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A familyHμ(p), μ > 0, p ∈ T
2 of the Friedrichsmodels with the perturbation of rank one, associated

to a system of two particles, moving on the two-dimensional lattice Z
2 is considered. The existence

or absence of the unique eigenvalue of the operator Hμ(p) lying below threshold depending on
the values of μ > 0 and p ∈ Uδ(0) ⊂ T

2 is proved. The analyticity of corresponding eigenfunction
is shown.

1. Introduction

In celebrated work [1] of Simon and Klaus it has been considered a family of the Schrödinger
operators H = −Δ + μV and, a situation where as μ tends to μ0 some eigenvalue ei(μ) tends
to 0, that is, as μ ↓ μ0 an eigenvalue is absorbed into continuous spectrum, and conversely,
for any μ : μ > μ0 continuous spectrum gives birth to a new eigenvalue. This phenomenon in
[1] is called coupling constant threshold.

In [2] the Hamiltonian of a system of two identical quantum mechanical particles
(bosons) moving on the d-dimensional lattice Z

d, d ≥ 3 and interacting via zero-range
repulsive pair potentials has been considered. For the associated two-particle Schrödinger
operator Hμ(k), k ∈ T

d = (−π,π]d the existence of coupling constant threshold μ0 = μ0(k) > 0
has been proved: the operator has none eigenvalue for any 0 < μ ≤ μ0, but for each μ > μ0 it
has a unique eigenvalue z(μ, k) above the upper threshold of the spectrum.
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Note that in [1] the existence of a coupling constant threshold has been assumed, at
the same time in [2] the coupling constant threshold has been definitely found by the given data
of the Hamiltonian.

We remark that for the Hamiltonians of a system of two arbitrary particles moving on
R
d or Z

d, d ≥ 1 the coupling constant threshold vanishes, if d = 1, 2 and the coupling constant
threshold is positive, if d ≥ 3.

Notice also that for the Hamiltonians of a system of two identical particles moving
on R

d or Z
d, d = 1, 2 the coupling constant threshold vanishes, if particles are bosons and the

coupling constant threshold is positive, if particles are fermions.
In [3] for a wide class of the two-particle Schrödinger operators Hμ(k) on the d-

dimensional lattice Z
d, d ≥ 3, k being the two-particle quasimomentum, it has been proved

that if the following two assumptions (i) and (ii) are satisfied, then for all k /= 0, the discrete
spectrum ofHμ(k) below its threshold is nonempty. The assumptions are (i) the two-particle
Schrödinger operator Hμ(0), corresponding to the zero value of the quasimomentum k, has
a coupling constant threshold μ0(0) > 0 and (ii) the one-particle free Hamiltonians in the
coordinate representation generate positivity preserving semigroups.

In [4] a family of the Friedrichs modelsHμ(p), μ > 0, p ∈ (−π,π]3 with perturbation
of rank one associated to a system of two particles on the three-dimensional latticeZ

3 has been
considered. In some special case of themultiplication operator and under the assumption that
the operatorHμ(0), 0 ∈ T

3 has a coupling constant threshold μ0(0) > 0, the existence of a unique
eigenvalue, below the threshold of the spectrum of Hμ0(0)(p), p ∈ (−π,π]3 for all nontrivial
values of p ∈ T

3, has been proved.
In the present paper, a family of the Friedrichs models Hμ(p), μ > 0, p ∈ Uδ(0) ⊂ T

2,
where Uδ(0) is a δ-neighborhood of the point p = 0 ∈ T

2 with perturbation of rank one
associated to a system of two particles on the two-dimensional lattice Z

2 interacting via pair
local potentials, is considered and the following results have been obtained.

(i) If the parameters of the Friedrichs model satisfy some conditions (see Theorem 2.3),
then there exists a coupling constant threshold μ0 = μ0(p) > 0 : for any 0 < μ ≤
μ0(p) the operator has none eigenvalue; at the same time for any μ > μ0(p) it has a
unique eigenvalue z(μ, p), lying below its threshold of the spectrum. Moreover an
explicit expression for the corresponding eigenfunction is found and its analyticity
is proven.

(ii) If the parameters of the Friedrichs model do not satisfy conditions mentioned in (i),
then the operator has none positive coupling constant threshold, that is, for any μ > 0
the operatorHμ(p) has a unique eigenvalue z(μ, p), lying below its threshold of the
spectrum.

(iii) A criterion for being the threshold m(p), p ∈ Uδ(0) of the spectrum of Hμ(p) a
virtual level of the operatorHμ(p) is proven.

Note that the generalized Friedrichs models appear in the problems of quantum
mechanics [5], solid state physics [6], and quantum field theory [7, 8] and the existence of
its eigenvalues and resonances have been studied in [9, 10].

In [11] a special family of generalized Friedrichs models has been considered and the
existence of eigenvalues for some values of quasimomentum p ∈ T

d of the system, lying in a
neighborhood of some p0 ∈ T

d, has been proved.
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2. Notions and Assumptions: The Main Results

Let Z be the one-dimensional hypercubic lattice and T
2 = (R/2πZ)2 = (−π,π]2 be the two-

dimensional torus, the dual group of Z
2 (Brillion zone). Note that operations addition and

multiplication by number of the elements of torus T
2 ≡ (−π,π]2 ⊂ R

2 is defined as operations
in R

2 by the module (2πZ)2.
Let L2(T2) be the Hilbert space of square-integrable functions defined on the torus T

2

and C1 be one-dimensional complex Hilbert space.
We consider the family of generalized Friedrichs model acting in L2(T2) as follows:

Hμ

(
p
)
= H0

(
p
) − μΦ∗Φ, μ > 0. (2.1)

Here

Φ : L2

(
T
2
)
−→ C1, Φf =

(
f, ϕ
)
L2(T2),

Φ∗ : C1 −→ L2

(
T
2
)
, Φ∗f0 = ϕ

(
q
)
f0,

(2.2)

where (·, ·)L2(T2) is inner product in L2(T2) andH0(p), p ∈ T
2 is the multiplication operator by

function wp(·) := w(p, ·), that is,

(
H0
(
p
)
f
)(
q
)
= wp

(
q
)
f
(
q
)
, f ∈ L2

(
T
2
)
. (2.3)

Note that for anyf ∈ L2(T2) and g0 ∈ C1 the equality

(
Φf, g0

)
C1 =

(
f,Φ∗g0

)
L2(T2), (2.4)

holds.
The following assumption will be needed throughout the paper.

Assumption 2.1. The following conditions are satisfied:

(i) the function ϕ(·) is nontrivial real-analytic on T
2;

(ii) the function w(·, ·) is real-analytic on (T2)2 = T
2 × T

2 and has a unique
nondegenerated minimum at (0, 0) ∈ (T2)2.

The perturbation v = Φ∗Φ is positive operator of rank one. Consequently, by well-
known Weyl’s theorem [12], the essential spectrum of Hμ(p) fills the following segment on
the real axis:

σess
(
Hμ

(
p
))

= σess
(
H0
(
p
))

=
[
m
(
p
)
,M
(
p
)]
, (2.5)

where

m
(
p
)
= min

q∈T2
wp

(
q
)
, M

(
p
)
= max

q∈T2
wp

(
q
)
. (2.6)
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By Assumption 2.1 there exist such δ-neighborhood Uδ(0) ⊂ T
2 of the point p =

0 ∈ T
2 and analytic vector function q0 : Uδ(0) → T

2 that for any p ∈ Uδ(0) the point
q0(p) = (q(1)0 (p), q(2)0 (p)) ∈ T

2 is a unique nondegenerated minimum of the function wp(·)
(see Lemma 3.2).

Moreover, in the case ϕ(q0(p)) = 0, p ∈ Uδ(0) the following integral

∫

T2

ϕ2(s)ds
wp(s) −m

(
p
) > 0, (2.7)

exists (see Lemma 3.4) and we introduce a parameter μ(p) as

1
μ
(
p
) =
∫

T2

ϕ2(s)ds
wp(s) −m

(
p
) > 0. (2.8)

If ϕ(q0(p))/= 0, p ∈ Uδ(0), then we define μ(p) as μ(p) = 0.

Definition 2.2. The number z = m(p) is called a virtual level of the operator Hμ(p), if the
equation Hμ(p)f = m(p)f has a nonzero solution f ∈ L1(T2) \ L2(T2), where L1(T2) is the
Banach space of integrable functions on T

2. The corresponding solution f is called a virtual
state of the operatorHμ(p).

In the following theorem we assert that for any μ > μ(p) there exists a unique
eigenvalue E(μ, p), lying below the essential spectrum, of the operator Hμ(p), p ∈ Uδ(0),
but for 0 < μ ≤ μ(p), p ∈ Uδ(0) the operatorHμ(p) has none eigenvalue outside the essential
spectrum. It is proved that for fixed p ∈ Uδ(0), the function E(·, p) is analytic in (μ(p),+∞).

Moreover, this theorem provides a criterion, for being the bottom m(p), p ∈ Uδ(0) of
the essential spectrum ofHμ(p), a virtual level of the operatorHμ(p).

Theorem 2.3. Let Assumption 2.1 holds and p ∈ Uδ(0). Then the following assertions are true.

(i) If μ > μ(p), then the operator Hμ(p) has a unique eigenvalue E(μ, p), lying below the
essential spectrum ofHμ(p). The function E(·, p) is monotonously decreasing real-analytic
function in the interval (μ(p),+∞) and the function E(μ, ·) is real-analytic in Uδ(0). The
corresponding eigenfunction

Ψ
(
μ; p, ·, E(μ, p)) = Cμϕ(·)

wp(·) − E
(
μ, p
) , (2.9)

is analytic on T
2, where C/= 0 is a normalizing constant. Moreover, the mappings

Ψμ : Uδ(0) −→ L2

(
T
2
)
, p �−→ Ψ

(
μ; p, ·, E(μ, p)) ∈ L2

(
T
2
)
,

Ψp :
(
μ
(
p
)
,+∞) −→ L2

(
T
2
)
, μ �−→ Ψ

(
μ; p, ·, E(μ, p)) ∈ L2

(
T
2
)
,

(2.10)

are vector-valued analytic functions inUδ(0) and (μ(p),+∞), respectively.
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(ii) If ϕ(q0(p)) = 0 and 0 < μ < μ(p), then the operator Hμ(p) has none eigenvalue in
(−∞, m(p)].

(iii) If ϕ(q0(p)) = 0,∇ϕ(q0(p)) = ((∂ϕ/∂q1)(q0(p)), (∂ϕ/∂q2)(q0(p)))/= 0 and μ = μ(p),
then the number z = m(p) is a virtual level of the operator Hμ(p) and the corresponding
virtual state is of the form:

fp(·) =
Cμ
(
p
)
ϕ(·)

wp(·) −m
(
p
) ∈ L1

(
T
2
)
\ L2

(
T
2
)
, (2.11)

where C/= 0 is a normalizing constant.

(iv) If ϕ(q0(p)) = 0,∇ϕ(q0(p)) = ((∂ϕ/∂q1)(q0(p)), (∂ϕ/∂q2)(q0(p))) = 0 and μ = μ(p),
then the number m(p) = wp(q0(p)) is an eigenvalue of the operator Hμ(p) and the
corresponding eigenfunction is of the form

fp
(
q
)
=

Cμ
(
p
)
ϕ(·)

wp(·) −m
(
p
) ∈ L2

(
T
2
)
, (2.12)

where C/= 0 is a normalizing constant.

Remark 2.4. Notice that if ϕ(q0(p))/= 0, then μ(p) = 0. So, in this case the number z = m(p) is
neither a virtual level nor an eigenvalue for the operatorHμ(p).

Remark 2.5. From the positivity ofΦ∗Φ it follows that the operatorHμ(p) has none eigenvalue
lying aboveM(p).

3. Proof of the Results

We postpone the proof of the theorem after several lemmas and remarks.
For any μ > 0 and p ∈ T

2 we define in C \ [m(p);M(p)] an analytic function Δ(μ, p; ·)
(the Fredholm determinant Δ(μ, p; ·), associated to the operatorHμ(p)) as

Δ
(
μ, p; ·) = 1 − μΩ(p; ·), (3.1)

where

Ω
(
p; z
)
=
∫

T2

ϕ2(s)ds
wp(s) − z , p ∈ T

2, z ∈ C \ [m(p);M(p)]. (3.2)

Lemma 3.1. For any μ ∈ (μ(p),+∞) and p ∈ Uδ(0) the number z ∈ C \ σess(Hμ(p)), p ∈ T
2 is an

eigenvalue of the operatorHμ(p) if and only if, when

Δ
(
μ, p; z

)
= 0. (3.3)
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The corresponding eigenfunction

fμ,p(·) =
Cμϕ(·)
wp(·) − z , (3.4)

is analytic on T
2, where C/= 0 is a normalizing constant [4].

Lemma 3.2. Let Assumption 2.1 holds. Then there exist such a δ-neighborhood Uδ(0) ⊂ T
2 of the

point p = 0 and analytic function q0 : Uδ(0) → T
2 that for any p ∈ Uδ(0) the point q0(p) is a

unique non degenerated minimum of wp(·).

Proof. By Assumption 2.1, the square matrix

A(0) =

(
∂2w0

∂qi∂qj
(0)

)2

i,j=1

> 0, (3.5)

is positively defined and ∇w0(0) = 0. Then by the implicit function theorem in analytic case
there exist a δ-neighborhood Uδ(0) ⊂ T

2 of p = 0 ∈ T
2 and a unique analytic vector function

q0(·) : Uδ(0) → T
2 such that ∇wp(q0(p)) = 0 and

A
(
p
)
=

(
∂2wp

∂qi∂qj

(
q0
(
p
))
)2

i,j=1

> 0, p ∈ Uδ(0). (3.6)

Hence for any p ∈ Uδ(0) the point q0(p) is a unique non degenerated minimum of the
function wp(·).

Remark 3.3. We note that by the parametrical Morse lemma for any p ∈ Uδ(0) there exists
a map s = ψ(y, p) of the sphere Wγ(0) ⊂ R

2 with radius γ > 0 and center at y = 0 to a
neighborhood U(q0(p)) of the point q0(p) that in U(q0(p)) the function wp(ψ(y, p)) can be
represented as

wp

(
ψ
(
y, p
))

= m
(
p
)
+ y2. (3.7)

Here the function ψ(y, ·) (resp., ψ(·, p)) is analytic inUδ(0) (resp.,Wγ(0)) and ψ(0, p) = q0(p).
Moreover, the Jacobian J(ψ(y, p)) of themapping s = ψ(y, p) is analytic inWγ(0) and positive,
that is J(ψ(y, p)) > 0 for all p ∈ Uδ(0) and for all y ∈Wγ(0).

Lemma 3.4. Let Assumption 2.1 holds. Then the integral

ξ
(
p
)
=
∫

T2

ϕ2(s) − ϕ2(q0
(
p
))

wp(s) −m
(
p
) ds, (3.8)

exists and defines an analytic function inUδ(0).
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Proof. We represent the function

ξ
(
p, z
)
=
∫

T2

ϕ2(s) − ϕ2(q0
(
p
))

wp(s) − z ds, (3.9)

as

ξ
(
p, z
)
= ξ1
(
p, z
)
+ ξ2
(
p, z
)
, (3.10)

where

ξ1
(
p, z
)
=
∫

U(q0(p))

ϕ2(s) − ϕ2(q0
(
p
))

wp(s) − z ds,

ξ2
(
p, z
)
=
∫

T2\U(q0(p))

ϕ2(s) − ϕ2(q0
(
p
))

wp(s) − z ds,

(3.11)

andU(q0(p)) is a neighborhood of q0(p).
Observe that by Assumption 2.1 for any p ∈ Uδ(0) the function ξ2(p, z) is analytic at

the point z = m(p).
According to Remark 3.3 in the integral for ξ1(p, z) a change of variables s = ψ(y, p)

implies

ξ1
(
p, z
)
=
∫

Wγ (0)

ϕ2(ψ
(
y, p
)) − ϕ2(q0

(
p
))

y2 +m
(
p
) − z J

(
ψ
(
y, p
))
dy, (3.12)

where J(ψ(y, p)) is the Jacobian of the mapping ψ(y, p).
Passing to spherical coordinates as y = rν, we obtain

ξ1
(
p, z
)
=
∫ γ

0

r

r2 +m
(
p
) − z

{∫

Ω2

[
ϕ2(ψ

(
rν, p

)) − ϕ2(q0
(
p
))]

J
(
ψ
(
rν, p

))
dν

}

dr, (3.13)

where Ω2 is a unit sphere in R
2 and dν its element. Inner integral can be represented as

∫

Ω2

[
ϕ2(ψ

(
rν, p

)) − ϕ2(q0
(
p
))]

J
(
ψ
(
rν, p

))
dν =

∞∑

n=1

τn
(
p
)
r2n, (3.14)

where the Pizetti coefficients τn(p), n = 1, 2, . . . are analytic inUδ(0) [13].
Thus we have that

ξ1
(
p, z
)
=

∞∑

n=1

τn
(
p
)
∫ γ

0

r2n+1dr

r2 +m
(
p
) − z . (3.15)
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From (3.15) it follows that the following limit exists

ξ1
(
p
)
= lim

z→m(p)−0
ξ1
(
p, z
)
= lim

z→m(p)−0

∞∑

n=1

τn
(
p
)
∫ γ

0

r2n+1dr

r2 +m
(
p
) − z =

∞∑

n=1

γ2n

2n
τn
(
p
)
, (3.16)

and, consequently,

ξ
(
p
)
= lim

z→m(p)−0
ξ
(
p, z
)
= ξ1
(
p
)
+ ξ2
(
p
)
, (3.17)

where ξ2(p) = ξ2(p,m(p)). Observe that the functions in the right hand side of (3.17) are
analytic in p ∈ Uδ(0). So, the function ξ(p) is analytic in p ∈ Uδ(0).

Proposition 3.5. For ζ < 0 the following equalities hold:

In(ζ) =
∫δ

0

r2n+1dr

r2 − ζ = −1
2
ζn ln(−ζ) + În(ζ), n = 0, 1, 2, . . . , (3.18)

where ln(−ζ) is real for ζ < 0 and În(ζ) is an analytic function in a neighborhood of the origin [14].

In the following lemma we establish an expansion of Δ(μ, p; z) in a half neighborhood
(m(p) − ε,m(p)) of the point z = m(p).

Lemma 3.6. Assume Assumption 2.1. Then for any μ > 0, p ∈ Uδ(0) and sufficiently small m(p) −
z > 0 the function Δ(μ, p; ·) can be represented as the following convergent series:

Δ
(
μ, p; z

)
= 1 − μα0

(
p
)
ln
(
m
(
p
) − z) + μ

2
ln
(
m
(
p
) − z)

∞∑

n=1

αn
(
p
)(
m
(
p
) − z)n − μF(p, z),

α0
(
p
)
= −1

2
ϕ2(q0

(
p
))
J
(
q0
(
p
))
,

F
(
p, z
)
=

∞∑

n=0

cn
(
p
)(
m
(
p
) − z)n,

(3.19)

where αn(p), cn(p), n = 0, 1, 2, . . . are real numbers.

Proof. The function Ω(p; ·) can be written as a sum of the following functions:

Ω
(
p; ·) = I1

(
p, ·) + I2

(
p, ·) + I3

(
p, ·), (3.20)
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where

I1
(
p, z
)
= ϕ2(q0

(
p
))
∫

U(q0(p))

ds

wp(s) − z , I2
(
p, z
)
= ϕ2(q0

(
p
))
∫

T2\U(q0(p))

ds

wp(s) − z ,

I3
(
p, z
)
=
∫

T2

(
ϕ2(s) − ϕ2(q0

(
p
)))

ds

wp(s) − z ,

(3.21)

andU(q0(p)) is a neighborhood of the point q0(p), p ∈ Uδ(0).
Since minq∈T2wp(q) = wp(q0(p)) for any p ∈ Uδ(0), the function I2(p, z) is analytic at

z = m(p). According to Lemma 3.4 the function I3(p,m(p)) is analytic inUδ(0).
A change of variables s = ψ(y, p) in the integral I1(p, z) yields

I1
(
p, z
)
= ϕ2(q0

(
p
))
∫

Wγ (0)

J
(
ψ
(
y, p
))
dy

m
(
p
)
+ y2 − z . (3.22)

Passing to spherical coordinates by y = rν we obtain

I1
(
p, z
)
= ϕ2(q0

(
p
))
∫ γ

0

∫

Ω2

J
(
ψ
(
rν, p

))
r dν dr

m
(
p
)
+ r2 − z , (3.23)

and hence

I1
(
p, z
)
= ϕ2(q0

(
p
))
∫ γ

0

(∫

Ω2

J
(
ψ
(
rν, p

))
dν

)
r dr

m
(
p
)
+ r2 − z , (3.24)

where Ω2 is unit sphere in R
2. Since

∫

Ω2

J
(
ψ
(
rν, p

))
dν =

∞∑

n=0

α̃n
(
p
)
r2n, (3.25)

where α̃n(p),n = 0, 1, . . . are the Pizetti coefficients, we get

I1
(
p, z
)
= ϕ2(q0

(
p
)) ∞∑

n=0

α̃n
(
p
)
∫ γ

0

r2n+1dr

m
(
p
)
+ r2 − z , (3.26)

where α̃0(p) = J(q0(p)). Using Proposition 3.5 we have

∞∑

n=0

α̃n
(
p
)
∫ γ

0

r2n+1dr

m
(
p
)
+ r2 − z = −1

2
ln
(
m
(
p
) − z)

∞∑

n=0

αn
(
p
)(
m
(
p
) − z)n + Φ

(
p, z
)
, (3.27)

where Φ(p, z) =
∑∞

n=0 βn(p)(m(p) − z)n and α̂n(p) = (−1)nα̃n(p). Using relations (3.27) and
(3.21) and putting (3.26) in (3.20)we get required relation (3.19).
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Lemma 3.7. Let Assumption 2.1 hold. Then for any p ∈ Uδ(0) consider

(i) if ϕ(q0(p)) = ∇ϕ(q0(p)) = 0, then

fp
(
q
)
=

ϕ(·)
wp(·) −m

(
p
) ∈ L2

(
T
2
)
; (3.28)

(ii) if ϕ(q0(p)) = 0, ∇ϕ(q0(p))/= 0, then fp ∈ L1(T2) \ L2(T2).

Proof. We consider the following integral:

I
(
p
)
=
∫

T2

F(s)ds
(
wp(s) −m

(
p
))k , (3.29)

where F(·) is a continuous function on T
2 and k ∈ N. By Lemma 3.2 for any p ∈ Uδ(0)

the function wp(·) has a unique non degenerated minimum at q = q0(p). Then there exist a
neighborhoodU(q0(p)) ⊂ T

2 of the point q = q0(p) and positive number cp > 0 that

cp ≤ wp

(
q
) −m(p), q ∈ T

2 \U(q0
(
p
))
. (3.30)

We represent the function I(·) as a sum of two functions:

I(·) = I1(·) + I2(·), (3.31)

where

I1
(
p
)
=
∫

U(q0(p))

F(s)ds
(
wp(s) −m

(
p
))k , I2

(
p
)
=
∫

T2\U(q0(p))

F(s)ds
(
wp(s) −m

(
p
))k . (3.32)

From (3.30) we get that I2(p) < ∞. In the integral for I1(p) making a change of variables
s := ψ(y, p) one obtains

I1
(
p
)
=
∫

Wγ (0)

F
(
ψ
(
y, p
))
J
(
ψ
(
y, p
))
dy

y2k
, (3.33)

where J(ψ(y, p)) is the Jacobian of the mapping s = ψ(y, p).
(i) Let F(s) = ϕ2(s), k = 2. Then from (3.33)we get

I1
(
p
)
=
∫

Wγ (0)

ϕ2(ψ
(
y, p
))
J
(
ψ
(
y, p
))
dy

y4
. (3.34)

Passing to spherical coordinates by y = rν we get

I1
(
p
)
=
∫ γ

0

(∫

Ω2

ϕ2(ψ
(
rν, p

))
J
(
ψ
(
rν, p

))
dν

)

r−3dr. (3.35)
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Expanding the function ϕ(ψ(rν, p)) to the Taylor series at r = 0 we obtain

ϕ
(
ψ
(
rν, p

))
= ϕ
(
q0
(
p
))

+
2∑

i=1

∂ϕ

∂ψ(i)

(
q0
(
p
))
⎛

⎝
2∑

j=1

∂ψ(i)

∂yj

(
0, p
)
νj

⎞

⎠r + g(r, ν)r2, yj = rνj ,

(3.36)

where g(·, ν) is continuous in Wγ(0) and ν21 + ν
2
2 = 1. By condition of part (i) of this lemma

and from equality (3.36) it follows that (3.35) has the following form:

I1
(
p
)
=
∫ γ

0
G
(
p, r
)
dr, G

(
p, r
)
= r
∫

Ω2

g2(r, ν)J
(
ψ
(
rν, p

))
dν. (3.37)

Since the function G(p, ·) is continuous in [0, γ], we have I1(p) < ∞. Taking into
account ‖f‖2

L2(T2) = I(p), from (3.31)we get that f ∈ L2(T2).
Now we show that if the conditions of part (i) of Lemma 3.7 are not satisfied, that is,

ϕ(q0(p))/= 0 or ∇ϕ(q0(p))/= 0, then the function defined by (3.28) does not belong to L2(T2).
Let ϕ(q0(p)) = 0 and ∇ϕ(q0(p))/= 0. We will show that

C(ν) =
2∑

i=1

∂ϕ

∂ψ(i)

(
q0
(
p
))
⎛

⎝
2∑

j=1

∂ψ(i)

∂yj

(
0, p
)
νj

⎞

⎠/= 0, ν ∈ Ω2. (3.38)

Assume the converse, let

2∑

i=1

ci
2∑

j=1

uijνj =
2∑

j=1

2∑

i=1

ciuij · νj = 0, (3.39)

where ci = (∂ϕ/∂ψ(i))(q0(p)) and uij = (∂ψ(i)/∂yj)(0, p), i, j = 1, 2. Since the function νj , j =
1, 2 are linearly independent, the last equality holds if and only if, when

2∑

i=1

ciuij = 0, j = 1, 2. (3.40)

Observe that det(uij)
2
i,j=1 = J(q0(p))/= 0. Consequently, the equalities (3.40) hold if and only

if, when c1 = c2 = 0. This contradicts the fact that ∇ϕ(q0(p))/= 0. Thus, C(ν)/= 0. Hence the
equality (3.35) has the form

I1
(
p
)
=
∫ γ

0
G̃
(
p, r
)
dr, G̃

(
p, r
)
= r−1

∫

Ω2

g̃2(r, ν)J
(
ψ
(
rν, p

))
dν, g̃(r, ν) = C(ν) + g(r, ν)r.

(3.41)
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Since

∫ γ

0
r−1dr = ∞, lim

r→ 0

G̃
(
p, r
)

r−1
= J
(
q0
(
p
))
∫

Ω2

C2(ν)dν > 0, (3.42)

by the theorem on comparison of improper integrals, we get that I1(p) = ∞ and thereforef /∈
L2(T2).

In case of ϕ(q0(p))/= 0 the relation f /∈ L2(T2) can be proven analogously.
(ii) Let F(s) = |ϕ(s)|, k = 1. Then from (3.33) we get

I1
(
p
)
=
∫

Wγ (0)

∣
∣ϕ
(
ψ
(
y, p
))∣∣J

(
ψ
(
y, p
))
dy

y2
. (3.43)

Passing to spherical coordinates by y = rν we obtain

I1
(
p
)
=
∫ γ

0

[∫

Ω2

∣∣ϕ
(
ψ
(
rν, p

))∣∣J
(
ψ
(
rν, p

))
dν

]

r−1dr. (3.44)

By the condition of part (ii) of Lemma 3.7 and from (3.36)we get

I1
(
p
)
=
∫ γ

0

[∫

Ω2

∣∣C(ν) + g(r, ν)r
∣∣J
(
ψ
(
rν, p

))
dν

]

dr. (3.45)

Since the function under the integral sign is continuous in [0, γ], it follows that I1(p) < ∞.
Thus I(p) < ∞. Taking into account ‖f‖L1(T2) = I(p) we obtain f ∈ L1(T2). Consequently,
from part (i) of Lemma 3.7 it follows that f ∈ L1(T2) \ L2(T2).

Lemma 3.8. Let the point s = q0(p), p ∈ Uδ(0) a unique non degenerated minimum of the function
wp(s), and ϕ(q0(p)) = 0. Then for any μ > 0 the equation

Hμ

(
p
)
f = m

(
p
)
f. (3.46)

has a nonzero solution if and only if

Δ
(
μ, p;m

(
p
))

= 1 − μ
∫

T2

ϕ2(q
)
dq

wp

(
q
) −m(p) = 0. (3.47)

In this case the nonzero function

fμ,p(·) =
Cμϕ(·)

wp(·) −m
(
p
) ∈ L1

(
T
2
)
, (3.48)

is a solution of (3.46), where C/= 0 a normalizing constant.
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This lemma can be proved as Lemma 3.1 taking into account part (ii) of Lemma 3.7.
Now we prove the main results.

Proof of Theorem 2.3. (i)Observe thatΔ(μ, p; ·) is continuous and monotonously decreasing in
(−∞, m(p)). Moreover,

lim
z→−∞

Δ
(
μ, p; z

)
= 1. (3.49)

By definition, if ϕ(q0(p))/= 0, then μ(p) = 0. So, for μ > μ(p) = 0, Lemma 3.6 gives that

lim
z→m(p)−0

Δ
(
μ, p; z

)
= −∞. (3.50)

Analogously, if ϕ(q0(p)) = 0, then for μ > μ(p) > 0 the inequality

lim
z→m(p)−0

Δ
(
μ, p; z

)
= 1 − μ

μ
(
p
) < 0, (3.51)

holds.
The continuity of function Δ(μ, p; ·) in (−∞, m(p)) yields that the equation Δ(μ, p; z) =

0 has a unique solution z = E(μ, p) < m(p) and hence Lemma 3.1 yields that the operator
Hμ(p), p ∈ Uδ(0) has a unique eigenvalue E(μ, p).

Since for any p ∈ Uδ(0) and μ ∈ (μ(p),+∞) the number z = E(μ, p) is a solution of the
equation Δ(μ, p; z) = 0 and the function Δ(μ, ·; z) (resp., Δ(·, p; z)) is real analytic in Uδ(0)
(resp., (μ(p),+∞)), the implicit function theorem implies that E(μ, ·) (resp., E(·, p)) is real
analytic inUδ(0) (resp., (μ(p),+∞)).

Note that the function Δ(·, p; z) monotonously decreases in (μ(p),∞) and hence for
any μ1 > μ2 > μ(p) the eigenvalues E(μ1, p) and E(μ2, p) satisfy the relations:

0 = Δ
(
μ1, p;E

(
μ1, p

))
= Δ
(
μ2, p;E

(
μ2, p

))
> Δ
(
μ1, p;E

(
μ2, p

))
. (3.52)

Using the monotonicity of the function Δ(μ1, p; ·) in (−∞, m(p)) we obtain that
E(μ1, p) < E(μ2, p), that is, E(·, p) is monotonously decreases in (μ(p),∞).

Lemma 3.1 implies that if for any μ ∈ (μ(p),+∞) and p ∈ Uδ(0) the number E(μ, p) is
an eigenvalue of the operatorHμ(p), p ∈ Uδ(0), then the function

Ψ
(
μ; p, ·, E(μ, p)) = Cμϕ(·)

wp(·) − E
(
μ, p
) ∈ L2

(
T
2
)
, (3.53)

is a solution of the equation

Hμ

(
p
)
Ψ
(
μ; p, ·, E(μ, p)) = E(μ, p)Ψ(μ; p, ·, E(μ, p)), (3.54)

where C/= 0 is a a normalizing constant.
Analyticity of the function Ψ(μ; p, ·, E(μ, p)) follows from the analyticity of the

functions ϕ(·) and [wp(·)−E(μ, p)]−1 in T
2 and the representation (3.53). The functions E(μ, ·)
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and w(·, q) are analytic in Uδ(0) and for any q ∈ T
d the inequality wp(q) − E(μ, p) > 0 holds,

therefore representation (3.53) yields that the mapping p �→ Ψ(μ; p, ·, E(μ, p)) is analytic
in Uδ(0). Analogously the analyticity of the function E(·, p)) implies that the mapping
μ �→ Ψ(μ; p, ·, E(μ, p)) is analytic in (μ(p),+∞).

(ii) Let ϕ(q0(p)) = 0 and 0 < μ < μ(p). Since

lim
z→m(p)−0

Δ
(
μ, p; z

)
= Δ
(
μ, p;m

(
p
))

= 1 − μ

μ
(
p
) > 0, (3.55)

we have Δ(μ, p; z) > 0, z ∈ (−∞, m(p)] and Lemma 3.1 yields that the operator Hμ(p), p ∈
Uδ(0) does not have any eigenvalue in (−∞, m(p)].

The statements (iii) and (iv) of Theorem 2.3 follows from Lemmas 3.7 and 3.8.
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