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We prove that b is in Lipβ(ω) if and only if the commutator [b, L−α/2] of the multiplication operator
by b and the general fractional integral operator L−α/2 is bounded from the weightedMorrey space
Lp,k(ω) to Lq,kq/p(ω1−(1−α/n)q, ω), where 0 < β < 1, 0 < α + β < n, 1 < p < n/(α + β), 1/q =
1/p − (α + β)/n, 0 ≤ k < p/q, ωq/p ∈ A1, and rω > (1 − k)/(p/(q − k)), and here rω denotes the
critical index of ω for the reverse Hölder condition.

1. Introduction and Main Results

Suppose that L is a linear operator on L2(Rn) which generates an analytic semigroup e−tL

with a kernel pt(x, y) satisfying a Gaussian upper bound, that is,

∣
∣pt

(

x, y
)∣
∣ ≤ C

tn/2
e−c(|x−y|

2/t) (1.1)

for x, y ∈ R
n and all t > 0. Since we assume only upper bound on heat kernel pt(x, y) and

no regularity on its space variables, this property (1.1) is satisfied by a class of differential
operator, see [1] for details.

For 0 < α < n, the general fractional integral L−α/2 of the operator L is defined by

L−α/2f(x) =
1

Γ(α/2)

∫∞

0
e−tLf

dt

t−α/2+1
(x). (1.2)
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Note that, if L = −Δ is the Laplacian on R
n, then, L−α/2 is the classical fractional integral

Iα which plays important roles in many fields. Let b be a locally integrable function on R
n,

the commutator of b and L−α/2 is defined by

[

b, L−α/2
]

f(x) = b(x)L−α/2f(x) − L−α/2(bf
)

(x). (1.3)

For the special case of L = −Δ, many results have been produced. Paluszyński [2]
obtained that b ∈ Lipβ(R

n) if the commutator [b, Iα] is bounded from Lp(Rn) to Lr(Rn), where
1 < p < r < ∞, 0 < β < 1 and 1/p − 1/r = (α + β)/nwith p < n/(α + β). Shirai [3] proved that
b ∈ Lipβ(R

n) if and only if the commutator [b, Iα] is bounded from the classical Morrey spaces
Lp,λ(Rn) to Lq,λ(Rn) for 1 < p < q < ∞, 0 < α, 0 < β < 1, and 0 < α+β = (1/p− 1/q)(n−λ) < n
or Lp,λ(Rn) to Lq,μ(Rn) for 1 < p < q < ∞, 0 < α, 0 < β < 1, 0 < α + β = (1/p − 1/q) <
n, 0 < λ < n − (α + β)p, and μ/q = λ/p. Wang [4] established some weighted boundedness
of properties of commutator [b, Iα] on the weighted Morrey spaces Lp,k under appropriated
conditions on the weight ω, where the symbol b belongs to (weighted) Lipschitz spaces. The
weighted Morrey space was first introduced by Komori and Shirai [5]. For the general case,
Wang [6] proved that if b ∈ Lipβ(R

n), then the commutator [b, L−α/2] is bounded from Lp(ωp)
to Lq(ωq), where 0 < β < 1, 0 < α + β < n, 1 < p < n/(α + β), 1/p − 1/q = (α + β)/n, and
ωq ∈ A1.

The purpose of this paper is to give necessary and sufficient conditions for
boundedness of commutators of the general fractional integrals with b ∈ Lipβ(ω) (the
weighted Lipschitz space). Our theorems are the following.

Theorem 1.1. Let 0 < β < 1, 0 < α + β < n, 1 < p < n/(α + β), 1/q = 1/p − (α + β)/n, 0 ≤ k <
min{p/q, pβ/n}, and ωq ∈ A1. Then one has the following.

(a) If b ∈ Lipβ(R
n), then [b, L−α/2] is bounded from Lp,k(ωp,ωq) to Lq,kq/p(ωq);

(b) If [b, L−α/2] is bounded from Lp,k(ωp,ωq) to Lq,kq/p(ωq), then b ∈ Lipβ(R
n).

Theorem 1.2. Let 0 < β < 1, 0 < α + β < n, 1 < p < n/(α + β), 1/q = 1/p − (α + β)/n, 0 ≤ k <
p/q,ωq/p ∈ A1, and rω > (1−k)/(p/(q−k)), where rω denotes the critical index ofω for the reverse
Hölder condition. Then one has the following.

(a) If b ∈ Lipβ(ω), then [b, L−α/2] is bounded from Lp,k(ω) to Lq,kq/p(ω1−(1−α/n)q, ω);

(b) If [b, L−α/2] is bounded from Lp,k(ω) to Lq,kq/p(ω1−(1−α/n)q, ω), then b ∈ Lipβ(ω).

Our results not only extend the results of [4] from (−Δ) to a general operator L, but
also characterize the (weighted) Lipschitz spaces by means of the boundedness of [b, L−α/2]
on the weighted Morrey spaces, which extend the results of [4, 6]. The basic tool is based on
a modification of sharp maximal function M#

L introduced by [7].
Throughout this paper all notation is standard or will be defined as needed. Denote

the Lebesgue measure of B by |B| and the weighted measure of B by ω(B), where ω(B) =
∫

B ω(x)dx. For a measurable set E, denote by χE the characteristic function of E. For a real
number p, 1 < p < ∞, let p′ be the dual of p such that 1/p + 1/p′ = 1. The letter C will be used
for various constants, and may change from one occurrence to another.
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2. Some Preliminaries

A nonnegative function ω defined on R
n is called weight if it is locally integral. A weight ω

is said to belong to the Muckenhoupt class Ap(Rn) for 1 < p < ∞, if there exists a positive
constant C such that

(
1
|B|

∫

B

ω(x)dx
)(

1
|B|

∫

B

ω(x)−1/(p−1) dx
)p−1

≤ C, (2.1)

for every ball B ⊂ R
n. The class A1(Rn) is defined replacing the above inequality by

(
1
|B|

∫

B

ω(x)dx
)

≤ C essinf
x∈B

ω(x). (2.2)

When p = ∞, ω ∈ A∞, if there exist positive constants δ and C such that given a ball B and E
is a measurable subset of B, then

ω(E)
ω(B)

≤ C

( |E|
|B|

)δ

. (2.3)

A weight function ω belongs to Ap,q for 1 < p < q < ∞ if for every ball B in R
n, there

exists a positive constant C which is independent of B such that

(
1
|B|

∫

B

ω(x)qdx
)1/q( 1

|B|
∫

B

ω(x)−p
′
dx

)1/p′

≤ C. (2.4)

From the definition of Ap,q, we can get that

ω ∈ Ap,q, iff ωq ∈ A1+q/p′ . (2.5)

Since ωq/p ∈ A1, then by (2.5), we have ω1/p ∈ Ap,q.
A weight function ω belongs to the reverse Hölder class RHr if there exist two

constants r > 1 and C > 0 such that the following reverse Hölder inequality,

(
1
|B|

∫

B

ω(x)rdx
)1/r

≤ C
1
|B|

∫

B

ω(x)dx, (2.6)

holds for every ball B in R
n.

It is well known that if ω ∈ Ap with 1 ≤ p < ∞, then there exists r > 1 such that
ω ∈ RHr . It follows from Hölder inequality that ω ∈ RHr implies ω ∈ RHs for all 1 < s < r.
Moreover, if ω ∈ RHr , r > 1, then we have ω ∈ RHr+ε for some ε > 0. We thus write rw =
sup{r > 1 : ω ∈ RHr} to denote the critical index of ω for the reverse Hölder condition. For
more details on Muckenhoupt class Ap,q, we refer the reader to [8–10].

Definition 2.1 (see [5]). Let 1 ≤ p < ∞ and 0 ≤ k < 1. Then for two weights μ and ν, the
weighted Morrey space is defined by

Lp,k(μ, ν
)

=
{

f ∈ L
p

loc

(

μ
)

:
∥
∥f

∥
∥
Lp,k(μ,ν) < ∞

}

, (2.7)
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where

∥
∥f

∥
∥
Lp,k(μ,ν) = sup

B

(

1

ν(B)k

∫

B

∣
∣f(x)

∣
∣
p
μ(x)dx

)1/p

, (2.8)

and the supremum is taken over all balls B in R
n.

If μ = ν, then we have the classical Morrey space Lp,k(μ) with measure μ. When k = 0,
then Lp,0(μ) = Lp(μ) is the Lebesgue space with measure μ.

Definition 2.2 (see [11]). Let 1 ≤ p < ∞, 0 < β < 1, and ω ∈ A∞. A locally integral function b is
said to be in Lipp

β
(ω) if

‖b‖Lipp

β
(ω) = sup

B

1

ω(B)β/n

(
1

ω(B)

∫

B

|b(x) − bB|pω(x)1−pdx
)1/p

≤ C < ∞, (2.9)

where bB = |B|−1 ∫B b(y)dy and the supremum is taken over all ball B ⊂ Rn. When p = 1, we
denote Lipp

β
(ω) by Lipβ(ω).

Obviously, for the case ω = 1, then the Lipp

β
(ω) space is the classical Lipp

β
space.

Remark 2.3. Letω ∈ A1, Garcı́a-Cuerva [11] proved that the spaces ‖f‖Lipp

β
(ω) coincide, and the

norms of || · ||Lipp

β
(ω) are equivalent with respect to different values of provided that 1 ≤ p < ∞.

Given a locally integrable function f and β, 0 ≤ β < n, define the fractional maximal
function by

Mβ,rf(x) = sup
x∈B

(

1

|B|1−βr/n
∫

B

∣
∣f
(

y
)∣
∣
r
dy

)1/r

, r ≥ 1, (2.10)

when 0 < β < n. If β = 0 and r = 1, then M0,1f = Mf denotes the usual Hardy-Littlewood
maximal function.

Let ω be a weight. The weighted maximal operator Mω is defined by

Mωf(x) = sup
x∈B

1
ω(B)

∫

B

∣
∣f
(

y
)∣
∣dy. (2.11)

The fractional weighted maximal operator Mβ,r,ω is defined by

Mβ,r,ωf(x) = sup
x∈B

(

1

ω(B)1−βr/n

∫

B

∣
∣f
(

y
)∣
∣
r
ω
(

y
)

dy

)1/r

, (2.12)

where 0 ≤ β < n and r ≥ 1. For any f ∈ Lp(Rn), p ≥ 1, the sharp maximal function M#
Lf

associated the generalized approximations to the identity {e−tL, t > 0} is given by Martell [7]
as follows:

M#
Lf(x) = sup

x∈B

1
|B|

∫

B

∣
∣
∣f
(

y
) − e−tBLf

(

y
)
∣
∣
∣dy, (2.13)
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where tB = r2B and rB is the radius of the ball B. For 0 < δ < 1, we introduce the δ-sharp
maximal operator M#

L,δ
as

M#
L,δf = M#

L

(∣
∣f
∣
∣
δ
)1/δ

, (2.14)

which is a modification of the sharp maximal operator M# of Stein and Murphy [9]. Set
Mδf = M(|f |δ)1/δ. Using the same methods as those of [9, 12], we can get the following.

Lemma 2.4. Assume that the semigroup e−tL has a kernel pt(x, y) which satisfies the upper bound
(1.1). Let λ > 0 and f ∈ Lp(Rn) for some 1 < p < ∞. Suppose thatω ∈ A∞, then for every 0 < η < 1,
there exists a real number γ > 0 independent of γ, f such that one has the following weighted version
of the local good λ inequality, for η > 0, A > 1,

ω
{

x ∈ R
n : Mδf > Aλ,M#

L,δf(x) ≤ γλ
}

≤ ηω
{

x ∈ R
n : Mδf(x) > λ

}

, (2.15)

where A > 1 is a fixed constant which depends only on n.

If μ, ν ∈ A∞, 1 < p < ∞, 0 ≤ k < 1, then

∥
∥f

∥
∥
Lp,k(μ,ν) ≤

∥
∥Mδf

∥
∥
Lp,k(μ,ν) ≤ C

∥
∥
∥M#

L,δf
∥
∥
∥
Lp,k(μ,ν)

. (2.16)

In particular, when μ = ν = ω and ω ∈ A∞, we have

∥
∥f

∥
∥
Lp,k(ω) ≤

∥
∥Mδf

∥
∥
Lp,k(ω) ≤ C

∥
∥
∥M#

L,δf
∥
∥
∥
Lp,k(ω)

. (2.17)

3. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following lemmas.

Lemma 3.1 (see [1]). Assume that the semigroup e−tL has a kernel pt(x, y) which satisfies the upper
bound (1.1). Then for 0 < α < 1, the difference operator L−α/2 − e−tLL−α/2 has an associated kernel
Kα,t(x, y) which satisfies

Kα,t

(

x, y
) ≤ C

∣
∣x − y

∣
∣
n−α

t
∣
∣x − y

∣
∣
2
. (3.1)

Lemma 3.2 (see [4]). Let 0 < α + β < n, 1 < p < n/(α + β), 1/q = 1/p − (α + β)/n, and ω ∈ A1.
Then for every 0 < k < p/q and 1 < r < p, one has

∥
∥Mα+β,rf

∥
∥
Lq,kq/p(ωq) ≤ C

∥
∥f

∥
∥
Lp,q(ωp,ωq). (3.2)

Lemma 3.3 (see [5]). Let 0 < β < n, 1 < p < n/β, 1/s = 1/p − β/n, and ω ∈ Ap,s. Then for every
0 < k < p/s, one has

∥
∥Mβ,1f

∥
∥
Ls,ks/p(ωs) ≤ C

∥
∥f

∥
∥
Lp,k(ωp,ωs). (3.3)
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Lemma 3.4 (see [4]). Let 0 < α + β < n, 1 < p < n/(α + β), 1/q = 1/p − α/n, 1/s = 1/q − β/n,
and ωq ∈ A1. Then for every 0 < k < p/s, one has

∥
∥Mβ,1f

∥
∥
Ls,ks/p(ωs) ≤ C

∥
∥f

∥
∥
Lq,kq/p(ωq,ωs). (3.4)

Lemma 3.5. Let 0 < α + β < n, 1 < p < n/(α + β), 1/q = 1/p − α/n, 1/s = 1/q − β/n, and
ωq ∈ A1. Then for every 0 < k < pβ/n, one has

∥
∥
∥L−α/2f

∥
∥
∥
Lq,kq/p(ωq,ωs)

≤ C
∥
∥f

∥
∥
Lp,k(ωp,ωs). (3.5)

Proof. Since the semigroup e−tL has a kernel pt(x, y) which satisfies the upper bound (1.1), it
is easy to check that L−α/2f(x) ≤ CIα(|f |)(x) for all x ∈ R

n. Together with the result (cf. [4]),
that is,

∥
∥Iαf‖Lq,kq/p(ωq,ωs) ≤ C

∥
∥f‖Lp,k(ωp,ωs), (3.6)

we can get the desired result.

Remark 3.6. Using the boundedness property of Iα, we also know L−α/2 is bounded from L1

to weak Ln/(n−α). It is easy to check that Lemmas 3.2–3.5 also hold when k = 0.

The following lemma plays an important role in the proof of Theorem 1.1.

Lemma 3.7. Let 0 < δ < 1, 0 < α < n, 0 < β < 1, and b ∈ Lipβ(R
n). Then for all r > 1 and for all

x ∈ R
n, one has

M#
L,δ

([

b, L−α/2
]

f
)

(x)

≤ C‖b‖Lipβ(R
n)

(

Mβ,1

(

L−α/2f
)

(x) +Mα+β,rf(x) +Mα+β,1f(x)
)

.

(3.7)

The same method of proof as that of Lemma 4.7 (see below), one omits the details.

Proof of Theorem 1.1. We first prove (a). We only prove Theorem 1.1 in the case 0 < α < 1. For
the general case 0 < α < n, the method is the same as that of [1]. We omit the details.

For 0 < α + β < n and 1 < p < n/(α + β), we can find a number r such that 1 < r < p. By
(2.17) and Lemma 3.7, we obtain the following:

∥
∥
∥

[

b, L−α/2
]

f
∥
∥
∥
Lq,kq/p(ωq)

≤ C
∥
∥
∥M#

L,δ

([

b, L−α/2
]

f
)∥
∥
∥
Lq,kq/p(ωq)

≤ C‖b‖Lipβ(R
n)

(∥
∥
∥Mβ,1

(

L−α/2f
)∥
∥
∥
Lq,kq/p(ωq)

+
∥
∥Mα+β,rf

∥
∥
Lq,kq/p(ωq) +

∥
∥Mα+β,1f

∥
∥
Lq,kq/p(ωq)

)

.

(3.8)
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Let 1/q1 = 1/p − α/n and 1/q = 1/q1 − β/n. Since ωq ∈ A1, then by (2.5), we have ω ∈ Ap,q.
Since 0 < k < min{p/q, pβ/n}, by Lemmas 3.2–3.5, we yield that

∥
∥
∥

[

b, L−α/2
]

f
∥
∥
∥
Lq,kq/p(ωq)

≤ C‖b‖Lipβ(R
n)

(∥
∥
∥L−α/2f

∥
∥
∥
Lq1 ,kq1/p(ωq1 ,ωq)

+
∥
∥f

∥
∥
Lp,k(ωp,ωq)

)

≤ C‖b‖Lipβ(R
n)

∥
∥f

∥
∥
Lp,k(ωp,ωq).

(3.9)

Now we prove (b). Let L = −Δ be the Laplacian on R
n, then L−α/2 is the classical

fractional integral Iα. Let k = 0 and weight ω ≡ 1, then Lp,k(ωp,ωq) = Lp and Lq,kq/p(ωq,ω) =
Lq. From [2], the (Lp, Lq) boundedness of [b, Iα] implies that b ∈ Lipβ(R

n).
Thus Theorem 1.1 is proved.

4. Proof of Theorem 1.2

We also need some Lemmas to prove Theorem 1.2.

Lemma 4.1 (see [4]). Let 0 < α + β < n, 1 < p < n/(α + β), 1/q = 1/p − α/n, 1/s = 1/q − β/n,
and ωs/p ∈ A1. Then if 0 < k < p/s and rω > 1/(p/(q − k)), one has

∥
∥Mβ,1f

∥
∥
Ls,ks/p(ωs/p,ω) ≤ C

∥
∥f

∥
∥
Lq,kq/p(ωq/p,ω). (4.1)

Lemma 4.2 (see [4]). Let 0 < α < n, 1 < p < n/α, 1/q = 1/p − α/n, and ωq/p ∈ A1. Then if
0 < k < p/q and rω > (1 − k)/(p/(q − k)), one has

∥
∥Mα,1f

∥
∥
Lq,kq/p(ωq/p,ω) ≤ C

∥
∥f

∥
∥
Lp,k(ω). (4.2)

Lemma 4.3 (see [4]). Let 0 < α < n, 1 < p < n/α, 1/q = 1/p − α/n, 0 < k < p/q, and ω ∈ A∞.
For any 1 < r < p, one has

∥
∥Mα,r,ωf

∥
∥
Lq,kq/p(ωq/p,ω) ≤ C

∥
∥f

∥
∥
Lp,k(ω). (4.3)

Lemma 4.4. Let 0 < α < n, 1 < p < n/α, 1/q = 1/p − α/n, and ωq/p ∈ A1. Then if 0 < k < p/q
and rω > (1 − k)/(p/(q − k)), one has

∥
∥
∥L−α/2f

∥
∥
∥
Lq,kq/p(ωq/p,ω)

≤ C
∥
∥f

∥
∥
Lp,k(ω). (4.4)

Proof. As before, we know that L−α/2f(x) ≤ CIα(|f |)(x) for all x ∈ R
n. Using the boundedness

property of Iα on weighted Morrey space (cf. [4]), we have
∥
∥
∥L−α/2f

∥
∥
∥
Lq,kq/p(ωq/p,ω)

≤ ∥
∥Iαf

∥
∥
Lq,kq/p(ωq/p,ω) ≤ C

∥
∥f

∥
∥
Lp,k(ω), (4.5)

where 1 < p < n/α and 1/q = 1/p − α/n.

Remark 4.5. It is easy to check that the above lemmas also hold for k = 0.
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Lemma 4.6. Assume that the semigroup e−tL has a kernel pt(x, y) which satisfies the upper bound
(1.1), and let b ∈ Lipβ(ω), ω ∈ A1. Then, for every function f ∈ Lp(Rn), p > 1, x ∈ R

n, and
1 < r < ∞, one has

sup
x∈B

1
|B|

∫

B

∣
∣
∣e−tBL

(

b
(

y
) − b2B

)

f
(

y
)
∣
∣
∣dy ≤ C‖b‖Lipβ(ω)ω(x)Mβ,r,ωf(x). (4.6)

Proof. Fix f ∈ Lp(Rn), 1 < p < ∞ and x ∈ B. Then,

1
|B|

∫

B

∣
∣
∣e−tBL

(

(b − b2B)f
)(

y
)
∣
∣
∣dy

≤ 1
|B|

∫

B

∫

Rn

∣
∣ptB

(

y, z
)∣
∣
∣
∣(b(z) − b2B)f(z)

∣
∣dzdy

≤ 1
|B|

∫

B

∫

2B

∣
∣ptB

(

y, z
)∣
∣
∣
∣(b(z) − b2B)f(z)

∣
∣dzdy

+
1
|B|

∫

B

∞∑

k=1

∫

2k+1B\2kB

∣
∣ptB

(

y, z
)∣
∣
∣
∣(b(z) − b2B)f(z)

∣
∣dzdy

.= M +N.

(4.7)

It follows from y ∈ B and z ∈ 2B that

∣
∣ptB

(

y, z
)∣
∣ ≤ Ct−n/2B ≤ C

1
|2B| . (4.8)

Thus, Hölder’s inequality and Definition 2.2 lead to the following:

M ≤ C
1

|2B|
∫

2B

∣
∣(b(z) − b2B)f(z)

∣
∣dz

≤ C
1

|2B|
(∫

2B
|b(z) − b2B|r

′
ω(z)1−r

′
dz

)1/r ′(∫

2B

∣
∣f(z)

∣
∣
r
ω(z)dz

)1/r

≤ C‖b‖Lipβ(ω)
1

|2B|ω(2B)β/n+1/r
′
ω(2B)1/r

(
1

ω(2B)

∫

2B

∣
∣f(z)

∣
∣
r
ω(z)dz

)1/r

≤ C‖b‖Lipβ(ω)
1

|2B|ω(2B)β/n+1
(

1
ω(2B)

∫

2B

∣
∣f(z)

∣
∣
r
ω(z)dz

)1/r

≤ C‖b‖Lipβ(ω)ω(x)

(

1

ω(2B)1−βr/n

∫

2B

∣
∣f(z)

∣
∣
r
ω(z)dz

)1/r

≤ C‖b‖Lipβ(ω)ω(x)Mβ,r,ωf(x).

(4.9)
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Moreover, for any y ∈ B and z ∈ 2k+1B \ 2kB, we have |y − z| ≥ 2k−1rB and |ptB(y, z)| ≤
C(e−c2

2(k−1)
2(k+1)n/|2k+1B|)

N =
1
|B|

∫

B

∞∑

k=1

∫

2k+1B\2kB

∣
∣ptB

(

y, z
)∣
∣
∣
∣(b(z) − b2B)f(z)

∣
∣dzdy

≤ C
∞∑

k=1

e−c2
2(k−1)

2(k+1)n
∣
∣2k+1B

∣
∣

∫

2k+1B

∣
∣(b(z) − b2B)f(z)

∣
∣dz

≤ C
∞∑

k=1

e−c2
2(k−1)

2(k+1)n
∣
∣2k+1B

∣
∣

∫

2k+1B

∣
∣(b(z) − b2k+1B)f(z)

∣
∣dz

+ C
∞∑

k=1

e−c2
2(k−1)

2(k+1)n
∣
∣2k+1B

∣
∣

∫

2k+1B

∣
∣(b2k+1B − b2B)f(z)

∣
∣dz

.= N1 +N2.

(4.10)

We will estimate the values of terms N1 and N2, respectively.
Using Hölder’s inequality and Remark 2.3, we have the following:

N1 ≤ C
∞∑

k=1

e−c2
2(k−1)

2(k+1)n
∣
∣2k+1B

∣
∣

×
(∫

2k+1B
|b(z) − b2k+1B|r

′
ω(z)1−r

′
dz

)1/r ′(∫

2k+1B

∣
∣f(z)

∣
∣
r
ω(z)dz

)1/r

≤ C
∞∑

k=1

2(k+1)ne−c2
2(k−1)

× ‖b‖Lipβ(ω)
ω
(

2k+1B
)

∣
∣2k+1B

∣
∣

(

1

ω
(

2k+1B
)1−βr/n

∫

2k+1B

∣
∣f(z)

∣
∣
r
ω(z)dz

)1/r

≤ C‖b‖Lipβ(ω)ω(x)Mβ,r,ωf(x).

(4.11)

By a simple calculation, we have

|b2k+1B − b2B| ≤ Ckω(x)‖b‖Lipβ(ω)ω
(

2k+1B
)β/n

. (4.12)

Since ω ∈ A1, by the Hölder inequality, we get

N2 ≤ C
∞∑

k=1

2(k+1)ne−c2
2(k−1) kω

(

2k+1B
)β/n

∣
∣2k+1B

∣
∣

ω(x)‖b‖Lipβ(ω)

∫

2k+1B

∣
∣f(z)

∣
∣dz

≤ C
∞∑

k=1

k2(k+1)ne−c2
2(k−1)

ω(x)‖b‖Lipβ(ω)
ω
(

2k+1B
)β/n

∣
∣2k+1B

∣
∣
1/r

(∫

2k+1B

∣
∣f(z)

∣
∣
r
dz

)1/r
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= C
∞∑

k=1

k2(k+1)ne−c2
2(k−1)

×ω(x)‖b‖Lipβ(ω)

(

ω(2k+1B)
|2k+1B|

1

ω
(

2k+1B
)1−βr/n

∫

2k+1B

∣
∣f(z)

∣
∣
r
dz

)1/r

≤ C
∞∑

k=1

k2(k+1)ne−c2
2(k−1)

ω(x)‖b‖Lipβ(ω)

(

1

ω(2k+1B)1−βr/n

∫

2k+1B

∣
∣f(z)

∣
∣
r
ω(z)dz

)1/r

≤ C‖b‖Lipβ(ω)ω(x)Mβ,r,ωf(x).

(4.13)

Thus, Lemma 4.6 is proved.

Lemma 4.7. Let 0 < δ < 1, 0 < α < 1, ω ∈ A1, and b ∈ Lip β(ω). Then for all r > 1 and for all
x ∈ R

n, one has

M#
L,δ

([

b, L−α/2
]

f
)

(x)

≤ C‖b‖Lipβ(ω) ×
(

ω(x)1+β/nMβ,1

(

L−α/2f
)

(x)

+ ω(x)1−α/nMα+β,r,ωf(x) +ω(x)1+β/nMα+β,1f(x)
)

.

(4.14)

Proof. For any given x ∈ R
n, fix a ball B = B(x0, rB) which contains x. We decompose f =

f1 + f2, where f1 = fχ2B. Observe that

[

b, L−α/2
]

f = (b − b2B)L−α/2f − L−α/2((b − b2B)f1
) − L−α/2((b − b2B)f2

)

e−tBL
([

b, L−α/2
]

f
)

= e−tBL
[

(b − b2B)L−α/2f − L−α/2((b − b2B)f1
) − L−α/2((b − b2B)f2

)]

.
(4.15)

Then

(
1
|B|

∫

B

∣
∣
∣

[

b, L−α/2
]

f
(

y
) − e−tBL

([

b, L−α/2
]

f
)

(y)
∣
∣
∣

δ
dy

)1/δ

≤ C

(
1
|B|

∫

B

∣
∣
∣

(

b
(

y
) − b2B

)

L−α/2f
(

y
)
∣
∣
∣

δ
dy

)1/δ

+ C

(
1
|B|

∫

B

∣
∣
∣L−α/2((b − b2B)f1

)(

y
)
∣
∣
∣

δ
dy

)1/δ

+ C

(
1
|B|

∫

B

∣
∣
∣e−tBL

(

(b − b2B)L−α/2f
)(

y
)
∣
∣
∣

δ
dy

)1/δ

+ C

(
1
|B|

∫

B

∣
∣
∣e−tBL

(

L−α/2((b − b2B)f1
))(

y
)
∣
∣
∣

δ
dy

)1/δ

+ C

(
1
|B|

∫

B

∣
∣
∣

(

L−α/2 − e−tBLL−α/2
)(

(b − b2B)f2
)(

y
)
∣
∣
∣

δ
dy

)1/δ

.= I + II + III + IV + V.

(4.16)
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We are going to estimate each term, respectively. Fix 0 < δ < 1 and choose a real
number τ such that 1 < τ < 2 and τ ′δ < 1. Since ω ∈ A1, then it follows from Hölder’s
inequality that

I ≤ C

(
1
|B|

∫

B

∣
∣
(

b
(

y
) − b2B

)∣
∣
τδ
dy

)1/τδ(∫

B

∣
∣
∣L−α/2f

(

y
)
∣
∣
∣

τ ′δ
dy

)1/τ ′δ

≤ C

(
1
|B|

∫

2B

∣
∣
(

b
(

y
) − b2B

)∣
∣dy

)(∫

B

∣
∣
∣L−α/2f

(

y
)
∣
∣
∣dy

)

≤ C‖b‖Lipβ(ω)
1

|2B|ω(2B)1+β/n
(∫

B

∣
∣
∣L−α/2f

(

y
)
∣
∣
∣dy

)

≤ C‖b‖Lipβ(ω)ω(x)1+β/nMβ,1

(

L−α/2f
)

(x).

(4.17)

For II, using Hölder’s inequality, Kolmogorov’s inequality (see page 485 [8],) and
Remark 3.6, then we deduce that

II ≤ C
1
|B|

∫

B

∣
∣
∣L−α/2((b − b2B)f1

)(

y
)
∣
∣
∣dy

≤ C
1
|B| |B|

α/n
∥
∥
∥L−α/2(b − b2B)f1

∥
∥
∥
Ln/(n−α),∞

≤ C
1

|B|1−α/n
∫

B

∣
∣
(

b
(

y
) − b2B

)

f1
(

y
)∣
∣dy

≤ C
1

|B|1−α/n
(∫

2B

∣
∣f
(

y
)∣
∣
r
w
(

y
)

dy

)1/r(∫

2B

∣
∣b
(

y
) − b2B

∣
∣
r ′
w
(

y
)−r ′/r

dy

)1/r ′

≤ C‖b‖Lipβ(ω)Mα+β,r,ωf(x)
(
ω(2B)
|2B|

)1−α/n

≤ C‖b‖Lipβ(ω)ω(x)1−α/nMα+β,r,ωf(x),

(4.18)

where we have used the condition that ω ∈ A1.
Using Hölder’s inequality and Lemma 4.6, we obtain that

III ≤ C‖b‖Lipβ(ω)ω(x)Mβ,r,ω

(

L−α/2f
)

(x). (4.19)

For IV , using the estimate in II, we get

IV ≤ C

|B|
∫

B

∫

2B

∣
∣ptB

(

y, z
)∣
∣

∣
∣
∣L−α/2((b − b2B)f

)

(z)
∣
∣
∣dzdy

≤ C

|2B|
∫

2B

∣
∣
∣L−α/2((b − b2B)f

)

(z)
∣
∣
∣dz

≤ C‖b‖Lipβ(ω)ω(x)1−α/nMα+β,r,ωf(x).

(4.20)
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By virtue of Lemma 3.1, we have the following:

V ≤ C

|B|
∫

B

∫

(2B)c

∣
∣Kα,tB

(

y, z
)∣
∣
∣
∣(b(z) − b2B)f(z)

∣
∣dzdy

≤ C
∞∑

k=1

∫

2krB≤|x0−z|<2k+1rB

1
|x0 − z|n−α

r2B

|x0 − z|2
∣
∣(b(z) − b2B)f(z)

∣
∣dz

≤ C
∞∑

k=1

2−2k
1

∣
∣2k+1B

∣
∣
1−α/n

∫

2k+1B

∣
∣(b(z) − b2B)f(z)

∣
∣dz

≤ C
∞∑

k=1

2−2k
1

∣
∣2k+1B

∣
∣
1−α/n

∫

2k+1B

∣
∣(b(z) − b2k+1B)f(z)

∣
∣dz

+ C
∞∑

k=1

2−2k|b2k+1B − b2B| 1
∣
∣2k+1B

∣
∣
1−α/n

∫

2k+1B

∣
∣f(z)

∣
∣dz

.= V I + V II.

(4.21)

Making use of the same argument as that of II, we have

V I ≤ C‖b‖Lipβ(ω)ω(x)1−α/nMα+β,r,ωf(x). (4.22)

Note that ω ∈ A1,

|b2k+1B − b2B| ≤ Ckω(x)‖b‖Lipβ(ω)ω
(

2k+1B
)β/n

. (4.23)

So, the value of V II can be controlled by

C‖b‖Lipβ(ω)ω(x)1+β/nMα+β,1f(x). (4.24)

Combining the above estimates for I–V, we finish the proof of Lemma 4.7.

Proof of Theorem 1.2. We first prove (a). As before, we only prove Theorem 1.2 in the case 0 <
α < 1. For 0 < α + β < n and 1 < p < n/(α + β), we can find a number r such that 1 < r < p. By
Lemma 4.7, we obtain the following:

∥
∥
∥

[

b, L−α/2
]

f
∥
∥
∥
Lq,kq/p(ω1−(1−α/n)q,ω)

≤ C
∥
∥
∥M#

L,δ

([

b, L−α/2
]

f
)∥
∥
∥
Lq,kq/p(ω1−(1−α/n)q,ω)
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≤ C‖b‖Lipβ(ω)

(∥
∥
∥ω(·)1+β/nMβ,1

(

L−α/2f
)∥
∥
∥
Lq,kq/p(ω1−(1−α/n)q,ω)

+
∥
∥
∥ω(·)1−α/nMα+β,r,ωf

∥
∥
∥
Lq,kq/p(ω1−(1−α/n)q,ω)

+
∥
∥
∥ω(·)1+β/nMα+β,1f

∥
∥
∥
Lq,kq/p(ω1−(1−α/n)q,ω)

)

≤ C‖b‖Lipβ(ω)

(∥
∥
∥Mβ,1

(

L−α/2f
)∥
∥
∥
Lq,kq/p(ωq/p,ω)

+
∥
∥Mα+β,r,ωf

∥
∥
Lq,kq/p(ω) +

∥
∥Mα+β,1f

∥
∥
Lq,kq/p(ωq/p,ω)

)

.

(4.25)

Let 1/q1 = 1/p − α/n and 1/q = 1/q1 − β/n. Lemmas 4.1–4.4 yield that

∥
∥
∥

[

b, L−α/2
]

f
∥
∥
∥
Lq,kq/p(ω1−(1−α/n)q,ω)

≤ C‖b‖Lipβ(ω)

(∥
∥
∥L−α/2f

∥
∥
∥
Lq1 ,kq1/p(ωq1/p,ω)

+
∥
∥f

∥
∥
Lp,k(ω)

)

≤ C‖b‖Lipβ(ω)

∥
∥f

∥
∥
Lp,k(ω).

(4.26)

Now we prove (b). Let L = −Δ be the Laplacian on R
n, then L−α/2 is the classical

fractional integral Iα. We use the same argument as Janson [13]. Choose Z0 ∈ R
n so that

|Z0| = 3. For x ∈ B(Z0, 2), |x|−α+n can be written as the absolutely convergent Fourier series,
|x|−α+n =

∑

m∈Zn ame
i〈νm,x〉 with

∑

m |am| < ∞ since |x|−α+n ∈ C∞(B(Z0, 2)). For any x0 ∈ R
n and

ρ > 0, let B = B(x0, ρ) and BZ0 = B(x0 + Z0ρ, ρ),

∫

B

∣
∣
∣b(x) − bBZ0

∣
∣
∣dx =

1
|BZ0 |

∫

B

∣
∣
∣
∣
∣

∫

BZ0

(

b(x) − b
(

y
))

dy

∣
∣
∣
∣
∣
dx

=
1
ρn

∫

B

s(x)

(∫

BZ0

(

b(x) − b
(

y
))∣
∣x − y

∣
∣
−α+n∣

∣x − y
∣
∣
n−α

dy

)

dx,

(4.27)

where s(x) = sgn(
∫

BZ0
(b(x) − b(y))dy). Fix x ∈ B and y ∈ BZ0 , then (y − x)/ρ ∈ BZ0,2, hence,

ρ−α+n

ρn

∫

B

s(x)

(∫

BZ0

(

b(x) − b
(

y
))∣
∣x − y

∣
∣
−α+n

(∣
∣x − y

∣
∣

ρ

)n−α
dy

)

dx

= ρ−α
∑

m∈Zn

am

∫

B

s(x)

(∫

BZ0

(

b(x) − b
(

y
))∣
∣x − y

∣
∣
n−α

ei〈νm,y/ρ〉dy

)

e−i〈νm,x/ρ〉dx

≤ ρ−α
∣
∣
∣
∣
∣

∑

m∈Zn

|am|
∫

B

s(x)
[

b, L−α/2
](

χBZ0
ei〈νm,·/ρ〉

)

(x)χB(x)e−i〈νm,x/ρ〉dx

∣
∣
∣
∣
∣
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≤ ρ−α
∑

m∈Zn

|am|
∥
∥
∥

[

b, L−α/2
](

χBZ0
ei〈νm,·/ρ〉

)∥
∥
∥
Lq,0(ω1−(1−α/n)q,ω)

(∫

B

ω(x)q
′(1/q′−α/n)dx

)1/q′

≤ Cρ−α
∑

m∈Zn

|am|
∥
∥
∥χBZ0

∥
∥
∥
Lp,0(ω)

(∫

B

ω(x)q
′(1/q′−α/n)dx

)1/q′

≤ Cω(B)1/p+1/q
′−α/n = Cω(B)1+β/n. (4.28)

This implies that b ∈ Lipβ(ω). Thus, (b) is proved.
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