σ(−Δ) and ker ∇2
uΦ(0, λ′) = V−Δ(λ′) ⊕ V−Δ(λ′),

(2) if ((1, 0), λ′) ∈ BIF, then −2λ′ ∈ σ(−Δ).

Proof. It is easy to check that the set of constant solutions of problem (3.7) is equal F.

(1) By Lemma 2.3, if (0, λ′) ∈ BIF, then dim ker ∇2
uΦ(0, λ′) > 0. Putting in (3.5)

((v0, w0), λ0) = (0, λ′)we obtain
{

−Δφ1 = λ′φ1

−Δφ2 = λ′φ2
, which completes the proof.

(2) By Lemma 2.3, if ((1, 0), λ′) ∈ BIF, then dim ker ∇2
uΦ((1, 0), λ′) > 1. Putting in

(3.5) ((v0, w0), λ0) = ((1, 0), λ′)we obtain
{

−Δφ1 = −2λ′φ1
−Δφ2 = 0 , which completes the proof.

In the theorem below we study local and global bifurcations of nonconstant solutions
of system (3.7) from the set of constant solutions. The idea of proof is natural. We compute
the S1-equivariant Conley index and the degree for S1-equivariant gradient maps along the
families of constant solutions and determine levels at which these invariants change.

Theorem 3.3. Under the above assumptions,

(a)

BIF = (BIF ∩ F1) ∪ (BIF ∩ F2)

=
⋃

λk∈σ(−Δ)

{(0, λk) ∈ H × R} ∪
⋃

λk∈σ(−Δ)

{
S1((1, 0)) × {−λk/2} ⊂ H × R

}
,

(3.9)
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(b)

GLOB = (GLOB ∩ F1) ∪ (GLOB ∩ F2)

=
⋃

λk∈σ(−Δ)

{(0, λk) ∈ H × R} ∪
⋃

λk∈σodd(−Δ)

{
S1((1, 0)) × {−λk/2} ⊂ H × R

}
.

(3.10)

Moreover, if λk0 > 0, then the continuum C(0, λk0) is either unbounded or C(0, λk0) ∩ (H ×
{0})/= ∅.

Proof. Fix an arbitrary λk0 ∈ σ(−Δ). By Lemma 3.2 we have ker ∇2
uΦ(0, λk0) = V−Δ(λk0) ⊕

V−Δ(λk0). It is simple matter to check that ker ∇2
uΦ(0, λk0) is a nontrivial even-dimensional

orthogonal S1-representation. Combining Theorems 4.5 and 4.7 of [20] we obtain (0, λk0) ∈
GLOB. If λk0 > 0 and C(0, λk0)∩H×{0} = ∅, then applying Theorem 4.7 of [20]we obtain that
the continuum C(0, λk0) ⊂ H × (0,+∞) is unbounded.

Choose ε > 0 such that

[
−
λk0 − ε

2
,−

λk0 + ε

2

]
∩
{
−λk
2

: λk ∈ σ(−Δ)
}

=
{
−
λk0
2

}
. (3.11)

To shorten notation set λ±
k0

= −((λk0 ± ε)/2), λ̂k0 = −(λk0/2), u0 = (1, 0), T±ε =
∇2

uΦ(u0, λ
±
k0
) and define Vk0 = V−Δ(λ1) ⊕ · · · ⊕ V−Δ(λk0),Vk0−1 = V−Δ(λ1) ⊕ · · · ⊕ V−Δ(λk0−1).

It is understood that V0 = {0}.
We claim that

(c1) dim ker T±ε = 1,

(c2) T+ε is negatively defined on Vk0 ⊕ {0} ⊂ H,

(c3) T−ε is negatively defined on Vk0−1 ⊕ {0} ⊂ H.

Indeed, like in the proof of Lemma 3.2 the study of ker T±ε is equivalent to the study
of solutions of the following system:

−Δφ1 = (λk0 ± ε)φ1,

−Δφ2 = 0.
(3.12)

From condition (3.11) it follows that the linear space of solutions of (3.12) is spanned
by (φ1, φ2) = (0, 1). Hence, dim ker T±ε = 1. Examining (3.12) we obtain that

(1) the operator T+ε is negatively defined on the space Vk0 ⊕ {0} ⊂ H,

(2) the operator T−ε is negatively defined on the space Vk0−1 ⊕ {0} ⊂ H,

which completes the proof of (c1), (c2), and (c3).
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Since dim ker T±ε = 1, there is an open, bounded, and S1-invariant subset Ω ⊂ H such
that ∇uΦ(·, λ±

k0
)−1(0) ∩ Ω = S1((1, 0)). Moreover, since the isotropy group of every (v0, w0) ∈

H \ {0} is trivial, we obtain

(1) ∇S1 -deg(∇uΦ(·, λ+
k0
),Ω) = (−1)dimVk0 · χS1(S1/{e}+) ∈ U(S1),

(2) ∇S1 -deg(∇uΦ(·, λ−
k0
),Ω) = (−1)dimVk0−1 · χS1(S1/{e}+) ∈ U(S1).

Taking into account that dim Vk0 = μ−Δ(λk0) + dim Vk0−1 and the above we obtain

∇S1 -deg
(
∇uΦ

(
·, λ+k0

)
,Ω
)
= (−1)μ−Δ(λk0 )∇S1 -deg

(
∇uΦ

(
·, λ−k0

)
,Ω
)
. (3.13)

From the above it follows that

λk0 ∈ σodd(−Δ) iff∇S1 -deg
(
∇uΦ

(
·, λ+k0

)
,Ω
)
/=∇S1 -deg

(
∇uΦ

(
·, λ−k0

)
,Ω
)
. (3.14)

Hence, by Theorem 2.4 we obtain (u0, λ̂k0) ∈ GLOB provided that λk0 ∈ σodd(−Δ),
which completes the proof of (b). Fix λk0 ∈ σ(−Δ) and note that

(i) the Conley index CIS1(S1(u0), λ+k0) is an S1-CW-complex with S1-CW-decompo-
sition {(0, S1)},{(dim Vk0 , {e})},

(ii) the Conley index CIS1(S1(u0), λ−k0) is an S1-CW-complex with S1-CW-decompo-
sition {(0, S1)}, {(dim Vk0−1, {e})}.

Note that χS1(CIS1(S1u0, λ
±
k0
) = ∇S1 -deg(∇uΦ(·, λ±k0)),Ω), where χS1 is the S1-equi-

variant Euler characteristic, see [19, 20].
Since the Conley indices CIS1(S1(u0), λ+k0),CIS1(S1u0, λ

−
k0
) are not S1-homotopically

equivalent, applying Theorem 2.6 we obtain (u0, λ̂k0) ∈ BIF, which completes the proof of
(a).

3.2. Case ‖A‖ = const/= 0

In this section we study bifurcations of solutions of the Ginzburg-Landau equation (3.1)
assuming that ‖A(x)‖ = 1 for every x ∈ clΩ.

In the lemma below we have described the set of constant solutions of system (3.2)
and have proved the necessary conditions for the existence of bifurcation points of solutions
of this problem. To simplify notation we put uλ = (

√
((λ − 1)/λ), 0).

Lemma 3.4. Under the above assumptions,

(∇uΦ)−1(0) ∩ {((v,w), λ) ∈ H × R : v = const andw = const} = F = F1 ∪ F2 ∪ F3, (3.15)

where F1 = {0} × R,F2 = {S1(uλ) × {λ} : λ > 1},F3 = {S1(uλ) × {λ} : λ < 0}.
Moreover,

(1) if (0, λ′) ∈ BIF ∩ F1, then λ′ ∈ σ(−ΔA),
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(2) if λ′ ∈ (1,+∞) and (uλ′ , λ
′) ∈ BIF∩F2, then λ′ ∈ (1, 3/2) and 3−2λ′ ∈ σ(−ΔA)∩(0, 1),

(3) if λ′ ∈ (−∞, 0) and (uλ′ , λ
′) ∈ BIF ∩ F3, then 3 − 2λ′ ∈ σ(−ΔA).

Proof. First of all we are looking for constant solutions of system (3.2). Put (v,w) ≡ (c1, c2) ∈
R

2 in (3.2). Taking into account that ‖A(x)‖ = 1 we obtain system (3.2) in the following form
{c1 = λ(1 − c21 − c22)c1; c2 = λ(1 − c21 − c22)c2. Solving this system we obtain the following set of
solutions:

{0} × R ∪
⋃

λ∈(−∞,0)∪(1,+∞)

S1(uλ) × {λ} ⊂ (∇uΦ)−1(0) ⊂ H × R, (3.16)

which completes the proof.

(1) Applying Lemma 2.3 we obtain that if (0, λ′) ∈ BIF∩F1, then dim ker ∇2
uΦ(0, λ′) >

0. Putting in (3.5) ((v0, w0), λ0) = (0, λ′) we obtain the following system LA

[
φ1
φ2

]
=

λ′
[
φ1
φ2

]
. Since σ(LA) = σ(−ΔA), the proof is completed.

(2) Fix λ′ ∈ (1,+∞). Putting in (3.5) ((v0, w0), λ0) = (uλ′ , λ
′) we obtain the following

system LA

[
φ1
φ2

]
=
[
(3−2λ′)φ1

φ2

]
. Note that the vector (φ1, φ2) = (0, 1) solves this system.

Hence, dim ker ∇2
uΦ(uλ′ , λ

′) � 1. By Lemma 2.3, if (uλ′ , λ
′) ∈ BIF ∩ F2, then

dim ker ∇2
uΦ(uλ′ , λ

′) > 1. Since σ(−ΔA) ∩ (−∞, 0] = ∅, dim ker ∇2
uΦ(uλ′ , λ

′) > 1
if and only if 3 − 2λ′ ∈ σ(−ΔA) ∩ (0, 1) and λ′ ∈ (1, 3/2) which completes the proof.

(3) Fix λ′ ∈ (−∞, 0). Putting in (3.5) ((v0, w0), λ0) = (uλ′ , λ
′) we obtain the following

system LA

[
φ1
φ2

]
=
[
(3−2λ′)φ1

φ2

]
. Note that the vector (φ1, φ2) = (0, 1) solves this system,

that is, dim ker ∇2
uΦ(uλ′ , λ

′) � 1. By Lemma 2.3, if (uλ′ , λ
′) ∈ BIF ∩ F3, then

dim ker ∇2
uΦ(uλ′ , λ

′) > 1. Since λ′ < 0, dim ker ∇2
uΦ(uλ′ , λ

′) > 1 if and only if
3 − 2λ′ ∈ σ(−ΔA), which completes the proof.

Put σodd(−ΔA) = {λk ∈ σ(−ΔA) : dimCV−ΔA(λk) is odd}. In the theorem below we
study local and global bifurcations of nonconstant solutions of Ginzburg-Landau equation
(3.2). The proof is similar in spirit to that of Theorem 3.3. For simplicity of notation put uk =
(
√
(2 − λk)/(3 − λk), 0) and λ̂k = ((3 − λk)/2).

Theorem 3.5. Under the above assumptions,

(a)

BIF = (BIF ∩ F1) ∪ (BIF ∩ F2) ∪ (BIF ∩ F3)

=
⋃

λk∈σ(−ΔA)

{(0, λk) ∈ H × R} ∪
⋃

λk∈σ(−ΔA)∩(0,1)
S1(uk) ×

{
λ̂k
}
∪

⋃
λk∈σ(−ΔA)∩(3,+∞)

S1(uk) ×
{
λ̂k
}
,

(3.17)
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(b)

GLOB = (GLOB ∩ F1) ∪ (GLOB ∩ F2) ∪ (GLOB ∩ F3)

=
⋃

λk∈σ(−ΔA)

{(0, λk) ∈ H × R} ∪
⋃

λk∈σodd(−ΔA)∩(0,1)
S1(uk)

×
{
λ̂k
}
∪

⋃
λk∈σodd(−ΔA)∩(3,+∞)

S1(uk) ×
{
λ̂k
}
.

(3.18)

Moreover, for every λk ∈ σ(−ΔA)

(1) C(0, λk) ∩ H × {0} = ∅,
(2) either the continuum C(0, λk) ⊂ H × (0,+∞) is unbounded or C(0, λk) ∩ GLOB ∩F2 /= ∅.

Proof. Bifurcations from the family F1. Note that ker ∇2
uΦ(0, λk) is a nontrivial even-

dimensional orthogonal S1-representation for every λk ∈ σ(−ΔA). Combining Theorems 4.5
and 4.7 of [20] we obtain (0, λk) ∈ GLOB ∩ F1 and for every λk ∈ σ(−ΔA) the continuum
C(0, λk) ⊂ H × R is unbounded or C(0, λk) ∩ F2 /= ∅. Taking into account that ∇2

uΦ(0, 0) is an
isomorphism we obtain C(0, λk) ⊂ H × (0,+∞).

Bifurcations from the family F3. Fix an arbitrary λk0 ∈ σ(−ΔA)∩ (3,+∞) and choose ε > 0
such that

[
3 − λk0 − ε

2
,
3 − λk0 + ε

2

]
∩
{
3 − λk

2
: λk ∈ σ(−ΔA)

}
=
{
3 − λk0

2

}
. (3.19)

For brevity set λ±
k0

= (3 − λk0 ± ε)/2, λ̂k0 = (3 − λk0)/2, u±
λk0

=

(
√
(2 − λk0 ± ε)/(3 − λk0 ± ε), 0), ûλk0

= (
√
(2 − λk0)/(3 − λk0), 0), T±ε = ∇2

uΦ(u±
λk0

, λ±
k0
), Vk =

V−ΔA(λ1) ⊕ · · · ⊕V−ΔA(λk) and W = ⊕λk<1V−ΔA(λk). It is understood that V0 = {0} and W = {0}
provided that σ(−ΔA) ∩ (−∞, 0) = ∅. We claim that

(c1) dim ker T±ε = 1,

(c2) T+ε is negatively defined on the space of dimension dimCVk0−1 + dim CW,

(c3) T−ε is negatively defined on the space of dimension dim CVk0 + dim CW.

Indeed, like in the proof of Lemma 3.4 the study of ker T±ε is equivalent to the study
of solutions of the following system:

LA

[
φ1

φ2

]
=
[
(λk0 ∓ ε)φ1

φ2

]
. (3.20)

From condition (3.19) it follows that the linear space of solutions of (3.20) is spanned by
(φ1, φ2) = (0, 1). Hence, dim ker T± = 1. Fix λk ∈ σ(−ΔA) and φ1 + iφ2 ∈ V−ΔA(λk). Then (3.20)
is equivalent to the following system {(λk − λk0 ± ε)φ1 = 0; (λk − 1)φ2 = 0. That is why

(1) the operator T+(φ1, φ2) is negatively definite if and only if φ1 ∈ Vk0−1 and φ2 ∈ W,

(2) the operator T−(φ1, φ2) is negatively definite if and only if φ1 ∈ Vk0 and φ2 ∈ W,



Abstract and Applied Analysis 13

which completes the proof of (c1), (c2), and (c3).
Since dim ker T±ε = 1, there is an open, bounded, and S1-invariant subset Ω ⊂ H

such that ∇uΦ(·, λ±k0)
−1(0) ∩Ω = S1(u±

λk0
) × {λ±k0}. Moreover, since the isotropy group of every

(v0, w0) ∈ H \ {0} is trivial, we obtain

(1) ∇S1 -deg(∇uΦ(·, λ+k0),Ω) = (−1)dimC(Vk0−1⊕W) · χS1(S1/{e}+) ∈ U(S1),

(2) ∇S1 -deg(∇uΦ(·, λ−
k0
),Ω) = (−1)dimC(Vk0⊕W) · χS1(S1/{e}+) ∈ U(S1).

Taking into account that dimCVk0 = μC

−ΔA
(λk0) + dimCVk0−1 and the above we obtain

∇S1 -deg
(
∇uΦ

(
·, λ−k0

)
,Ω
)
= (−1)μ

C

−ΔA
(λk0 )∇S1 -deg

(
∇uΦ

(
·, λ+k0

)
,Ω
)
. (3.21)

From the above it follows that

μC

−ΔA
(λk0) is odd if and only if∇S1 -deg

(
∇uΦ

(
·, λ−k0

)
,Ω
)
/=∇S1 -deg

(
∇uΦ

(
·, λ+k0

)
,Ω
)
. (3.22)

Hence, by Theorem 2.4 we obtain (ûλk0
, λ̂k0) ∈ GLOB∩F3, provided that λk0 ∈ σodd(−ΔA). Fix

λk0 ∈ σ(−ΔA) and note that

(i) the Conley index CIS1(S1(u+
λk0

), λk0 + ε) is an S1-CW-complex with S1-CW-

decomposition {(0, S1)}, {(dimC(Vk0−1 ⊕ W), {e})},
(ii) the Conley index CIS1(S1(u−

λk0
), λk0 − ε) is an S1-CW-complex with the following

S1-CW-decomposition {(0, S1)}, {(dimC(Vk0 ⊕ W), {e})}.

Since the Conley indicesCIS1(S1(u+
λk0

), λk0+ε),CIS1(S1(u−
λk0

), λk0−ε) are not S1-homotopically

equivalent, applying Theorem 2.6 we obtain (ûλk0
, λ̂k0) ∈ BIF ∩ F3.

Bifurcations from the family F2. This case can be handled in much the same way as
bifurcations from the family F3.

4. Remarks and Open Questions

We can substantially simplify Theorem 3.5 assuming that the first eigenvalue of the magnetic
Laplace operator −ΔA is equal to 1. In the lemma below we show that for a domain Ω of
sufficiently small volume this assumption is satisfied.

Lemma 4.1. Assume that ‖A(x)‖ = 1 for allx ∈ Ω. Then there is ε > 0 such that if volΩ < ε, then
the first eigenvalue of the magnetic Laplace operator −ΔA is equal to 1, that is, σ(−ΔA) = {λ1 = 1 <
λ2 < · · · }.

Proof. Let us consider an eigenvalue problem −ΔAφ = λφ. Putting φ = φ1 + iφ2 we obtain
equivalent system of the form

−Δφ1(x) − 2
〈
A(x),∇φ2(x)

〉
+ ‖A(x)‖2φ1 = λφ1,

−Δφ2(x) + 2
〈
A(x),∇φ1(x)

〉
+ ‖A(x)‖2φ2 = λφ2.

(4.1)
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Multiplying equations by φ1, φ2, respectively, and integrating by parts we obtain the
following equality:

∫

Ω

∥∥∇φ1(x)
∥∥2 + ∥∥∇φ2(x)

∥∥ − 2
〈
A(x), φ1(x)∇φ2(x) − φ2(x)∇φ1(x)

〉
dx

= (λ − 1)
∫

Ω
φ2
1(x) + φ2

2(x)dx.

(4.2)

We remind that 1 ∈ σ(−ΔA). To complete the proof it is enough to show that for every φ1 +
iφ2 ∈ V−ΔA(1)

⊥ ⊂ H the following inequality holds true:

∫

Ω

∥∥∇φ1(x)
∥∥2 + ∥∥∇φ2(x)

∥∥ − 2
〈
A(x), φ1(x)∇φ2(x) − φ2(x)∇φ1(x)

〉
dx > 0. (4.3)

Let μ2(Ω) be the first positive eigenvalue of the Laplace operator −Δ under the Neumann
boundary condition. Taking into account that ‖A(x)‖ = 1 we obtain the following estimation:

∫

Ω

∥∥∇φ1(x)
∥∥2 + ∥∥∇φ2(x)

∥∥2 − 2
〈
A(x), φ1(x)∇φ2(x) − φ2(x)∇φ1(x)

〉
dx

�
∫

Ω

∥∥∇φ1(x)
∥∥2 + ∥∥∇φ2(x)

∥∥2 − 2
∥∥φ1(x)∇φ2(x) − φ2(x)∇φ1(x)

∥∥dx

�
∫

Ω

∥∥∇φ1(x)
∥∥2 + ∥∥∇φ2(x)

∥∥2 − 2
(∣∣φ1(x)

∣∣∥∥∇φ2(x)
∥∥ + ∣∣φ2(x)

∣∣∥∥∇φ1(x)
∥∥)dx

�
∣∣∇φ1

∣∣2
2 +
∣∣∇φ2

∣∣2
2 − 2

(∣∣φ1
∣∣
2

∣∣∇φ2
∣∣
2 +
∣∣φ2
∣∣
2

∣∣∇φ1
∣∣
2

)

�
∣∣∇φ1

∣∣2
2 +
∣∣∇φ2

∣∣2
2 −

4√
μ2(Ω)

∣∣∇φ1
∣∣
2

∣∣∇φ2
∣∣
2

=
(∣∣∇φ1

∣∣
2 −
∣∣∇φ2

∣∣
2

)2 +
(
2 − 4√

μ2(Ω)

)∣∣∇φ1
∣∣
2

∣∣∇φ2
∣∣
2,

(4.4)

where | · |2 is the L2(Ω) norm. By the Cheeger’s inequality we have μ2(Ω) → ∞ as volΩ → 0,
see [23], that is, for anyM > 0 exists ε > 0 such that if volΩ < ε, then μ2(Ω) > M. To complete
the proof it is enough to choose ε > 0 for M = 4.

Combining Lemmas 3.4 and 4.1 with Theorem 3.5 we obtain the following corollary.
In this corollary we use the notation of Theorem 3.5. Since σ(−ΔA) ∩ (0, 1) = ∅, the sets
BIF,GLOB are less complicated. What is important is that we obtain unbounded continua
C(0, λk), that is, we have excluded one possibility of behavior of bifurcating continua in the
famous Rabinowitz alternative.

Corollary 4.2. Choose a domainΩ such that volΩ < ε, where ε is given by Lemma 4.1. Then λ1 = 1
and σ(−ΔA)∩(0, 1) = ∅. By Lemma 3.4 one obtains BIF∩F2 = ∅. Applying Theorem 3.5 one obtains
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(a)

BIF =
⋃

λk∈σ(−ΔA)

{(0, λk) ∈ H × R} ∪
⋃

λk∈σ(−ΔA)∩(3,+∞)

S1(uk) ×
{
λ̂k
}
, (4.5)

(b)

GLOB =
⋃

λk∈σ(−ΔA)

{(0, λk) ∈ H × R} ∪
⋃

λk∈σodd(−ΔA)∩(3,+∞)

S1(uk) ×
{
λ̂k
}
. (4.6)

Moreover, for every λk ∈ σ(−ΔA) the continuum C(0, λk) ⊂ H × (0,+∞) is unbounded.

Note that in the proofs of Theorems 3.3 and 3.5 one cannot replace the degree
for S1-equivariant gradient maps by the Leray-Schauder degree. Indeed, since ΩS1

= ∅,
degLS(∇uΦ(·, λ±

k0
),Ω) = 0 ∈ Z, see [24, 25]. The famous Rabinowitz alternative, see [26],

is not applicable in our paper because ker∇2
uΦ(0, λ̂k0) is even. Moreover, if the multiplicity

μ−Δ(λk0)(μ
C

−ΔA
(λk0)) is even, then one cannot apply the degree for S1-equivariant gradient

maps to prove the existence of a global bifurcation, see assumption (3.14) (see assumption
(3.22)). On the other hand, to prove the existence of a local bifurcation one applies the S1-
equivariant Conley index.

It is a known fact that change of the Conley index implies only a local bifurcation of
critical points, see [27–30] for examples and discussion. Therefore, it is natural to rise the
following question. Fix λk0 ∈ σ(−Δ) \ σodd(−Δ) and λ′k0 ∈ (σ(−Δ) \ σodd(−Δ)) ∩ ((1, 3/2) ∪
(3,+∞)).

Is it true that ((1, 0),−(λk0/2)), ((
√
(2 − λ′k0)/(3 − λk′

0), 0), (3 − λk′
0)/2) ∈ GLOB?

This question is at present far from being solved.
From now on one replaces the group S1 with an arbitrary compact connected Lie group

G and assume that Φ ∈ C2
G(H × R,R) is of the form Φ(u, λ) = (1/2)‖u‖2

H
− (λ/2)〈Lu, u〉

H
−

η(u, λ), where

(1) L : H → H is a linear, compact, bounded, self-adjoint, positively definite, and G-
equivariant operator,

(2) η : H × R → R is a G-invariant functional of the class C2 such that

(a) ∇uη : H × R → H is a compact, G-equivariant operator,
(b) ∇uη(0, λ) = 0,
(c) ∇2

uη(u, λ) = o(‖u‖H) at u = 0, uniformly on bounded λ-intervals.

The gradient ∇uΦ : H × R → H is a G-equivariant operator of the class C1 of the form
∇uΦ(u, λ) = u − λLu − ∇uη(u, λ). It is clear that ∇uΦ(0, λ) = 0 for any λ ∈ R. Define L(λ) =
Id − λL. Following [31] one can introduce a notion of nonlinear eigenvalue of L(λ).

Definition 4.3. λ0 > 0 is a nonlinear eigenvalue of L(λ), if (0, λ0) ∈ H × R is a bifurcation point
of solutions of equation∇uΦ(u, λ) = 0 from the curve {0}×R ⊂ H×R for any η ∈ C2

G(H×R,R)
satisfying the above conditions.

Forgetting about variational structure andG-symmetries one can study bifurcations of
solutions of the equation ∇uΦ(u, λ) = 0 applying the Leray-Schauder degree. It is clear that
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λ0 is a nonlinear eigenvalue ofL(λ) if and only if λ−10 is an eigenvalue of L of oddmultiplicity,
see, for instance, Theorem 1.2.1 of [31].

Computing the bifurcation index in term of the degree for G-equivariant gradient
maps we obtain the following theorem, see Theorem 4.5 of [20].

Theorem 4.4. λ0 > 0 is a nonlinear eigenvalue of L(λ)if and only if λ−10 is an eigenvalue of odd
multiplicity or the eigenspace VL(λ−10 ) of L corresponding to the eigenvalue λ−10 is a nontrivial G-
representation.

In this paper G = S1. All the eigenvalues of L are of even multiplicity and
corresponding eigenspaces of L are nontrivial S1-representations. Summing up, inverse
of any eigenvalue of L is a nonlinear eigenvalue of L(λ). Therefore, one obtains global
bifurcations of critical S1-orbits from the family F1 in Theorems 3.3 and 3.5. Note that if Ω
is of sufficiently small volume, then continua bifurcating from family F1 are unbounded, see
Corollary 4.2.

Finally we underline that we have proved local and global bifurcations of critical S1-
orbits from connected sets of trivial solutions which are not of the form {0} × (α, β) ⊂ H × R,
see local and global bifurcations from families F2,F3 in Theorems 3.3 and 3.5.

Appendix

In this section for the convenience of the reader we repeat the relevant material from [19],
without proofs, thus making our exposition self-contained.

Let Sk−1 = {x ∈ R
k : |x| = 1}, Dk = {x ∈ R

k : |x| ≤ 1} and Bk = Dk \ Sk−1. For
H ∈ sub(S1) define a H-action H × S1 → S1 by (h, g) → gh−1. The set of orbits will be
denoted S1/H.

Definition A.1. Let (X,A) be a pair of compact S1-spaces and let H1, . . . ,Hq ∈ sub(S1). We
say that X is obtained from A by attaching the family of equivariant k-cells of orbit type
{(k, (Hj)) : j = 1, . . . , q} if there exists a S1-equivariant map

ϕ :

⎛
⎝

q∐
j=1

Dk × S1/Hj,
q∐
j=1

Sk−1 × S1/Hj

⎞
⎠ −→ (X,A), (A.1)

which maps
∐q

j=1B
k × S1/HjS

1-homeomorphically on X \ A.

Definition A.2. Let (X, �) be a pointed compact S1-space. If there is a finite sequence of S1-
spaces X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xp−1 ⊂ Xp = X such that

(1) X−1 = {�},

(2) X0 ≈ {�} �
∐q(0)

j=1 G/Hj,0, where H1,0, . . . ,Hq(0),0 ∈ sub(S1),

(3) Xk is obtained from Xk−1 by attaching a family of equivariant k-cells of orbit type
{(k, (Hj,k)) : j = 1, . . . , q(k)}, for k = 1, . . . , p,

then S1-space X is said to be a finite S1-CW-complex. The set of subspaces {X0, . . . ,Xp} is said
to be the cell decomposition of X and the set

⋃p

k=0{(k, (Hj,k)) : j = 1, . . . , q(k)} is said to be the
orbit type of the cell decomposition of X.
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We denote by F�(S1) the full subcategory of T�(S1) whose objects are finite S1-CW-
complexes and by F�[S1] subset of T�[S1] consisting of S1-homotopy types of finite S1-CW-
complexes. Let F be the free abelian group generated by the pointed S1-homotopy types of
finite S1-CW-complexes and letN be the subgroup of F generated by all elements [A] − [X] +
[X/A] for pointed S1-CW-subcomplexes A of a pointed S1-CW-complex X.

Definition A.3. Put U(S1) = F/N and let χS1(X) ∈ U(S1) be the class of [X] in U(S1). The
element χS1(X) is said to be an S1-equivariant Euler characteristic of a pointed S1-CW-
complex X.

For X,Y ∈ F�(S1) let [X ∨ Y] ∈ F�(S1) denote an S1-homotopy type of the wedge
X ∨ Y ∈ F�(S1). Since [X] − [X ∨ Y] + [(X ∨ Y)/X] = [X] − [X ∨ Y] + [Y] ∈ N,

χS1(X) + χS1(Y) = χS1(X ∨ Y). (A.2)

For X,Y ∈ F�(S1) let X∧Y = X×Y/X∨Y. The assignment (X,Y) → X∧Y induces a product
U(S1) ×U(S1) → U(S1) given by

χS1(X) � χS1(Y) = χS1(X ∧ Y). (A.3)

Lemma A.4. (U(S1),+, �) with an additive and multiplicative structures given by (A.2) and (A.3),
respectively, is a commutative ring with unit I = χS1(S1/S1+).

One calls (U(S1),+, �) the Euler ring of S1. If X is a S1-CW-complex without base point,
then by X

+ one denotes pointed S1-CW-complex X
+ = X ∪ {�} and consequently one puts

χS1(X) = χS1(X+).

LemmaA.5. (U(S1),+) is the free abelian group with basis χS1(S1/H+), (H) ∈ sub[S1]. Moreover,
if X ∈ F�(S1) and

⋃p

k=0

⋃q(k)
j=1 {k, (Hj,k)} is the orbit type of the cell decomposition of X, then χS1(X) =

∑
(H)∈sub[S1] n

S1

(H)(X) · χS1(S1/H+), where nS1

(H)(X) =
∑q

k=0 (−1)
kν((H), k) and ν((H), k) is the

number of k-dimensional cells of orbit type (H).

Below we present additive and multiplicative structures in the Euler ring U(S1). It is
easy to see that for k, k′ ∈ N, the following holds true

(1) χS1(S1/S1+) � χS1(S1/Zk
+) = χS1(S1/Zk

+),

(2) χS1(S1/Zk
+) � χS1(S1/Zk′

+) = Θ = 0 · χS1(S1/S1+) ∈ U(S1).

That is why if α, β ∈ U(S1), then

(1) α = α0χS1(S1/S1+) +
∑∞

k=1 αkχS1(S1/Zk
+),

(2) β = β0χS1(S1/S1+) +
∑∞

k=1 βkχS1(S1/Zk
+),

(3) α � β = (α0β0)χS1(S1/S1+) +
∑∞

k=1(α0βk + αkβ0)χS1(S1/Zk
+),

(4) α + β = (α0 + β0)χS1(S1/S1+) +
∑∞

k=1(αk + βk)χS1(S1/Zk
+).
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Boston, Boston, Mass, USA, 2010.

[6] B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and M. Owen, Nodal Sets, Multiplicity and
Superconductivity in Non Simply Connected Domains, 2001.

[7] N. Hirano and S. M. Rybicki, “A remark on global bifurcations of solutions of Ginzburg-Landau
equation,” Nonlinear Analysis, vol. 12, no. 6, pp. 2943–2946, 2011.

[8] T. Ma and S. Wang, Bifurcation Theory and Applications, vol. 53 of World Scientific Series on Nonlinear
Science A, 2005.

[9] T. Ma and S. Wang, “Bifurcation and stability of superconductivity,” Journal of Mathematical Physics,
vol. 56, no. 9, pp. 95112–95143, 2005.

[10] A. Pushnitski and G. Rozenblum, “Eigenvalue clusters of the Landau Hamiltonian in the exterior of
a compact domain,” Documenta Mathematica, vol. 12, pp. 569–586, 2007.

[11] M. Izydorek, “Equivariant Conley index in Hilbert spaces and applications to strongly indefinite
problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 51, no. 1, pp. 33–66, 2002.

[12] J. Smoller and A. Wasserman, “Bifurcation and symmetry-breaking,” Inventiones Mathematicae, vol.
100, no. 1, pp. 63–95, 1990.

[13] Z. Balanov, W. Krawcewicz, and H. Steinlein, Applied Equivariant Degree, vol. 1 of AIMS Series on
Differential Equations & Dynamical Systems, Springfield, Ill, USA, 2006.

[14] Z. Balanov, W. Krawcewicz, S. Rybicki, and H. Steinlein, “A short treatise on the equivariant degree
theory and its applications,” Journal of Fixed Point Theory and Applications, vol. 8, no. 1, pp. 1–74, 2010.

[15] J. Fura and S. Rybicki, “Bifurcation from infinity of periodic solutions of second order Hamiltonian
systems,” Annales de l’Institut Henri Poincaré C, vol. 24, no. 3, pp. 471–490, 2007.
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